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Contrdle de Flux dans un Systémes d'Assemblage a Multi-Niveaux:
cas mono-produit

Ahmedou HAOUBA
Institut Supérieur Scientifique, Nouakchott, Mauritanie

Xiaolan XIE
INRIA, Technopodle Metz 2000, 4 Rue Marconi, 57070 Metz, France

RESUME

Dans ce papier, nous nous intéressons au contréle de flux dans un systéme
d'assemblage dans lequel un produit fini unique est fabriqué a partir de composants
par assemblages successifs. La capacité de chaque machine reste constante et la
demande est connue sur l'horizon du probleéme. Les ruptures de stocks sont interdites.
Le probléme du contrdle de flux consiste a ajuster la production de chaque machine de
maniére a minimiser la somme des colts engendrés par les stocks intermédiaires et le
stock de produit fini. Nous établissons des propriétés des solutions optimales et en
déduisons une solution analytique.
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ABSTRACT

The paper addresses the flow control problem of muti-level assembly production
systems in which a unique finished product is obtained from the initial components
by successive assembly operations. The manufacturing process of the finished product
can be represented as a tree-like graph. We assume that the production capacity of each
machine is constant and that the demand is known over the whole problem horizon.
Backlogging is not allowed. The flow control problem consists in adjusting the
production of the machines in order to minimize the total cost incurred by holding
components and the finished product. Properties of the optimal solutions are
established. We then propose a simple analytical solution based on these properties.
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1. INTRODUCTION

Consider a L-level assembly system manufacturing a unique finished product. Some
initial components are first assembled to obtain level-L sub-assemblies. These sub-
assemblies are then combined with components or other sub-assemblies to obtain
level-(L-1) sub-assemblies and so on. Finally, the level-2 sub-assemblies are combined
with some initial components or other sub-assemblies to obtain the finished product.
We assume that each assembly operation is performed on a particular machine and
the parts manufactured by this machine are stored in a particular buffer.

The rate at which a machine produces is called production rate. We assume that the
maximal production rate (or capacity) of each machine is constant and that the
demand for the finished product is known over the whole problem horizon.
Backlogging is not allowed. The flow control problem consists in adjusting the
production of the machines in order to minimize the total cost incurred by holding
components and the finished product.

Due to its importance in the control of manufacturing systems, flow control has been
widely addressed for various types of production systems both in the deterministic
case and the stochastic case (see [1-13]). In most work, mathematical programming
models were proposed. Linear programming methods were used to find optimal flow
control policies in deterministic case and dynamic programming approaches were
used in the stochastic case.

This paper addresses the flow control in multi-level assembly systems. Only the
deterministic case is considered. The objective is to establish some properties of the
optimal control policies. In particular, we establish some conditions under which the
intermediate buffers are always empty, i.e. zero work-in-process. Conditions under
which a particular buffer is always empty are also established. Finally, a simple
algorithm is proposed for computing the optimal control policy.

The flow control of multi-level assembly systems is not a trivial problem. Some naive
control policies are not optimal. To see this, let us consider two policies. Under the
first policy, all machines produce at the same speed and the production is limited by
the capacity of the bottleneck machine (i.e. the machine with the smallest capacity).
Under the second policy, the control of the bottleneck machine is determined as in the
single machine case and the other machines produce as late as possible in order to
follow the production of the bottleneck machine and to meet the demand. Let us
consider a two-level production line composed an upstream machine M1 with buffer
B1 and a downstream machine M2 with buffer B2. It was proved in [8] that the first
policy is optimal if the M2 is the bottleneck machine or B2 has the smallest inventory
holding cost, and the second policy is optimal if the inventory holding cost is
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increasing from upstream to diwnstream. However, none of these two policies is
optimal for some general multi-level assembly systems.

To the best of our knowledge, the results presented in this paper are new. As a matter
of fact, analytical solutions were proposed in [3, 11] for the single machine case, in [7]
for the transfer line case and in [8] for the two-level assembly system case. However,
no analytical solution has been proposed for the multi-level assembly system case.

