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Files d’attente avec routage par “batch”
et blocage “jump-over”

Richard J. Boucherie
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Résumé

Cet article considere la distribution a 1’équilibre d’un réseau de files d’attente
avec blocage dans lequel plusieurs clients peuvent changer de station a chaque tran-
sition. Quand, pendant une transition, un client d’un groupe ne peut pas entrer dans
une station, tous les clients de ce groupe choisissent une nouvelle destination. Cet
article montre que la distribution a 1’équilibre de ce réseau a une forme produit.



Batch routing queueing networks with
jump-over blocking®

Richard J. Boucherief
INRIA Centre Sophia Antipolis,
B.P. 93, 06902 Sophia Antipolis Cedex, France

Abstract

This paper shows that the equilibrium distribution of a queueing network with
batch routing is of product-form if a batch which cannot enter the destina-
tion stations, for example as a consequence of capacity constraints, jumps over
these stations and selects a new set of destination stations according to the
routing probabilities, that is if also customers in the batch who arrive at a
non-saturated station jump over that station.

Keywords: jump-over blocking, product-form, batch routing, queueing net-
work.

1 Introduction

Jackson observed in [3] that the equilibrium distribution of a Jackson network in
which the service-speed at a saturated station is set to infinity if a customer arrives
at that station still possesses the product-form equilibrium distribution found for
Jackson networks without capacity constraints. However, a rigorous proof of this
phenomenon is not given in [3]. In [6] this notion of blocking is again discussed.
In this reference the service-rate is not set to infinity, but a customer arriving at
a saturated station jumps over the station and selects a new station according to
the state-independent routing probabilities. In this case the mathematical problem
related to infinite service speeds is avoided, and the product-form result is proven
under the assumption that the state-independent routing probabilities are reversible.
For Jackson-type queueing networks, in [2] the term jump-over blocking is introduced.
In this reference a rigorous proof is given for the product-form equilibrium result under
this blocking protocol for arbitrary routing probabilities (non-reversible routing).
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This paper generalizes these results to batch routing queueing networks. It will
be shown that the equilibrium distribution of a batch routing queueing network with
capacity constraints at the stations is of product-form if a batch of which at least
one customer cannot enter the destination station selects new destination stations
according to the batch routing probabilities, that is also the customers arriving at
non-saturated stations jump over the station. Of course, this blocking protocol,
referred to as the complete jump-over blocking protocol, may be very unrealistic in
practical applications. However, the more realistic jump-over blocking protocol, in
which only the customers who cannot enter a station jump over the station to choose
a new destination station is shown not to preserve the product-form equilibrium
distribution (cf. Remark 3.7). As a consequence, a closed form expression for the
equilibrium distribution for a general queueing network under this partial jump-over
blocking protocol should not be expected.

2 Model

Consider a continuous-time queueing network consisting of N queues or stations, la-
belled 1,2, ..., N, in which a single type of customers routes among the stations. As-
sume that the queueing network can be represented by a stable, regular, continuous-
time Markov chain with state space S C ]Név. A state n = (ny,...,ny) is a vector
with components n;, 2 = 1,..., N, where n; denotes the number of customers at sta-
tion, ¢ =1,..., N. The transition rate from state n to state n’ is denoted by ¢(n,n’).
Such a transition may occur due to a group g = (g1, ..., gn) leaving the stations, that
is due to g; customers leaving station ¢, 7 = 1,..., N, a group ¢’ = (g1, ...,9gy) enter-
ing the stations, while the customers m = (my, ..., my) remain at the stations. The
transition rate for this particular transition is denoted by ¢(g,g’; m). Observe that
a transition 7 — 7’ may occur due to different groups g, ¢’ entering and leaving the
stations. In particular, the relation between the two sets of transition rates defined
above is given by

{9.9' mm+tg=n,m+g'=n'}

Furthermore, note that the transition rates defined above can be used to model both
open and closed queueing networks (cf. [1]).

In the sequel, the restriction of the Markov chain to a set V. C S will be
investigated. It will be assumed that the Markov chain is irreducible at V', and that
there exists a unique equilibrium distribution 7 = (x(n), n € V) at V. Then this
equilibrium distribution can be obtained as the unique solution to the global balance
equations, that is 7 satisfies for all n € V

w(n) Y q(n.n') = 3 w(@)g(n',n). (2.1)
A #R AI#R

Note that the assumption that the Markov chain is irreducible is made only for
simplicity. Without this assumption, a solution m = (m(n), n € V) to (2.1) is an
invariant measure, which need not be unique or normalisable.
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In [1] it is shown that a sufficient condition for 7 to be the unique product-form
equilibrium distribution is that = satisfies the group-local-balance equations, that is
7 satisfies forall mand n=m+g e V

m(m+3g) Y. alg.gsm) = > w(m+g)eg,g,m). (2.2)

9'#3 9'#3

Moreover, it is shown that group-local-balance is particularly suitable to analyse
blocking phenomena in product-form queueing networks with batch movements.

