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Abstract

In this paper we describe an on-line randomized algorithm for computing the
uppet envelope (i.e. pointwise maximum) of a set of » triangles in three dimen-
sions. The main new feature of this algorithm is the combination of 1wo layvers
of influence graphs. which were introduced in [1}. We can insert the n-th triangle

in O(logn3_"_, '-—“r—'ul-’) expected time. where fO(r) is the expected size of an
intermediate result for r triangles. Since fU(r) = O(r*n(r)). the expected time for
the insertion of the last triangle 1s bounded in the worst case hy O(na(n)logn).
This algorithm is easy 10 implement and works also nicely for surfaces and surface

patclies of fixed maxnmum degree.

Résmmé

Dans cet article nous décrivons un algorithime randomisé en-ligne pour cal-
culer Venveloppe supérieure (e, le maximum. point par point) d'un ensemble de
n triangles dans Pespace. La caractéristique principale de cet algorithme est la
combinaison de deux couclies de graphes d'influence introduits dans [1]. On peut
insérer [ n-ieme triangle en tenups moyen O(logn Y L_‘%bh) oti J'(r) est la

r=1
taille moyenne d'un résultar intermédiaire pour » triangles qui est plus petite que
O(r a(r)). Le cout moven de la derniére étape est donc borné dans le pire des
cas par O(na(n)logn). Cet algorithime est simple a implémenter et s'étend aux

surfaces ot carreaux de surface de degré borné.



1 Introduction

In this paper we consider the following problem. Let S be a set of n triangles in three
dimensions. We wisl to compute the upper envelope (i.e. pointwise maximum) of the
triangles in S. It has been shown in [11] that the combinatorial complexity of such an
envelope is O(n?a(n)), where a is the functional inverse of the Ackermann function.
This problem las several interesting applications including the hidden surface removal
problem where we want to determine the portions of objects in space visible from some
viewpoint (see [15] for an early history). This problem is a special case of the envelope
problem. since the objects do not intersect.

The problem of constructing the upper envelope of a set of n triangles in three
dimensions has been studied in [6]. where a worst case optimal deterministic algorithm
was presented that takes time O(n?a{n)). However, since the algorithm includes the
computation of an arrangement of 3n lines in theé plane. its lower bound is Q(n?). Fur-
thermore, it does not extend to surfaces or surface patches. An incremental randomized
but static algorithin for lidden surface removal of non-intersecting faces in three di-
mensions whose expected running time is O(n log? n + 8(1)logn) was given in [9]. 6(1)
is equal to 3, tunber "'rj'““,"i""'” aclevd ! wlere the level of a junction is the number of
faces which make it invisible. and is O(n?) in the worst case. In []10] a running time
that depends linearly on #(1) is achieved. In [12] upper bounds on the size of the upper
envelope for special cases of surfaces were obtained and deterministic algorithms for
their calculation by a factor log n worse than the bounds were presented.

An attractive approach in computational geometry to solve difficult problems is to
use simple randomized incremental algorithms. Their complexities are not worst case

optimal. but only expected when averaging over all permutations of the input. In [1]
a general data structure. the influence graph. for the design of on-line geometric algo-
rithms was developed. Since the algorithms are on-line. there is no prior information
needed about the as vet uninserted input. In the following we present an on-line ran-
domized algorithm for coustructing the upper envelope of a set of n triangles in three di-
mensions. The main new feature of our algorithm is the combination of two lavers of in-
fluence graphs. Its expected update time for the n-th triangle is O(logn 3"/ ioﬂ’.’?/_zll )

r=1
where fO(r)is the expected size of an intermediate result for » triangles. Thus, with the
complexity result mentionned above it is bounded by O(na{n)logn) in the worst case.
However. its behavior will be better as soon as f9(17) = o(r2a(r)). which is the case in
most practical sitnations. This algorithm is simple and it can be used for surfaces and
surface patches of fixed maximum degree with the same time complexity depending
on the complexity fU(r) of an upper envelope of r surface or surface patches. More
precisely, if fU(r) is non-linear. our general algorithm has the same time complexity as
the specialized algorithms of [12]. Furthermore, it can be used to compute the upper

envelope of those surface patches considered in [7] in expected time O(ny/A,(n)logn),

where ¢ is a constant depending on the degree of the surfaces and Ay(n) the maximum
length of a {n.¢) Davenport-Schinzel sequence.

