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Abstract

In this paper, we consider an entropy criterion to estimate the number of
clusters arising from a mizture model. This criterion is derived from a re-
lation linking the likelihood and the classification likelihood of a mizture. Its
performances are investigated through Monte-Carlo numerical erperiments
and show favourable results as compared with other classical criteria.

Keywords: Cluster Analysis, Gaussian Mizture, Entropy, Bayesian Crite-
ria.

Un critere d’entropie pour estimer le
nombre de classes d’'un modele de mélange

Résumé

Nous proposons un critére d’entropie pour €valuer le nombre de classes d’une
partition en nous fondant sur un modéle de mélange de lois de probabilité. Ce
critere se déduit d’une relation liant la vraisemblance et la vraisemblance clas-
sifiante d’un melange. Des simulations de Monte-Carlo illustrent ses qualités
par rapport a des critéres plus classiques.

Mots-clés : classification, mélange de lois normales, entropie, critéres bayé-
stens.



1 Introduction

The choice of a “good” number of clusters in cluster analysis is a difficult
problem. This question has to be considered in a precise framework to be
addressed in a satisfactory manner. Basing cluster analysis on a probabilistic
model provides a fruitful line of approach (see Bock 1985, 1989). Many au-
thors have considered the problem of choosing the number of clusters within
the context of multivariate mixture models (see Bock 1985, Celeux 1986,
Bozdogan 1992, Banfield and Raftery 1992, McLachlan and Basford 1989,
Windham and Cutler 1991, Bryant 1993 among others). These authors ad-
dressed the problem of assessing the number of components in a mixture in
a clustering purpose. Some others authors have considered the problem of
estimating the number of components in a mixture of distributions (see Wolfe
1970, Titterington, Smith and Makov 1985, Aitkin and Rubin 1985, McLach-
lan 1987 among others) without any reference to cluster analysis. Estimating
the number of components is a difficult problem for which several approaches
are in competition. The traditional likelihood ratio test can not be used since
the classical regularity conditions which ensure a x? distribution for the like-
lihood ratio statistic do not hold under any null hypothesis (see Aitkin and
Rubin 1985 for a thorough discussion of this problem). The most efficient
significance test is probably the procedure proposed by McLachlan (1987)
which makes use of a parametric bootstrap to approximate the p-values of
the generalized likelihood ratio (GLR) test. An other approach, that it will
be discussed further in this paper, is to consider general techniques for model
choice based on information criteria or Bayes factor (see, for instance Banfield
and Raftery 1992 or Bozdogan 1992).

When cluster analysis is the main concern, it is implicitly assumed that
each cluster can be approximately regarded as a sample from one of the mix-
ture components. For instance, when a Gaussian mixture is considered for
cluster analysis, the means of the mixture components are supposed to be
significantly different. And, when the means are equal, there is only one
component from the cluster analysis point of view even when the variance
matrices of the mixture components are different. Then a point is worth not-
ing. Even when they are concerned with cluster analysis, the afore mentioned
authors - except Windham and Cutler 1991- proposed criteria, penalizing the
log-likelihood statistic, devoted to select parsimonious mixture models. But
those criteria are not devoted to measure directly the ability of the mixture to
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provide a clustering structure. In this paper, we propose an entropy criterion
which aims to choose the mixture model from which a clustering structure
arises with the greatest evidence.

In Section 2, we present the mixture model and report briefly criteria
proposed in the literature for approaching the problem of the number of
components in a mixture. In Section 3, we analyze the relations between
the mixture model and cluster analysis. Then we present and discuss our
entropy criterion for assessing the number of clusters associated to a mixture
model. In Section 4, we report numerical Monte-Carlo experiments in which
the practical behaviour of the entropy criterion is investigated and compared
with the behaviour of other criteria. A concluding section summarizes the
main points of this paper.