This paper is organized as follows. Section 2 describes the flow control model. Sections
3 and 4 present the results for the single machine case and the two-level assembly
system case which are needed for solving the general case. Section 5 first addresses the
demand feasibility, and some characteristics of the optimal control policies. It then
proposes optimal control policies and establishes sufficient conditions under which
the intermediate buffers are always empty. Section 6 presents a numerical example
and Section 7 is a conclusion.

2. PROBLEM SETTING
We consider a multi-level assembly system in which the unique finished product is
obtained from initial components by several consecutive assembly operations.

More precisely, we assume that the manufacturing process of the finished product can
be described as a tree-like graph G(; A). In this graph, A(= {0, 1, ..., n} is the set of nodes
which correspond to the set of machines {Mgy, My, ..., My} and their related output
buffers {Bg, By, ..., By). 4 is the set of arcs and the arc (i,j) belong to 2 if machine M’-
needs the contents of buffer B; to start the related assembly operation.

We assume that each intermediate buffer feeds exactly one downstream machine. This
implies that the graph is an acyclic graph which one sink node in which each node
except the sink node has exactly one successor. Figure 1 illustrates an assembly system

of 12 machines.
®\ ™
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Figure 1 : An 12-machines assembly system



Without loss of generality, let 0 be the sink node which implies that By is the finished
product buffer and that My is the final assembly machine.

We notice that there is a unique path from any node i to the sink node. In the
following, the number of nodes containing in this path (including nodes i and 0) is
called the level of the node'i and is denoted as L(i). We call the machine M; a machine

of level L(i) and the buffer B; a buffer of level L(i). We also call the assembly system an
assembly system of L(G) levels with:

L(G) = Max L(i
(G) Max (i). (1)

Of course, the node 0 is the unique node of level 1. In the example illustrated in figure
1, there are one machine of level 1, three machines of level 2, three machines of level
3, three machines of level 4 and 2 machines of level 5. This system is an assembly
system of 5 levels.

A discrete time model is used in this paper. Let H be the number of elementary
periods considered. It is commonly called the problem horizon.

The following notations will be used throughout the paper :

o(i) : unique successor of node i Vi e a\{0},

n(i) : set of predecessors of node i Vie A/,

q() : number of parts in buffer B; needed to start an operation on machine M),
Vie a\0},

W; : production capacity of machine M; during each period,

¢; : cost incurred by keeping in B; one unit of product at the end of a period,

u; ¢ : production of M; during period t,

s; ¢ : buffer level of B; at the end of period t,

d : demand during period t,

W : minimal production capacity, i.e. W = Min;c, W;,

¢ : minimal inventory holding cost, i.e. ¢ =Min;ey¢;.

Without loss of generality, we assume that each machine M; needs exactly one part
from each of its input buffers B; for all j e n(i) to start an assembly operation, i.e.

q@) =1, Vie a\0). )
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We assume that the demand (d;, ..., dy) is known over the whole horizon. The
control variables to be determined are u;, The vector [syy, S, ---, Sp,¢] describes the
state of the system at the end of period t.

We further assume that the buffers are initially empty, i.e.
5i0= 0,Vie AL (3)

The production capacity constraints can be expressed as follows :
0< u; t < Wi/ Vie A VI<t<H. 4)

The buffer levels can be determined as follows :

Sit = Sit-1 * Uit~ Ug(i)tr Vie A\{0}, VI<t<H, (5)
and

So,t = Spt-1 + Ug,¢ - dy, VIst<H. 6)

Since the levels of the intermediate buffers are positive and since backlogging is not
allowed, we have :
$it20, Vie A(VI<t<H. (7)

The total cost incurred by the buffer levels is given by :

H
2> Zcisi,t.

jea( t=1

The flow control problem consists in choosing u;; Vi and Vt so as to
H .
minimize Y X.¢Sj (8)
ien t=1

subject to the constraints (4) - (7), knowing that the initial state is given by (3).