The paper is organized as follows. In Section 2 we recall some definitions and results



needed in the following. The incremental algorithm for adding a triangle is explained
in Section 3. Section 4 gives the analvsis of insertions. The extension of the insertion
algorithm to surface patches is presented in Section 5. We conclude this paper with a
discussion of our results.

2 Preliminaries

This section provides the definition and well known results for the upper envelope. It
also recalls the algorithm of [3] and [8] for constructing the arrangement of line segments
in the plane which is a basic tool for our algorithm.

Definition 2.1 Let 5;.5;..... S, be n d-simplices in R¥*!, Each d-simplex S; can be
regarded as the graph of a partially defined linear function g4y = filw(.22.....24)-
The upper envelope Al of the d-simplices is the pointwise maximum of these functions,
e My oy ooay) = 111(1.7'15;5,;,f,-(:1‘1..7.'.2. cee )

Figure 1: The upper envelope of five triangles

An example of an upper envelope of a set of 2-simplices, which are triangles in R?,
is shown in Figure . We suppose that the triangles are non-vertical and in general
position. i. e. uo two of them overlap one another. no vertex of them lies on another
triangle. no two edges of distinct triangles intersect, no edge of one triangle meets the
intersection of any other two triangles. and the edges of the projections do not overlap
one another. For d-simplices with d > 2 we define general position analogously. With
these assumptions. the total uumber of all i-dimensional faces with 0 < ¢ < d of such
envelopes was bounded in [11]} and {5].

Fact 2.1 The combinatorial complexity of the upper envelope of n d-simplices in R+
is O(-nd(.r( ). where a is the [unctional inverse of the Ackermann function.



In [6] a worst case optimal deterministic algorithm for constructing the upper en-
velope of a set of » triangles in three dimensions was given which needs O(na(n))
time and storage. However. it does not extend to surfaces or surface patches and its
generalization to higher dimensions does not lead to a worst case optimal algorithm. If
the d-simplices are pairwise disjoint, then the combinatorial complexity of their upper
envelope is O(n’) and it can be constructed using the above algorithm in the same time

bound.

Our algorithm is similar in some features to the algorithm of [3] and [8] for con-
structing the arrangement of line segments in the plane. Therefore, we recall this result
in the following. The simple randomized algorithms of [3] and [8] construct the trape-
zoidal decomposition induced by n line segments in the plane which are supposed to be
non-vertical and in general position. This decomposition is a subdivision of the plane
into trapezoids defined as follows. From every endpoint of a segment or an intersection
point of two segments. we extend vertical segments to the first segment above and the
first segment below this point. An example for a trapezoidal decomposition induced
by four segments is shown in Fignre 2 left. A trapezoid is defined by at most four

Figure 2: Trapezoidal decomposition of four segments and insertion of segment s

segments and may degencrate 1o a triangle. The problem of computing the trapezoidal
decomposition of a sct of line segments is solved incrementally, i. e. the segments are
added one by one and we maintain the trapezoidal decomposition of the set of the al-
readyv inserted segments. In order 10 do that. we need to define the notion of a conflict.
A line segment and a trapezoid arc in conflict, if and only if the segment intersects the
interior of the trapezoid. The goal is to compute the trapezoids which do not conflict
with any triangle. When a new segment s is inserted. we determine the trapezoids in
conflict with s. Fach such trapezoid is split into at most four new trapezoids. Some (at
most two) of these new trapezoids not properly defined trapezoids yet. More precisely,
each vertical segment which does not contain a vertex of the current arrangement must
be removed and the two trapezoids incident to this segment are merged (see Figure 2
right). The following fact which generalizes to arrangement of planar curves of hounded
degree was shown in [3] and [8].



Fact 2.2 The arrangement of n line segments in the plane can be constructed on-line
with O(n + A) expected space and O(logn + %) expected update time. where A is the
number of intersections of the line segments.

3 The Insertion Algorithm

The algorithm for constructing the upper envelope of a set of triangles in three di-
mensions described in the following is an incremental algorithm which uses the general
technique of the mnfluence graph of [1]. Its analysis is randomized.