2 Criteria for the number of components in
a mixture

In the mixture model, the data x,,...,x, are assumed to be a sample from
a probability distribution with density

K
x) =D pef(x, ax) (2.1)
k=1
where the pi’s are the mixing proportions (0 < pr < 1 forall k =1,..., K

and Yppr = 1) and the f(x,ay) are densities from the same parametric
family. For instance, f(x,ayx) denotes the d-dimensional Gaussian density
with mean p; and variance matrix ¥4 and ax = (px, X&). The log-likelihood
of the sample x,,...,Xx,

n K
= Z Epkf(x,,ak (22)

is an increasing function of K. Thus, L(K) can not be used as a selection
criterion which balances model fit and model complexity for choosing the
number K of components in the mixture. Various criteria, to be minimized,
have been proposed to measure a model’s suitability taking this objective
into account.



The Akaike information criterion (Akaike 1974) has been considered by
Bozdogan and Sclove (1984) in the mixture context. It takes the form

AIC(K) = —2L(K) + 2v(K) (2.3)

where v(K) is the number of free parameters in the mixture model with
K-components. For instance for a d-dimensional Gaussian mixture, v(K) =
(K—=1)+dK +dK(K +1)/2.

The Bayesian information criterion as defined by Schwarz (1978) is an
approximation of the exact Bayes solution to the problem of selecting the
appropriate model. It is defined by

BIC(K) = -2L(K) + v(K) In n. (2.4)

Note that this criterion has also been proposed by Rissanen (1989) from
another point of view based on coding theory.

Banfield and Raftery (1992) have also suggested an approximate Bayesian
solution to the choice of the number of components in a mixture. Their
approximation is somewhat different and lead to the so-called approzimate
weight of evidence which takes the form

AWE(K) = —2L(K) + QV(K)(g + Inn). (2.5)

Many authors (see for instance Koehler and Murphree 1988) observed
that AIC criterion is order inconsistent (a criterion is order consistent if,
as the sample size increases, it is minimised at the true order of the model
with probability which approaches unity) and tends to overfit models. In
the mixture context, it means that AIC tends to overestimate the correct
number of components. In contrast, the BIC criterion has been proved to be
order consistent in some contexts and under suitable conditions. In practical
situations, BIC is expected to give an answer to the overparametrization of
AIC. But, in the mixture context, there is no available consistency result for
the BIC criterion. As pointed out in Titterington, Smith and Makov 1985 pp.
159, the reason is probably that theoretical justifications for criteria such as
AIC or BIC rely on the same conditions as the usual asymptotic theory of the
GLR test, and, as mentioned in the introduction, these standard regularity
conditions do not hold in the mixture context. As for AWE, it is clear that
it penalizes more drastically high order models than BIC.
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Bozdogan (1990, 1992 and references therein) has proposed an informa-
tional complezity criterion, called ICOMP, for choosing parsimonious models.
This criterion measures the complexity of a model by an approximation of the
Fisher information of the model. In the context of a d-dimensional Gaussian
mixture, it takes the form

ICOMP(R) = —2L(K)
AR + O Sl [pr B+ /25 + (t05)? + 51 (S
2 g dK + dK (K +1)/2
K K
— 1/2|(d+2)3 (S ~dY In (pkn)] — Kd/2 In (2n). (2.6)
k=1

k=1

In this equation, Eij denotes the jth diagonal term of the variance matrix
L.

An interesting criterion, the minimum information ratio, has been pro-
posed by Windham and Cutler (1991). This criterion, abbreviated MIR, is
a measure of the proportion of information about the mixture parameters
available without knowing the subpopulation memberships of the sample

Xy,...,Xn. This measure is the smallest eigenvalue of the information ma-

trix F5'F where F is the Fisher information matrix for the sample x,,. .., X,
and F¢ is the Fisher information matrix for the classified sample. The
MIR can be approximated when using the EM algorithm (Dempster, Laird
and Rubin 1977) for estimating the mixture parameters: MIR is one mi-
nus the EM rate of convergence. Then, if (§™,m > 0) is a sequence of
parameter estimates produced by the iteration of EM, MIR is estimated by
1—||6™*1—8™]|/||6™—6™""||, for m large enough, where ||.|| is any convenient
norm.

The MIR is an interesting criterion in a cluster analysis context since it
may be interpreted as measuring the ability of the data to distinguish the
component densities and a large MIR suggests a good clustering structure.
However, the MIR presents some drawbacks. First, it is unable to compare
the situations K =1 versus K > 1. Moreover, in many circumstances, MIR
revealed to be numerically difficult to calculate (when the ratio ||§™*! —
6™||/]16™ — 6™~ || is near the form 0/0). On the other hand, Windham and
Cutler have remarked that the modified criterion

AMIR(K) = MIR(K)(L(K) — L(1))
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out performed MIR(K) in many practical situations since MIR(K) tends to
underestimate the number of mixture components.