In the following, we present the solution of the single machine case and the two-level
case, from which we derive solutions of the general case.

3. SINGLE MACHINE CASE '
This section summarizes some results presented in [7]. In the single machine case, we
can neglect the index concerning the machines and the buffers. The problem becomes:

H
minimize Y cs; 9)
t=1
subject to the following constraints :
0 <u <W, Vi<t<H, (10)



St = S¢-1 +ut-dt, VlStSH, (11)
520, V1<t<H, (12)
sop=0. (13)

As it can be noticed, the optimal control policy is independent of the inventory
holding cost ¢ and we denote the problem (9) as SMP(W, [d,]) in the following.

Let us consider a mapping [¢,]=®(W,[d,]) : IR x IRH — IRH+1 defined as follows:
Ei-1=(& +d - W)', VI<i<H (14)

where
EH=0

Consider also another mapping [v;]="¥(W,[d,]) : IR x IRH — IRH defined as follows :
v[=Min{W,§[ +d[}, V1i<t<H (15)

Theorem 1.

The demand is feasible iff &y = 0. In this case, ¥(W,[d;]) and (W, [d,]) provide the

optimal control policy and the optimal inventory trajectory respectively.

As it can be noticed, the optimal control policy consists of producing as late as possible,
and this policy leads to lowest inventory levels over the whole horizon. Furthermore,
this control policy has the following properties:

Property 1.
T
@ éi—1= Max{O, Max {st —(1t-t+ I)WH, V1<t<H

1<T<H| g

(b)§[=§t_1+vt—dl, Vi<t<H
(©0<v <W,  VI<t<H

Property 2.
In case of feasible demand, let [s,] be the inventory trajectory of a feasible solution to
the problem SMP(W, [d,]). Then,

S[Zél, VO<t<H

From Property 1.a., it is obvious that the mapping ®(W,[d;]) is non-increasing in the

machine capacity W.

Property 3.
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Consider two production capacities Wy and W, with Wy, 2 W, 20. The inventory level

is always higher under the control ‘Y(Wz,[dt]) than under the control ‘P(Wl,[dt]).

Furthermore, the machine produces under ‘P(Wz,[dt]) whenever it produces under

¥(Wy,[d¢]). That is :
(a) ®(Wy,[d,]) < (Wy,[dy])

(b) Ut2 > 0 whenever Utl >0

where [Utl] =¥(Wy,[dt]) and [Ut2] =¥(Wy,[d,])

From Property 1, it can be easily shown that if the demand is always lower than the
capacity, then the inventory is always empty and the machine follows the demand.

Property 4.
If d; < W for all t, then ®(W,[d;])=[0] and ¥(W,[d,])=[d,].

Property 5.
For any two positive numbers W; and W, it holds that.

¥(W,, ¥(Wi,[d,])) = ¥(Min{w;, W, },[d])

4. TWO-LEVEL CASE

This section summarizes some results presented in [8]. Let us consider a two-level
assembly system consisting of n upper level machines (M;, My, ..., M) and a unique
assembly machine (Mg). There are n component buffers (Bq, By, ..., B,) which are
located between the upper-level machines and the assembly machine. By is the buffer

of the finshed product.

Without loss of generality, we assume that :
Wi< W,y ... <W, (16)

The feasibility of the demand depends on the machine with the smallest production
capacity called bottleneck machine. Theorem 2 claims that the demand is feasible iff it
is feasible in the case of a single machine whose capacity is equal to the one of the
bottleneck machine. The demand feasibility condition established in the single
machine case can be used to check the demand feasibility of the general case.

Theorem 2. :
The demand is feasible iff the single machine problem SMP(W, [d,]) has at least one
feasible solution.



In the following, we assume that the demand is feasible. Let us notice that whenever
the control of the assembly machine is known, the optimal control of the upper level
machines can be determined as in the single machine case with demand replaced by
the the control of the assembly machine. That is :

Theorem 3.