The triangles are added one by one and we maintain a decomposition decompA/{S)
of the space above the current upper envelope M (S) of the set S of already inserted
triangles. This decomposition is a prism decomposition of a part of the space defined
as follows: from every point on an edge of Af(S), we extend a vertical ray in positive
z3-direction (sce Figure 3 left). By doing so we obtain a decomposition of the space
above M (S) in nnbounded cells with a unique bottom face. However. the number of
vertical walls of an obtained cell needs not to be constant and the cell may not be
simply connected. Therefore. we decompose the vertical projection of its bottom face
into trapezoids by drawing segments parallel to the a,-axis. These segments are drawn
dotted in Figure 3 right. Tlie corresponding operation in three dimensions is to raise
a wall vertically above each inserted segment. Each cell of the prismm decomposition
is now an unbounded prism with a trapezoidal base which may degenerate to a trian-
gle. During the algorithm. we maintain the adjacency graph of the cells of the prism
decomposition.

el
1

£

Figure 3: Vertical walls are raised to decompose cells into prisms

Each prism F is defined by a set of triangles one of which is the unique triangle
tr in which its floor is contained. The floor of F is a trapezoid which is defined by
at most four segments s).....8 (b < 4) (as mentionned in Section 2) where the two



segments defining left and right vertical segment are not necessarily unique. These non-
unique segments are edges of the same triangle. Each segment s; is either a portion
of intersection between the two triangles t; and ¢ or the projection of a portion of an
edge of the triangle t; onto 1. Thus a prism is defined by at most five triangles: the
triangle tr and the at most four triangles ¢;,...,¢, corresponding to s;.,....8.

We now define conflicts between triangles and prisms. A triangle and a prism are
in conflict, if their intersection is not empty. The goal of our algorithm is to construct
for a given set & of triangles the prisms which are defined by triangles of $ and which
do not conflict with any triangle of §. Such prisms are called empty. These are the
cells of the prism decomposition of the upper envelope of S.

Let ¢ be the new triangle to be inserted. M(S) the current upper envelope and
decomp A/ (§) its prism decomposition. First, we determine the prisms of decompA/(S)
which intersect 1. These prisims disappear from the current prism decomposition. The
triangle 1 is their killer. Then. we update the upper envelope and its prism decomposi-
tion. The new prisms are ercated by {. The upper envelope after the update is called
M(SuU{t}). Tofind the prisms which conflict with the new inserted triangle efficiently,
we maintain the influence graph or I-DAG as location structure. This graph contains
the history of the construction. Its nodes are associated with those prismns that be-
longed to the prism decomposition at a previous stage of the incremental construction.
The I-DAG structure is characterized by the two following fundameutal properties.
Firstly, at each stage in the incremental construction. the empty prisins are leaves of
the I-DAG. Secondly, the prism associated with a node is included in the unjon of the
prisms associated with its parents. The I-DAG is initialized by a prism big enough to
enclose all triangles in §. Thus. this graph is rooted, directed and acyclic.

In the following we describe more precisely how to proceed, when a new triangle is
added. We execute first a lacation step and then an update step.

Location step: \When a new triangle 1 is added. we first locate all the prisms in
conflict with . T'his is done by a graph traversal that starts at the root of the 1-DAG
and visits recursivelv. for cach node in the I-DAG. all its children. which have not
already been visited and which couflict with . and finally reports the leaves visited.
If no leaf of the I-DAG is in conflict with ¢, ¢ intervenes neither in the current upper
envelope nor in the upper envelopes to be computed in the following.

Note that as opposed to other randomized constructions it is not sufficient to locate
only the first conflicting prisin. Indeed since the conflicting prismus do not necessarily
belong to one connected component. we cannot find all conflicting prisms by using
adjacency relations.

Update step: We partition the cells of decompM(S) which intersect 7 in those of
type 2 which are cut in two sub-cells by t and the others of type I.

Firstly. we construct only the cells of the decomposition of the new upper envelope
M(SuU{t}) whose floor is not contained in t. Therefore. let F he a cell of decompM(S)
of tvpe 1. The portion of F belonging to M(SU{t}) is decomposed in at most six new

o



Figure 1: Six new cells whose floor is not ¢ in a vertical projection.

ry E

Figure 3: The merge seen in projection.

prisms (see Figure 4). A new node of the I-DAG is created for each new prism and
linked to the node corresponding to F.