Assume that the transition rates decompose in a service-part and a routing-
part, that is assume that for all g, ¢", m

= ———=p(g.9ym). (2.3)
Here % is the state-dependent service-rate for service of a group ¢ in state n =
m + g, chosen in accordance with the recent literature on product-form queueing
networks (cf. [1], [4], [5], [7]), and shown to be the most general form available for the
service-rates for which product-form results can be derived. Upon departure from the
stations a group g routes to ¢’ according to the state-dependent routing probabilities
p(g,4';m). These routing probabilities will be studied in detail in Section 3.

The following result can immediately be concluded from [1], and will be the
basis for the analysis of jump-over blocking.

Lemma 2.1 (Decomposition) Assume that a positive solution p = (p(n), n € V)
exists to

pim+g) >,  plg.gsm)= >,  plm+g)pg,g;m). (2.4)
g'#gm+g eV g'#gm+g' eV

Then the Markov chain with transition rates (2.3) has a unique equilibrium distribu-
tion given by

n(n) = Bé(n)p(n), nevV, (2.5)
where B is a normalising constant, defined as
-1
B = | % otntn)|
ReV

Lemma 2.1 allows the routing and service parts of the Markov chain to be analysed
separately. Since blocking effects are, by nature, routing effects, in the sequel the
routing part will be studied only.

3 The complete jump-over blocking protocol

This section considers the complete jump-over blocking protocol for batch routing
queueing networks. In principle, under the jump-over blocking protocol customers
who cannot enter a station jump over that station to route to another station as if



they have received service. Since customers in a batch are in general not independent,
for this protocol to preserve the product-form equilibrium distribution it must be
assumed that the whole batch g jumps over the stations, that is, if the g/ customers
arriving at station ¢ cannot all enter station ¢, then all customers g’ jump over the
stations, also at stations j # ¢. Of course, this protocol need not be very realistic in
a practical environment (also, cf. Remark 3.6).

Assume that the batch routing probabilities are state-independent, except for
blocking phenomena, that is assume that customers who leave the stations and who
are not blocked route among the stations according to the stochastic routing matrix
P with g, g’-th entry p(g,¢’). If not all customers of ¢’ can be accepted, then the
whole batch ¢’ selects new destination stations according to P. For all m define the
matrix P(m) from P as

P(m)g g =p(g,9' )1 (m+g & V).

P(m) represents the routing probability of groups g who cannot enter the stations
when m remain, that is the group g selects a new station according to P(m). Obvi-
ously, P(m) should not contain positive entries for g such that m+g¢ € V since in this
case the group ¢ was accepted at the stations. Note that P(m) has rows containing
only 0’s for all g such that m + ¢ € V, and row sums 1 if m + g ¢ V. Then the
routing probability of § to ¢’ when m customers remain at the stations under the
complete jump-over blocking protocol is given by, for m, g, ¢’ such that m + g € V,
andm+g' €V

p(g,55m) = Prg+ (PP(m))sg + (PP(m)*)gq + -

o0

= (PP ) (3.1
n=0
where P°(m) = I, the identity matrix, and P™(m) = P(m)".
Assume that an up to normalisation unique positive solution y exists to the
state-independent routing version of (2.4), that is assume that y satisfies for all g:

y(g) Zp(g,g’) = Z y(g")p(g',9), (3.2)

and assume that a function p exists such that for all m, and ¢, ¢’ such that m+g, m+
ges
pm+9) _ y(9) (3.3)
p(m+g)  y(g)
Observe that p is the solution to (2.4) for the system in which all stations have infinite
capacity, i.e. for the system in which blocking does not occur. From Lemma 2.1, with
V =5, we now immediately obtain that the Markov chain at S has a product-form

invariant measure m = (m(n), n € S) given by
n(n) = p(a)p(n), 7€ S.
The following theorem shows that p is also a solution to the state-dependent traffic

equations at V' under the complete jump-over blocking protocol. As a consequence
the equilibrium distribution at V' is the normalised version of the invariant measure

at S.




Theorem 3.1 (Complete jump-over blocking protocol) Consider the Markov
chain with transition rates (2.3) under the complete jump-over blocking protocol, that
is the routing probabilities have the form (3.1). Then the routing function p(g,g'; m)
defined in (3.1) is properly normalized, and the unique equilibrium distribution at V
is

w(n) = Bé(n)p(n),
where p is given in (3.3).