3 The entropy criterion

The entropy criterion that we propose in this section is aimed to measure the
ability of a mixture model to provide well separated clusters. It is derived
from a relation highlighting the differences between the maximum likelihood
(ML) approach and the classification maximum likelihood (CML) approach
of the mixture problem.

3.1 The two approaches of the mixture problem

The ML approach of the mixture problem consists in optimizing the log-
likelihood L(K) of (x4,...,X,) defined in (2.2) using generally the EM algo-
rithm (Dempster, Laird and Rubin 1977).

In the CML approach, the indicator vectors z; = (z;;,7 = 1,..., K) with
zij = 1 or 0 according as x; (1 £ ¢ < n) has been drawn from the jth
component or from another one, identifying the mixture component origin
are treated as unknown parameters. The CML approach is employed only
when cluster analysis is in order. The CML criterion to be optimized takes
the form

K
CL(K)=Y_

Zik In [pkf(x;,ak)]. (37)

n
=1
Maximizing the CML criterion produces biased estimates of the mixture pa-
rameters (cf. for instance Bryant 1991). The source of the bias is essentially
“all or nothing” classification. It can be severe, but it is supportable if the
mixture components are well separated.

We turn now to an interesting simple relation between the log-likelihood

L(K) and the classification log-likelihood CL(K). This relation was first
exihibited by Hattaway (1986). Denoting

I?kf(xi, ak)
iy pif(xi,a;)

tk =



the posterior probability that z; arises from the kth mixture component
(1 <i<nand 1<k <K), direct calculation show that

L(K)=C(K)+ E(K) (3.8)
with o o
C(K) = g gtik In [pi f(xi, ax)].
and ‘
E(K) = kz::l;tik In ti > 0.

The relation (3.8) provides a decomposition of the log-likelihood L(K) in a
CML term C(K') and the entropy term E(K) which measures the overlapping
of the mixture components. If the mixture components are very well sepa-
rated the posterior probabilities #;; tend to define a partition of (x;,...,%,):
For each x; there exists k¥ (1 < k < K) such that t;; ~ 1. Then we have
tiwIntyy ~0foralle (1 <2< n)and k (1 <k < K) (by convention 0 In 0
= 0 since lim¢ Int =0 as t — 0) and, as a consequence, F(K) ~ 0. On the
contrary, if the mixture components are intricated, E( K) takes a large value.
Thus, E(K) can be regarded as a measure of the ability of the K-component
mixture model to provide a relevant partition of the data (x,...,Xy,).

Moreover, from the relation (3.8), E(K') appears to be a quantity measur-
ing the difference between the ML and the CML approaches for the mixture
problem: Both approaches can be thought of as equivalent as F(K) is near
0. On the contrary, the bias of the CML approach can be expected to be
severe for a large value of E(K).

Remark 1: As K =1 a natural way to extend E(K) is to set t;; = 1 for all
¢ (1 €17 < n) and then

E(1)=> talnt;=0.
i=1

The relation (3.8) holds with K =1,

L(1) = C(1) + EQ1) (3.9)



with .
C(l) = Zt,’l In f(x;,al).
=1

Remark 2: An other measure proposed for assessing the number of clusters
in a mixture makes use of the posterior probabilities t;;. It is the so called
partition coefficient PC = ¥ ;; t% (Bezdek 1981). Numerical experiments,
reported in Windham and Cutler 1991, show clearly that the PC criterion
tends to underestimate the correct number of clusters.

3.2 The criterion

The quantity F(K) is the basis for a criterion assessing the number of clusters
arising from a mixture. But, E(K) need some modification to be effective.

The entropy E(K) cannot be used directly as a criterion to assess the
number of clusters in a mixture for two reasons. First, E(K) > E(1) for any
K > 1. Moreover, L(K) is an increasing function of K and, as a consequence,
the F(K) are not comparable for different values of K. But, from (3.8) and
(3.9), we can write

K>1 (3.10)

C(K)-C(l)  E(K)
I T IE - Ly

and we propose

E(K)
L(K) - L(1)
as a criterion to be minimized for assessing the number of clusters arising
from a mixture.