Let [ui,t] be an optimal control policy and [Si,t] the related inventory trajectories.
Then,

@ [ui]= l{'(wi ,[u{),t]), Vi<i<n
®  [sie]= d)(Wi,[uB,t]), Vi<i<n
(c) slt] > [si'ﬂlt], Vi<i<n-1

In order to present the optimal control policy, let us distinguish two cases: (i) Wy < W4
or ¢; 2 ¢g; and (ii) ¢y < ¢c; and Wy > Wy. Theorems 4 and 5 give the optimal control

policies in these two cases.

Theorem 4.

If Wy < W or ¢y 2 ¢y, then the optimal control policy is given by :
[UO,t] = [ul,t] =..= [un,t] = ‘P(w,[dt])

The component buffers are always empty under the optimal control policy, i.e.
si¢=0,  VI<i<n,Wt

Let us consider the second case and define two quantities N* and W* as follows :

: N
N*= Max{N e{l,2,...n} / Wy <Wp and 3¢ < co}

i=1 17)

W Wy, if N*=n;
| Min{Wy, Wnp4q),  otherwise. (18)

Theorem 5.
If ¢ > ¢y and W( > Wy, the optimal control policy is given by :

[U;,t] = [U;),t] =p(W+[d{]), VN*<i<n
and

[uie]=#(Wi [dy]), viisnNe
where N* and W* are defined as in equations (17) and (18). The related inventory
trajectories can be determined as follows :



From Theorems 4 and 5, the following results can be easily proved.

Corollary 1.
[u;,t] = [Ua,t] and [s;,t] =[0], ifW;2W,

Corollary 2.
The criterion value of the optimal control policy is given by :

H Coer)(W/[dt])/ ]f CO S Cl or WO S w_l;
n *
CiSj ¢ ={N* N*
i§0t§1 iSi,t ZcieTcp(Wi,[dt])+(c0 Y jeT‘D(W*/[dt]), otherwise
i=1 i=1

where eT is a (H+1)-dimension row vector (1, 1, ..., 1).

5. GENERAL CASE

In this section, we consider an assembly system of L levels with L = 3. We first address
the demand feasibility and some characteristics of the optimal control policies. Based
on these characteristics, we present a transformation which yields an equivalent but
simple assembly system. An optimal control policy is then obtained by successively
using this transformation. Finally, we establish some sufficient conditions under
which the intermediate buffers are always empty.

5.1. Demand feasibility

Similarly to the two-level assembly system case, the feasibility of the demand depends
on the machine with the smallest production capacity called bottleneck machine.
Theorem 6 claims that the demand is feasible iff it is feasible in the case of single
machine whose capacity is equal to the one of the bottleneck machine. The demand
feasibility condition established in the single machine case can be used to check the
demand feasibility of the general case.

Theorem 6.
The demand is feasible iff the single machine problem SMP(W, [d,]) has at least one

feasible solution.
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The proof is similar to the one of Theorem 2. In the following, we assume that the
demand is feasible.

5.2. Characteristics of the optimal control policies
The purpose of this section is to establish some characteristics of the optimal control
policy which will be used to derive the optimal control policy.

First, let us notice that the optimal control of any machine without predecessor can be
determined as in the single machine case with demand replaced by the the control of
its downstream machine whenever the control of its downstream machine is known.
That is :

Theorem 7.

Let [ui,t] be an optimal control policy and [si,t] the related inventory trajectories.
Then,
(a) [u;,t] = ‘P(Wi,[u:,(i)’t]), Vi such that 7(i) = &
&

(b) [Sn] = <I>(Wi ,[u:,(i )’t]), Vi such that z(i) =

The proof is similar to that of Theorem 3. From Theorem 7 and Property 4, the
following result can be easily proved.

Corollary 3.
[u:,t] =[u,] and [s:,t] =[0], if W; 2 W, and n(i) = @

Remark that since any node of level L(G) does not have any predecessor, Theorem 7
holds for all nodes of level L(G).