Some of the prisius are not proper prisms yet and have to he merged with adjacent
prisms to obtain the prism decomposition of M(S U {t}). This merge is analogous to
the merge used in the incremental construction of the trapezoidal decomposition of line
segments in the plane and proceeds as follows. Each wall of F is cut by ¢ in at most
three wall portions (see Figure 5 right). The lower edge of at most two of such portions
is not contained i . Those wall portions which do not contain a vertex of the upper
envelope are not walls of the new prism decomposition and have to be removed. Their
two incident prisins have to he merged: the dotted walls in Figure 5 left are removed.
The adjacency graph is updated accordingly.

At the end we have constructed all those cells of the decomposition of the new upper
envelope whose floor is not contained in t. We still have to construct the remaining
cells whose floor is contained in £. We will denote by I/ the union of the cells of type
2 and of those parts of cells of tvpe 1 (whose hase is not necessarily trapezoidal) not
treated in the first step. As it can be seen in Figure 6. I7 is not necessarily connected.

We compute U using the adjacency graph of the cells. A connected component of
U corresponds to a face [ of the upper envelope A/(SU {t}) above which the maximum
height is assumed by /. The nodes in the -DAG corresponding to the cells of the
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the new inserted /

x2 triangle ¢

Figure 6: The new inserted triangle f and union U in a vertical projection.

connected component of U7 are linked to a unique node associated to f. The face f
may contain a great number of edges and be not simply connected. We decompose
it into trapezoids using the incremental randomized algorithm in [1] and raise a wall
vertically above eacl edge ol the trapezoidal decomposition. By that we obtain a
secondary influence graph which represents the prism decomposition of the part of the
space above f. The root of this graph is the node associated to f. We repeat this
process for all the connected components of V.

We couclude the deseription of the update step and by that the description of the
algorithm with & remnark. Note that it is not possible to construct the new cells whose
floor is contained in t directly, siuce in this case the number of sons of a node cannot be
bounded. a condition needed in the analysis of [1]. An example is illustrated in figure
7. In this figure. cach of the O(r) nodes corresponding to the prisms F, may have O(r)
sons corresponding to the new prisms. since their prisms intersect partiallv. In this
example also the update conditious for the conflict graph in [3] is not fulfilled.

4 Analysis of Insertions

We will now analyze the running time using the main results from [1] and the backwards
analyvsis from [1] and [13]. In the influence graph we distinguish between the principal
nodes corresponding to empty prisms at a previous stage of the incremental construction
and secondary nodes which are inner nodes of the secondary influence graphs.

For the analvsis we need some notations. According to the preceding section each
prism is defined by at most five triangles. Let fO(r) be the expected number of empty
prisms defined by subsets of at most five triangles of an r-random sample of S. The
expected number of prisms defined by subsets of size at most five of an r-random sample
of § with exactly one conflict f}(r) is bounded in [3] by O(f [5]))-

First we give a honnd for the expected size of the influence graph constructed during
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Lemma 4.1 The expected total number of nodes and edges in the influence graph of

Sis O(Xr., L2y,

r=

Proof: The expected number of principal nodes created by the insertion of the »-th
triangle is less than 3L0r—(’—l Indeed. a principal node created by the insertion of the r-th
triangle 1, is necessarily an empty prism defined by the r triangles. By averaging over
the n! possible permutations of §, the first 7 triangles may be any sample of S of size
r with the same probability and {, may be any element of the sample with probability
%. Hence, ; is an upper bound for the probability for ¢, to be one of the at most 5
triangles defining a prism.

To bound the number of secondary nodes in the I-DAG created at stage r of the
algorithm. we observe that the size of the union U, is bounded by the number of empty
prisms in conflict with the r-th triangle t,.. These are the prisms killed by 1,.. Since such
a prism has exactly one conflict after t,.°s addition. namely t,. the number of prisms
killed by t, is expected to be %f’(/'). The complexity of an arrangement of %f‘(r) non-
intersecting litte segments is linear in the number of line-segments. Tlierefore using Fact
2.2 it can be incrementally constructed in expected space ()(—f#). This is exactly the

expected number of secondary nodes created during the insertion of the r-th triangle
and is less than O(I—OQ).