However, there is still a problem for K = 1 since NEC(1) is of the form
g and is not defined. Thus, we are unable to compare the situations K =1
versus K > 1 directly when using the criterion NEC(K'). A solution is now
proposed to overcome this difficulty for Gaussian mixtures. (Notice that
Gaussian mixture is the only one mixture model considered in practical sit-
uations for analyzing multivariate quantitative data.) Before describing the
way we proceed, it is important to recall that we aim to choose the mixture
model which gives rise with the greatest evidence to a clustering structure.
From this point of view, it may happen that an underlying mixture density is

NEC(K) =



not associated with any clustering model. For instance, a Gaussian mixture
with equal means does not indicate that there is a relevant classification of
the data. Qur procedure works as follows:

o We estimate the parameters of the Gaussian mixture, using the maxi-
mum likelihod approach, for different values of K (2 < K < Kyup), Koyup
being a reasonable upper bound of the number of mixture components.
(See Bozdogan 1992, for a discussion concerning the choice of K,y;.)
Then we determine K* which minimizes NEC(K), (2 < K < K,,;).

e To decide K = K% or K = 1, we estimate the parameters of a Kx*

component Gaussian mixture with equal means g1 = ... = pg. = X,
where X represents the sample mean of the data (xy,...,X,). Denoting
L(1) and E(1) the resulting log-likelihood and entropy, we compute the
ratio

E(1)
L(1) - L(1)
and we choose K * clusters if NEC(K *) < NEC(1), otherwise we declare
for no clustering structure in the data.

NEC(1) =

Acting in such a way, we compare two rival models: a K'* component Gaus-
sian mixture with different means, from which a partition of the data can
easily be derived, and a K* component Gaussian mixture with equal means,
from which there is no evidence for partioning the data.

4 Numerical experiments

In this section, we compare the practical behaviour of the criterion NEC with
the criteria AIC, BIC and AWE on the basis of Monte-Carlo experiments.
We generated 20 samples from each type of simulated data set.

4.1 Experiment conditions

We simulated four univariate distributions for the two sample sizes n = 200
and n = 50: The first one was the standard Gaussian distribution with
mean 0 and standard deviation 1. The second one was a two-component
Gaussian mixture with means g; = 0 and p; = 2, with standard deviations



o, = o2 = 1 and with equal proportions. The third one was a two-component
Gaussian mixture with the same means and standard deviations than the
second one and with proportions p; = 0.7 and p, = 0.3. The last one was
a three-component Gaussian mixture with equal proportions, with means
#1 = 0,4, = 2, u3 = 4 and standard deviations oy = 03 = 03 = 1.

We also simulated three bivariate distributions with the sample sizes n =
200 and n = 50: The first one was a standard Gauusian distribution with
mean vector 0 and variance matrix ¥ = I. The second one was a two-
component Gaussian mixture with equal proportions, mean vectors pj =
(0,0), 5 = (2,2) and variance matrices ¥; = ¥, = I. The third one was
a three-component Gaussian mixture with equal proportions, mean vectors
py = (0,0), uy = (2,2), 45 = (2,—2) and variance matrices &), = £y = X3 =
I

The last example consists in simulating a sample of n = 625 observations
from a four dimensional five-component Gaussian mixture with the following
parameters:

p = 012, g, =(10,12,10,12), &, = I
p: = 0.16, y}, = (8.5,10.5,8.5,10.5), T, = I
ps = 020, u =(12,14,12,14), T3 =1
pe = 0.24, g, = (13,15,7,9), £, = 41
ps = 0.28, ul =(7,9,13,15), T5 = 9I.

This Gaussian mixture has been considered previously by Bozdogan (1992)
to investigate the behaviour of the criterion ICOMP. As pointed out by Boz-
dogan, this five-component mixture gives rise to highly overlapping clusters.