Let us consider now a node i of level (L(G)-1), i.e. L(i) = L(G) -1. Let {v(i,1), v(i,2), ...,
v(i, I (i) 1)} be the set of predecessors of node i arranged in such a way that :

Wy, € Wyi,2) - < Wyd, iri) 1) (19)

Clearly, whenever the control for the machine Mgy is known, the optimal control
policy for the machine M; and its upstream machines M for all j € n(i) can be
determined as in the two-level assembly system case with the demand replaced by the
control of machine M. To present this characteristic, we distinguish two cases: (i)
Wi < Wyi1) or ¢ € oy 1) and (1) ¢ > ¢y 1) and Wi > W 1). From Theorems 4 and
5, Theorems 8 and 9, which give characteristics of the optimal control policies in these
two cases, can be easily proved.
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Theorem 8.
If W < Wy 1) or ¢ < ¢y 1), then the optimal control policy satisfies the following

relations :
[u;,t] = [u;,t] = ‘{‘(ﬂ(i),[u;(i),t]), Vje n(i)

where W(i) = Min{W;, W, 1)}. The optimal inventory trajectories are given by :
[s;,t] = ‘P(_Vy(i),[u:,(i)’t]) and [s;,t] =[0], Vje n(i)

Let us consider the second case and define two numbers N(i) and W(i) as follows :

N
N(i) = Max{N € {1,2,..., 7:(1)|}/ WyiN)<W; and Zlcv(i,j) < ci} 20)
=
Wi, if N(i) = |=(i)[;
W(i)=15 { .
Min Wi'wv(i,N(i) +1)}, otherwise. Q1
Theorem 9.

If ¢; > cyg1) and Wi > W, 1), the optimal control policy satisfies the following

relations :
(Wi |=[une] = ¥(W@ o)) vNG)<j<xG)
and
[u;(i,j),t] = \P(wv(i,j)'[u;(i),t])/ V1<j<N(i)
where N(i) and W(i) are defined as in equations (20) and (21). The related inventory
trajectories are given by :

[si.] = (W) [uiy]
o] = (W lsen) ool visisne
[Shie]=0L  ING)<j<]ati)

5.3. An equivalent assembly system

The purpose of this subsection is to show that an equivalent assembly system can be
obtained by removing a node of level (L(G) - 1) as well as all its predecessors and by
replacing them by a set of nodes of level (L(G) - 1).

For this purpose, for any node i of level (L(G) - 1), we define a mapping I'(G, W, ¢, i)
which gives a new assembly system (G°, W, ¢) = T'(G, W, ¢, i). G°=(AL, A°) is the
structure, W is the vector of production capacity and c is the vector of the inventory
holding costs of the new assembly system.
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To present this mapping, we distinguish two cases: (i) W; < Wy 1) or ¢; < ¢y(,1); and
(i) ¢ > ey, and Wi > Wy 1),

If Wi < W1y or ¢ <y 1), the new assembly system is obtained by removing the
nodes i and n(i) and by adding an additional L(G) -1 node ® with capacity W(i) and
holding cost ¢; as follows :

= (a0 -{i} - n(i)) v {w}
- R(a,-{i}- (i) u{(@, o(i))}
Wy = w(l)
Co =€
where R(4, A - {i} - n(i}) is the restriction of the relation 4 to A(- {i} - n(i}.

If ¢; > ¢y(,1) and W; > W, 1), the new assembly system is obtained by removing the
nodes i and n(i) and by adding N(i) + 1 additional L(G) -1 nodes as follows :

= (& -{i} - 7(i)) v {wo, @1,..., oGy }
- R(2,5 - {i} - 7(3)) U {(@, 0(0)) (@1, 00)..... (oney o)}
Ww() = w(g; :'Van = wv(i,l)' v wa)N(i) = wv(i,N(i))

Cap = i = 2y Cor = Cu(i,1) -+ Congy = Cv(i,NG))
)_

Theorem 10.
The two assembly systems (G, W, ¢) and (G°, W, ¢) are equivalent in the sense that the
control is identical for all common nodes, i.e.