Proof From Lemma 2.1 it is sufficient to prove that p satisfies the state-dependent
traffic equations (2.4) for all m, ¢ = 1,...,k(m), and g, ¢’ such that m + g,m + ¢’ €
Vi(m), where V;(m), ¢ = 1,..., k(m), are the local irreducible sets of the Markov chain
at V with transition rates ¢(g, g'; m) for fixed m (cf. [1]).

Choose arbitrary, but fixed m such that V(m) = U;Vi(m) # 0, that is choose
m such that 3 g for which m+ g € V.

We will first show that for all g, ¢’ it must be that

nh_}rgo Pr(m); 5 = 0. (3.4)
To this end, observe that the rows of P(m) for which m + ¢ € V contain only 0’s.
Furthermore, since (3.2) possesses an up to normalisation unique positive solution,
and 3 ¢’ such that m + ¢’ € V, it must be that for all g such that m + g ¢ V there
exists a k and a sequence gy = §,91,92,---,9k,gk+1 = ¢ such that m + g, € V,
i =0,....k p(gi,giy1) > 0,7 =0,..., k. As a consequence, the transition matrix
P(mm) of the Markov chain with state space {g|m +g & V} U {}:

é(m)g,g' = P(m)zgl(im+g €V),
P(m)g. = > P(m)gg,
g'm+tg'eV

P(m). =

—_

?

is the transition matrix of an absorbing Markov chain. Since for n > 2 we have for
m+g,m—+g ¢V that N
Pr(m)yg = P"(m)sg,
P*(m) satisfies (3.4).
From (3.4) we obtain that the routing function p(g, g’;m) is properly normal-
ized. To this end, note that for all n > 1 and for all ¢

Y. (PPY(m))gy = > Yo (PPYHm))zn P(m)gn g

g'm+g'eV gm4g' €V glimtghgVv
= Y (PP"H(m))ge |[L— Y. P(m)ygy
g m+g"gv glm+g' gV
= Yo (PPTHm))ggn — Yo (PP(m))gg
g'imtg" gV g'mtg' gV



This gives

> plg,gsm) = > {Pg,g‘ + Z(PP”(m))gg,}
g'im+g'eVv ghm+g' eV n=1

= 1- Z Pg g’

gm+g'gV
+ { Yo (PP m))aer — Y (PP”(m))M,}

n=1 \ g":m+g"¢V g'im+g'gVv

= 1— lim Z (PP"™(m));.5
T grmtggv

= 1.

Insertion of this result in (2.4) gives that it is sufficient to prove that p satisfies
for all m, g such that m+g €V

o0

pm+g)= 3 pm+g)d> (PP (m))y,. (3.5)

glim+g'eVv n=0

Evaluation of the right-hand side gives:

Y. plm+g) Y (PP (m))y,
g'm+g' eV n=0
= Y pm+g)ipd9)+ D Zp q',9") )',g}
g'm+g'ev g'm+g"eV n=1
= > pm+g)wy.9)
g'm+g'ev

+ > Y. plm+g)p ””ZP”

gl/:m_}_glle‘/’ glm_l_glev

= > pm+7)wd.9)

g'm4g'eVv
+ > { Yo pm+gd,d") — > plm+g)p }ZP” g
g':m+g"gVv g'm+g'eS g'm+g'gVv
= > pm+9)pd,9)
g'm4g'eVv
+ {p(m+g”)— Y. p(m+g")p(g ”}ZP”
gll:m_}_glle‘/ gl:m_l_glg‘f
= . pm+3)wd,9)
g'm+g'eV
+ > pm+g"VPm)gy+ Y, plm+g") > P (m)ymy
g"m+g! v g"m+g! v n=2

- > Y. pm+g)d,q" ZP”

g m+g" gV glm+g' gv



= > pm+g)w{,9)
g':m+g'es
= p(m+g),

which completes the proof. a

Remark 3.2 (Proof) Observe that the last step of the proof can also be obtained
as follows:
From (3.4) we obtain that

ZP” )(I = P(m))=1— lim P*(m) =1,

n—oo

which proves that [ — P(m) is the inverse of Y02, P"(m). The state-dependent
routing probabilities can now be written as

p(g,9'sm) = (P(I = P(m)) ™), (3.6)