The parameters of the Gaussian mixture models have been estimated
using the EM algorithm. For the univariate and bivariate distributions the
component variances or the component variance matrices where assumed
to be equal whem running the EM algorithm. No restriction was placed
on the mixture model for the four dimensional mixture: we ran the EM
algorithm assuming different variance matrices for the mixture components.
For each run, to attenuate its initial-position dependence, we initiated the
EM algorithm with the true parameter values when it was possible, and
otherwise we initiated it from a solution derived from the k-means algorithm.
For each situation, we computed the normalized entropy NEC, as described
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in Section 3, and the AIC, the BIC and the AWE criteria, as described in

Section 2, from the estimated parameters.

4.2 Simulations results

Detailed results concerning the entropy criterion NEC are displayed in Table
1. In this table, the rows describe the underlying distribution: d represents
the dimension of the sample space, n represents the sample size and the
mixture parameters are described in the third column. Then, the mean
values of the normalized entropy criterion NEC over the 20 trials and, into
parentheses, their standard deviations are displayed. The results displayed in
this table show a satisfactory behaviour of the criterion NEC. No surprisingly,
NEC performs better for the largest sample size n = 200. Moreover, our
procedure to compare K = 1 versus K > 1 seems to work well, despite a
very slight tendency to favour the situation K > 1.

Table 2 displays the percent frequency of choosing K-component mixture
for each of the criterion AIC, BIC, AWE and NEC for different values of
K. Table 3 displays the same percent frequencies for the four dimensional
mixture. From Table 2, it seems that the AWE criterion overpenalized high
order models. The NEC criterion has an intermediate position between the
AIC and the BIC criteria. As expected, AIC presents a slight tendency to
overestimate the mixture model order. More surprisingly, the BIC criterion
seems to underestimate the mixture model order. The entropy criterion has,
in those experiments, the most satisfactory behaviour. It performs alike AIC
without overestimating the correct number of clusters as AIC sometimes
do. Table 3 corroborates the analogous behaviour for AIC and NEC criteria.
Note that none of the criteria concluded to the presence of K = 5 clusters for
this five-component mixture. But, as noted by Bozdogan (1992), choosing
three clusters for those simulated data sets is a satisfactory solution. In
this situation, observations arising from mixture components 1, 2 and 3 are
merged into one cluster. But the 4 clusters solution, merging components
1 and 2 into one cluster is also quite reasonable. From those simulations,
as shown in Table 4 which displayed the mean values and, into parentheses,
standard deviation of criterion NEC, it appears that the entropy criterion
NEC indicates clearly that two relevant partitions with three and four clusters
can be derived from this five-component mixture.
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K=1 K=2 K=3 K=4 K=5
16,41 17,93 22,83 29,32
pr=lp=00 =1 (6.15) | (7.97) | (8.61) | (10.35)
p1 =05 13.83 10.98 15.72 22.10 47.86
o =0y =1 (5.84) | (4.36) | (5.49) | (6.81) | (10.14)
=0y =2
n=200 [ py = 0.7 15.98 15.28 | 22.67 30.52 52.95
o1 =o3=1 6.12) | (5.95) | (7.31) | (10.11) | (16.82)
pr=0p =2
Ppn=pa=p3s=1/3 20.45 7.42 5.89 9.16 12.21
o =oy=o3=1 (12.88) | (2.35) | (0.97) | (3.41) | (4.18)
#1 =0pu2 =2 p3=4
d=1 17.92 18.43 23.35 30.49
pi=lu=00=1 (7.21) | (8.91) { (10.72) | (12.74)
p1 =095 14.27 12.23 17.18 23.94 43.76
o1 =3 =1 (7.42) | (5.82) | (7.79) | (9.61)) | (12.45)
1 =0pr =2
n=50 | py =07 18.54 16.76 24.53 32.86 64.13
oi=a=1 (10.17) | (7.64) | (9.86) | (13.22)) | (18.12)
1 =0pz =2 )
P=pr=ps=1/3 2838 | 582 | 515 | 755 | 1064
o =0y =03=1 (11.82) | (2.10) | (0.62) | (2.84) | (3.58)
M =0py=2p3=4
3.41 16.84 18.69 24.47
pr=1,p=(0,0,= =1| (3.02) | (6.12) | (6.64) | (7.76)
n=200 | py = p2 =0.5 8.86 6.24 8.12 10.44
Ly =8 =1 (5.24) | (3.23) | (4.59) | (6.18)
p1=[00] pa=1{22]
P =p1=ps=1/3 1119 | 350 | 202 | 290 | 3.80
Yi=E=%3=1 (4.78) | (2.44) | (0.49) (0.88) (1.57)
pr = [00)us =2 2]
ps =[2-2]
d=2 9.67 11.85 23.96 30.95
pr=1pu =(0,0),5 =1| (415) | (6.99) | (7.44) | (8.94)
n=50 | py =p2=0.5 10.81 8.97 10.44 12.70
Ti=%,=1 (6.68) | (4.12) | (5.83) | (7.56)
p1=[00] po = [22]
Pr=ps=pa=1/3 1197 | 443 | 235 | 292 | 3.96
T =T, =Sy=1 (5.26) | (2.50) | (0.54) | (0.88) | (1.72)
#1=[00] py =[22]
ps=[22]