[wia] =[] and [si] < [s5]  vieaon

where [ )t] and [ ]t] are the optimal control of the original and new assembly

systems respectively. Moreover, the criterion value of the optimal control policy is the
same for both systems.

Proof :
Only the proof for the case in which ¢; > ¢ 1) and W; > W, 1) is given and the proof
for the case in which W; < Wy 1) or ¢; < ¢y 1)

First, let us notice that the inventory trajectories of the common nodes for all j €
A°NA only depend on the control of these nodes. As a result, let us consider a partial
control [uj,t] and the related inventory trajectories [s; ] for all j € A°NA(such that
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Consider also two controls defined as follows :
[wia] =[uia] =i viexcow
[u3. ]:‘*’(Wi [roa]) wie
Wi =[] = HWE[uom,e]) VNG <jsa(i)

B
[u"v ] ( (,j),[uo(i),tD, v1<j<N()

Thanks to assumption (22) and Theorem 1, [uj,t] is a feasible control for the new
assembly system iff each single machine problem SMP(Wj, [ug),]) for all j e AC\N

has at least one feasible solution. Since . I;gl{‘g(w =Wyi,1), [uj,t] is a feasible control

for the new assembly system iff the single machine problem SMP(W, 1), [ug)t]) has
at least one feasible solution.

Meanwhile, thanks to assumption (22) and Theorems 9 and 2, [Uj,t] is a feasible

control for the original assembly system iff the single machine problem SMP(W,; 1),

[ug(i) ) has at least one feasible solution. This implies that [uj,t] is a feasible control

for the original assembly system iff [uj,t] is a feasible control for the new assembly

system.

Furthermore, from Theorems 7 and 9, [uj,t] is the optimal control for the new

assembly system and [uj,t] is the optimal control for the original assembly system if

the control for the common nodes is given. Hereafter we conclude the proof by
showing that they have the same criterion value.

First, from assumption (22) and Corollary 2, we have :
H H N(i)
2 ZCij,t = z ZC S] t t+ z C (1 ])e ¢(Wv(i,j),[uo(i),t])
JEN t=1 JEN NN t=1 ji=1

+[Ci i iécv(i,j)]eTq)(W(i)'[uo(")"])

where eT is a (H+1)-dimension row vector (1, 1, ..., 1).

From assumption (22) and Theorem 7, we have
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H | H H .
2 28 = X Xosiit X Xesig
e t=1 jEACAN t=1 JENA t=1

2 )}3 N}g) T(D(W [ D
B CiSjt+ 2 € )® W(ii)’|Yati
JEN°NN t=1 "t j=1 v(ij) (i.j)7] " oli).t

QED.

5.4. Solving the multi-level assembly systems
In this subsection, we prove that the optimal control has the following form :

|uie]= ‘P(Qir[uo(i),t]) (23)
where Q; is called the effective capacity of node i. We also prove that Q; is not greater

than W; and is equal to the production capacity of one of its upstream nodes

(immediate or not).

From Theorems 7, 8 and 9, these claims are clearly true for all nodes of levels L(G) and
(L(G) -1). Furthermore, the effective capacity of any node of level L(G) is equal to its

real capacity, i.e.
Q =W, if L(i) = L(G) (24)

For the nodes of level (L(G) -1), the effective capacity is determined as follows :
Wi if ﬂ(i) =0

Q; ={W(i), if n(i) # @ and (Wi S Wy, or i s Cv(i,l)) (25)

\W(i), if n(i) # @ and (Wi > Wy, and ¢; > cv(i’l))

Starting from the original assembly system, let us apply the mapping I'(G, W, ¢, i) to all
nodes i of level (L(G) -1) and let (G!, W, ¢) be the new assembly system. Clearly, (G, W,
c) is an assembly system of (L(G) -1) levels, i.e. L(G!) = L(G) -1.