The number of nodes in the influence graph of § is simply the sum over all stages
of the expected number of nodes created at one stage. By the preceding observations
the expected number of principal and secondary nodes created at stage r is less than
O(@). It follows that the expected total number of nodes in the influence graph is

O, ce e N . . .
IO f—#—)). Since the outdegree of each node in the I-DAG is bounded. this is also

r=1 ¥

an upper hound for the number of edges in the I-DAG. 0

According 1o Fact 2.1, fO(r) is less than O(r%a(r)). Thus. the total number of
nodes and cdges created during the insertion of n triangles is bounded by O(n*a(n)).

Now. we analvze the location and the update step for the insertion of the last
triangle 7. A principal node and the secondary influence graph of which it is a parent
can be treated in O(log n) expected time. Indeed. according to Fact 2.2. the location in
a secondary influence graph can be done in Q(logn) expected time. Hence the expected
costs of thie location step are at most to log n times the expected number of principal
nodes visited.

The construction of the secondary influence graph nceds expected time O(|l/ | log n),
where |U7] is the size of the union U7 and is proportional 1o the number of cmpty prisms
in conflict with the n-th inserted triangle. The other parts of the update step requires
time proportional to the number of edges created by the insertion of the »n-th inserted
triangle. Since the nodes in the I-DAG are of bounded outdegree. this is bounded by
the number of empty prisms in conflict with n-th inserted triangle, which is less than
the expected number of principal nodes visited. Thus also the update step needs time
proportional to log »n times the expected number of principal nodes visited.

The expected number of priucipal nodes visited during the last insertion is given in
the following lemma.

9



Lemma 4.2 The expected total number ofprmc:pal nodes visited during lhe location

step for the n-th inserted triangle is O( - —(L'-/—ZJ—)

Proof: During the insertion of the n-th triangle, the conflicts are located by a traversal
of the influence graph. A principal node F is visited and yields a positive answer, if F
is in conflict with the n-th triangle.

Firstly, we show that the expected number of conflicts of the n-th triangle ¢ with
prisms, which were empty atl stage » < n, is Ll—r(%]—l By averaging over all possible
permutations of S. the first » triangles plus t may be any sample of size » + 1 with the
same probability. Then the prisms, which were empty at stage r and are in conflict
with 1, are defined by subsets of these r + 1 elements and have exactly one conflict after
t’s insertion. Since 1 mayv be anyv element of the sample of size » + 1, with probability

ril ., we obtain the above expression.

Secondly. we show that the expected number of conflicts of the n-th triangle with
the prisms. created by the insertion of the »-th triangle with r < n, is less than ;LT(-H—D
This expected value is the sum over all prisms F of the probability that F occurs as
a principal node at stage » and is in conflict with t. We decompose this probability
conditionnally with the event that F is in conflict with ¢ and had no conflict at stage
r. If Fis in conflict with f and has no conflict at stage », the probability that F occurs
as a principal node at stage ris 2. Otherwise, if I has a conflict at stage ». F could

not have heen created by the r-th triangle and thus the probability is zero. Hence, we

. . . . 5 M r
obtain with the preceding observation the expected value ;if—:—l—)
Now, summation over the stage of creation r of F' yields the result of the lemma
n-1s fllrd)) _ no Sof2])
ooy a et o o (m L), =)

This expected number is bounded by Q(na(n)). Thus, the location and the update
step for inserting the n-th triangle may cost in total O(logn y__, ﬁlﬁ/—u—)) expected
time, which is less than O(na(n)logn).

This completes the analysis of the algorithm and vields the following theorems.

. . ) . , 01,/
Theorem 4.3 The w-th triangle can be inserted in O(logn 3_7_, ! (7,’/2 )) expected

time where fU(r) is the expected size of the upper envelope of v triangles.
Corollary 4.4 The n-th triangle can be inserted in O(na(n)logn) expected time.

Theorem 4.5 The upper envelope of a set of n triazmle< in R® can be constructed in

O(nlogny)_, {—(—L;QJ)) expected time with O(Y.7_ ( L0y expected space.

Corollary 4.6 The upper envelope of a set of n triangles in R can be constructed in
O(na(n)logn) expected time with O(n*a(n)) expected space .

The results stated in the Corollaries 4.3 and 4.5 are obtained by using worst case
bounds for the size of an upper envelope. In most pratical situations the performance
of the algorithni will be much better. If the triangles do not intersect. fory = O(r?)