It is now sufficient to prove the following relation for all m +g € S

pim+g)= Y. pm+g)(P(I—P(m) ")y,

g'm+tg'eV

Multiplication of this relation on the right-hand side by I — P(m) gives that it is
sufficient to prove that

me+9)(1 P(m Z 2 pmtg) (P =P(m)) g1 —P(m))s g

ghimtg eV

Q\
‘Q\

This relation is equivalent to

pim+g)— > pm+g)P(m)g= > plm+3g)pd,q),
gim+ggV ghmtg'eV

which holds true as a consequence of (3.2). a

Remark 3.3 (Single changes, reference [2]) The result of Theorem 3.1 is a gen-
eralisation to batch routing queueing networks of the result obtained in [2] for Jackson-
type queueing networks with single changes. The structure of the proof given above
is very similar to the proof given in this reference. Note that the result of Theorem
3.1 is more general than the result obtained in [2]. This is obvious since batch routing
is allowed, but also if single changes are allowed only, the result of Theorem 3.1 is
more general, since the service-rate is more general, but more important, since the
solution p(n) to the state-dependent traffic equations is more general. a

Remark 3.4 (Product-form result, intuitive justification) Observe that the
product-form result (2.5) under the complete jump-over protocol is the same as the
result under the stop-protocol (cf. [1]). This is not surprising since the jump-over
protocol can intuitively be justified by setting the service-speed at saturated stations
to infinity. If we just consider the ratio of the service-speed between saturated and
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non-saturated stations, then it is clear that increasing the service-speed to infinity
at saturated stations is intuitively equivalent to decreasing the service-speed at non-
saturated stations to zero.

Observe that the intuitive justification of the jump-over blocking protocol can
serve as intuition only as increasing of the service-speed to infinity in general is not
allowed (also cf. Remark 2.2 of [2]). O

Remark 3.5 (State space) Observe that there are no restrictions imposed on the
state space V' of the Markov chain. An obvious choice would be

V= {ﬁE S|n2 §Bz, 1= 1,...,N},
corresponding to capacity constraints at the stations. O

Remark 3.6 (Departures from one station) If the batch routing probabilities
have the form
p(9,9") = plgei. ge)),

that is in each transition customers can depart from only one station, then the com-
plete jump-over protocol seems to be a reasonable protocol, since in this case it may
be argued that the customers in the batch ¢ must remain together. Note that in
general we will not have this structure. In this case the complete jump-over protocol
can be seen as an alternative for the stop-protocol. a

Remark 3.7 (The partial jump-over blocking protocol)  The more realistic
jump-over blocking protocol in which only customers who cannot enter a station jump
over the station to select a new destination station does not preserve the product-
form for the equilibrium distribution. This can immediately be seen by observing a
single station, or equivalently, a tandem line of N stations with capacity constraint
at the last station, only. Since this partial jump-over behaviour will imply that only
some customers in a batch select a new station, it will be assumed that customers in
a batch route independently. Furthermore, it will be assumed that both the service-
probability and the arrival probability are of Bernoulli type. For the tandem line
with capacity constraint By at station N we then have

AE ifg=0, g =key, k=1,2,...,
q(g,g';m) = pf if g=rFe;, ¢ =keyr, k=1,...,n;, 1 =1,...,N—2,N,
ph_ if g =ken_1, ¢ = min(key,(Bn —mpy)en), k=1,...,nn_1,

were for simplicity it is assumed that a batch of customers can depart at only one
station in each transition.
The global balance equations now take the form

o0 1 N n;
dor(N 4 Y w(m)uy + DY w(n)us
k=1 k=1 1=2 k=1
BN—TLN ] N Ty
= Z W(ﬁ+k€N);L§CV+ Zﬂ(ﬁ— kel))\k +Zzﬂ(ﬁ+k€i—1 — kei)pf_l,
k=1 k=1 1=2 k=1
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for n such that ny < By, and if ny = By,

00 N n;

> (A" + E (m)uy + 32> 7
k=1 1=2 k=1
nq N—-1 n; By
= Z (n — key) Pt Z Z n+ke_q1— kei),uf_l + Z Z m(n 4 rey_1 — ken)py_y-
k=1 1=2 k=1 k=1r>k

Insertion of the product-form equilibrium distribution for n such that ny < By
immediately shows that local balance is preserved at stations 1,..., N, and at the
‘outside-station’ for ny < By. However, if ny = By the outside station does not
satisfy local balance. In fact, the equilibrium distribution of this tandem line with
partial jump-over blocking is

—Cﬂ im1+L1( By)
= 4 " 1_)\ ny = N .

Since local balance is not preserved under the partial jump-over blocking protocol,
for capacity constraints at other stations than the last station closed form expressions
based on product-form distributions such as given above for the equilibrium distribu-
tion will not be easy to find. In fact, if the first station in a tandem line is the station
with capacity constraint, then I was unable to find an equilibrium distribution based
on a product-form distribution. a
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