By iteratively applying Theorem 10, for all common nodes, the optimal control of this
new assembly system is identical to that of the original assembly system. Applying
Theorems 7, 8 and 9 to this new assembly system, we prove that the optimal control
for all nodes of level (L(G) -2) has the form defined in equation (23) and that the
effective capacity €; is not greater than W; and is equal to the production capacity of
one of its upstream nodes (immediate or not). The exact value of the effective capacity
can be obtained by applying equation (25) to the new assembly system.
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Following the same way, Theorem 11 can be easily proved.

Theorem 11.

Let (Gk, W, ¢) be the assembly system obtained from the assembly system (Gk-1, W, ¢)
by applying the mapping I'(®) to all nodes i of level (L(Gk-1) -1) where GY = G. The
optimal control policy can be determined as follows :

[ui]= ‘P(Q,, (i) ]) Viea\ {0}
and
[uB,t] = lI'(Qol[dt])
where Q; is given by equation (24) for all node i with L(i) = L(G); otherwise, Q; is

obtained by applying equation (25) to the assembly system (Gk, W, ¢) with k = L(G) -1 -
L(@).

From this theorem, the following corollary can be easily proved.

Corollary 4.
The optimal inventory trajectories can be determined as follows :

1] = d)(Qi,[u:,(i),t]), Vie A\ (0)
and
ESB,t] = &(Q,[d,])
Furthermore,

sie]=0, if Q2 Q4

Combining Theorem 11 and Property 5, it can be shown that the optimal control policy
can be rewritten in a simpler form.

Corollary 5.
The optimal control policy of a multi-level assembly system is given by :

[uie] = ‘P(]El\lgl(llno)Q J[d t]) Vie A\ {0)

and
[10,] = ¥(%0[d1))

where P(i, 0) is the unique elementary path from i to 0.

Finally, we consider two particular cases in which the intermediate buffers are always
empty under the optimal control policy.
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Theorem 12.

If Wg = W or ¢g = ¢, then the optimal control is given by :
[ui]=¥(W.[d,)), Viex

and
[s0,¢]= @(W.[d,]) and [si | = [0], Vi e A\ (0)

Proof :

The control [U:,t] is trivially a feasible control and the intermediate buffers are always
empty, i.e.

[50,¢|= ®(W.[d,]) and [s; | = [0], Vi A \(0)
Let us prove the optimality. Consider a feasible control [u; ;] and its related inventory
trajectories [s; ¢].

Consider first the case in which Wy = w. The control of machine My, i.e. [ug,] is a
feasible control of the single machine case SMP(W, [d;]). From Theorem 1, we have :
S0, 2 56,t/ Vit
Furthermore, since the inventory levels s;; are nonnegative, we have :
Sit2 s;,t, V1<i<n,Vt

The above two relations imply the optimality of [Ui,t].

Consider now the case in which ¢y = ¢ and W > W. The control of machine M, ie.
{um ] is a feasible control of the single machine case SMP(w, [d{]) where W, = w.

From Theorem 1, we have :

2Sit2  XSit =50t Vt
ieP(m,0) ieP(m,0)

where P(m, 0) is the path from node m to node 0. Since ¢y = ¢,

» »
2CiSit 2 XCiSi =CoSot, Vi
ieP(m,0) ieP(m,0)

Furthermore, since the inventory levels s;, are nonnegative, then :
Sit2Si(, VieP(m,0),Vt

The above two relations imply the optimality of [ui,t].
QED.

6. A NUMERICAL EXAMPLE
Consider the example introduced in Figure 1. The production capacity and the
inventory holding costs are given in Table 1.
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1 0 1 21314 51 6 7 8 | 9 | 10] 11
w101 11 1011 11 | 11| 8 | 8 5110] 8 9

G (10|10 \ 7 | 7 {7 91101 1 3 9 5 9

Table 1: Production capacity and inventory holding cost

We consider 10 elementary periods, i.e. H = 10. The demand is [d] =[2, 1, 3, 3,7, 2, 2, 10,
12, 4]. The minimal production capacity is equal to 5 and the demand is feasible.

It is a assembly system of 5 levels, L(G) = 5. There are two nodes of level 5, namely
nodes 10 and 11, and their effective capacity is given by :
Q10 =8 and Ql] =9.