10



which results in an O(nlogwn) expected insertion time for the n-th triangle. If the
triangles are half-planes limited by straight lines. then fO(r) = O(r?) and we obtain
the same insertion time as for the case of non-intersecting triangles.

Note. that. in general, an incremental algorithm cannot be output sensitive. since
an intermediate result of the incremental construction may be greater than the final
one. This can be easily illustrated by the following example. Let S be a set of n
non-intersecting triangles of Figure 8. The upper envelope for § is quadratic, but if a
new triangle f is inserted. which is above all triangles, the upper envelope of S U {t}
becomes constant. The insertion of t takes at least time proportional to the size of
the envelope before its insertion. Thus, the expected costs of inserting ¢ are at least

Q(}1 SrL %) = Q(n?).

the new inserted
triangle 1

Figure 8: Example for which the algorithm cannot be output sensitive in a vertical
projection

5 Extension of the Insertion Algorithm

The above algorithm can be generalized with slight modifications to calculate the upper
envelope of surfaces of fixed maxinmm degree. Therefore we first define the problem
preciselv and recall known results.

Let S be a sct of n surfaces (resp. surface patches) in R®. Each surface is a
continuous bivariate function satisfving the two following conditions. Firstly. each triple
of functions intersects in at most s points. Secondly. each pair of functions intersects in
a curve haviug at most p singular points. at which the curve ceases to be defined, has a
discontinuity or a vertical tangency. Algebraic surfaces of fixed maximum degree meet
the above conditions. Fach surface patch is the graph of a partially defined bivariate
function and these functions as well as the curves delimiting these patches are of fixed
maximum degree and the number of delimiting curves is constant. The upper envelope
M of § is the pointwise maximum of these functions. In [12]it has been conjectured that
the combinatorial complexity of such envelopes is only about quadratic in n. However,
this conjecture has only been proved for a few types of surfaces and surface patches
such as piecewise linear functions in [11] and some special cases of hivariate functions

11



in {12). If in addition to the conditions above, the interior of three surface patches
intersect in at most two points. it has been recently shown in {7} that the complexity

of the envelope is 0(722,//\(,(72)). where ¢ is a constant depending on the degree of
the surfaces and where Aj(n) is the maximum length of a (n,g¢) Davenport-Schinzel
sequence.

Now we describe the algorithm. As before we first look at the trapezoidal decompo-
sition of planar curves of bounded degree. The algorithm of Section 2 can be extended
as in [1], since the segments can be broken in a constant number of 2-mounotonic por-
tions and every two segments intersect only constant times. The top and bottom edges
of a trapezoid in this case are portions of 2-monotonic planar curves. Its prism de-
composition is then defined as in section 3 with the slight difference that the floor of
a prisim is contained in a surface and that its projection is a curved trapezoid. Now
we have everything together such that the algorithm for the construction of the upper
envelope of the set § as defined above works nicely. For its analysis we assume that
each operation involving two or three functions can be done in constant time. Hence
we obtain the same bounds as in the Theorems 4.3 and 4.5 depending on the expected
number f9(7) of empty prisms defined by an r-sample of S.

Corollary 5.1 The n-th surface (resp. surface patch) can be inserted in expected time

Ologn 3", f—(‘%&'—)) where fU(r) is the expected size of the upper envelope of r
surfaces (resp. surface patches).

In the non-linear cases. our algorithm for computing the upper envelope has the
same time complexity as the algorithms presented in [12] but is on-line. For example,
it can be used to compute the upper envelope for the surface patches considered in [7].

Corollary 5.2 The n-th surface patcl can be inserted in O(n\/A,(n)logn) expected
time. where q is a constant depending on the degree of the surfaces,

6 Conclusion

In this paper we have given a simple on-line algorithm for constructing the upper enve-
lope of triangles in three dimensions which allows the successive insertion of triangles
without knowing then in advance. Its analvsis is randomized and extends the general
technique from [1] to two lavers of influence graphs. The running-time of our algorithm
is optimal up 1o a log n factor in the worst case. Its behaviour is good in special cases
and in practice. It also applies to surfaces and surface patches of fixed maximum degre.
It remains open il it is possible to remove the log n factor in our analysis. Furthermore,
it would be nice to make the algorithm fully dynamic so as to allow also deletions of
triangles. Another open problem is its generalization to higher dimensions.
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