There are three nodes of level 4, namely nodes 7, 8 and 9, and their effective capacity is
given by :
Q7=8,Qs=5and %=10

Applying the mapping G(*) to node 8, we obtain an equivalent assembly system (G1,
W, o illustrated in figure 2. A new node (node 12) is introduced and its capacity and
holding cost are given by :

Wi, =5 and ¢y = 3, for node 12.

©
©
© OnsO (4g

Figure 2 : An equivalent assembly system (G1, W, c)

Consider now the nodes of level 3. These nodes are 4, 5 and 6. Applying equation (25)

to this new assembly system, the effective capacity is given by :
Q4 = 11,95 =11 and QG=8.

Applying the mapping G(*) to nodes 4 and 6, we obtain an equivalent assembly system
(G2, W, o) illustrated in figure 3. Four new nodes (nodes 13, 14, 15 and 16) are
introduced and their capacity and holding costs are given by :

Wi3 =8and cj3 = 1, for node 13,

W14 =11 and ¢4 = 6, for node 14,

Wi5 =5 and ¢y5 = 3, for node 15,
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W16 =8 and Cl16 = 7, for node 16.

®

oy OO W
O3

Figure 3 : An equivalent assembly system (G2, W, ¢)

Consider now the nodes of level 2, i.e. nodes 1, 2 and 3. Applying equation (25) to this
new assembly system, the effective capacity is given by :
Q1 =11, Qz =10and Q3=8.

Applying the mapping I'(¢) to nodes 1 and 3, we obtain an equivalent assembly system
(G3, W, ¢) illustrated in figure 4. Four new nodes (nodes 17, 18, 19 and 20) are
introduced and their capacity and holding costs are given by :

Wi7 =8 and c13 = 1, for node 17,

Wig =11 and ¢y = 9, for node 18,

Wi9 =5 and cy9 = 3, for node 19,

W5 =8 and cpq = 6, for node 20.

)

Figure 4 : An equivalent assembly system (G3, W, 0
Consider now the sink node 0. Applying equation (25) to this new assembly system,
the effective capacity is given by :

Q)= 8.

Thus, the optimal control and the related inventory trajectories are given by :
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]: ¥(8,[d]), Vie{0,1,2,3,4,56,7,9}
|=¥(5[d]), Vvie{s 10,11}

The optimal control policy is given in Table 2.

-+
7~
-

0 8 10 | 11 1 2 3 4 5 6 7 9
0;,010,010;,010,010;,010;,0]0;0|0,0]0;,0]0,010;,0]1]0,0

0;210;210;210;,210;210;210;,2(0,20;,2]0,210;2]0;2
0;114,5]10;,5|0;510;,110;110,110;10;,1{0,110;,1]10;1
0;,316;,510;510;,510;310;3]10;3]0;3]0;,310,310;3[0;3
0;318;,51}0;5{10;510,310;3]10;310;3]0;3]0;3]10;31]0;3
0,716;,510,510;,5]0,710;,710,710,710;7(0,710;710;,7
0,219,510;,5/10;510,210;,210;210,2]0,210;2]10,210;2
6,816;510;510;,510;,80;8|0;,8|0,8(0,8|0;,8|0,8[0;8
4,813;510;510;5(0;,8 10,8(0;,8]0;,810,8|0;810;,8(0;8
0;810;510;5]0;510;810,8/0;,810,8]0,8]0;810;8]0;8

|| N|[N|Aalpx]|WIN]|=|O

—
o

0;,410,410;,410;410;,41]10;4|0;4]10,40,410,410,410;4
Table 2: The optimal control policy (s; v, u; )

7. CONCLUSION

In this paper, we have addressed the flow control problem of muti-level assembly
production systems. Properties of the optimal solutions were proposed. Based on these
properties, we proposed a simple analytical solution. Sufficient conditions under
which the intermediate buffers are always empty were established.

Future research work consists in extending the results to other manufacturing

systems, manufacturing systems with machine set-ups for example.
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