Table 1: Mean and standard deviation of the NEC criterion for the univariate
and the bivariate distributions.
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AIC [ BIC T AWE | NEC
: K =1 70 95 95 85
pr=1,4 =0,01 =1 K=2| 30 5 5 15
p; =0.5 K=1 10 40 55 15
oy =0,=1 K=2 80 60 45 80
pr =0puy =2 K=3 10 0 1) 5
n=200 | p; =0.7 K=1 25 50 65 25
oy =o0p=1 K=2 65 50 35 70
pny =0 puy =2 K=3 10 0 0 5
pr=p2=p3=1/3 K=1 0 10 20 0
oy=o0y=03=1 K=2 5 15 50 10
b1 =0py =2us =4 K=31| 8 | 75 30 80
K=4 15 0 0 10
d=1 K=1 60 85 90 80
pr=1,u =0,01 =1 K=2 30 15 10 20
K=3 10 0 0 0
p1 =0.5 K=1 25 55 75 35
0y =o0y=1 K=2 60 45 25 55
w1 =0pu; =2 K=3 15 0 0 10
n=50 py =07 K=1 50 80 90 50
c1=o03=1 K=2 35 20 10 40
uy =0uy =2 K=3 15 0 0 10
p1=p2=p3=1/3 K=1 0 20 50 0
oy=0p3=03=1 K=2 15 20 35 20
) =0pup=2pu3 =4 K=3 65 50 15 70
K=4 20 0 0 10
K=1 80 100 100 95
pr=1,m=(0,0}E, =1 K=2 20 0 0 5
n=200 | p1 =p, =0.5 K=1 5 35 50 10
T, == K=2 80 60 50 80
u;i[OO] oy = [2 2] K=3 15 5 0 10
p1=pa=p3 =1/3 K=1 0 5 30 0
T1=8=E3=1 K=2 5 25 50 5
uy =[00)uz =[22] K=3| 7 | 70 | 20 75
w3 =[2-2] K=4] 15 0 0 20
K=5 5 o] 0 0
d=2 K=1 60 80 85 80
=14 =(00),5 =1|K=2]| 4 | 20 15 20
n=50 | p; =p; =05 K=1 10 60 75 10
£, =%, =1 K=2]| 65 40 25 70
;41=[00];42=[22] K=3 25 4] 0 20
pr=p2=p3=1/3 K=1 0 25 55 0
Ty =, =E3=1 K=2 20 30 40 10
py = [00)uz = [22] K=3]| 55 | 45 5 60
uz =2 ~2) K=4| 20 0 0 30
K=5 5 0 0 0

Table 2: Percent frequencies of choosing K clusters for the univariate and

the bivariate distributions.
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AIC BIC AWE NEC
0 S 30 0
60 65 60 39
40 30 10 45

0 0 0 0

3 BTSSR e

Table 3: Percent frequencies of choosing K clusters for the four dimensional
mizture.

K=1 K=2 K=3 K=4 K=5
315 059 041 038 0.84
(0.27) (0.10) (0.03) (0.01) (0.16)

Table 4: Mean and standard deviation of the NEC criterion for the four

dimensional mizture.

5 Conclusion

We have proposed a criterion for assessing the number K of components in a
mixture from a cluster analysis point of view. This criterion has been formed
from the entropy of the posterior probabilities that the observations arose
from one of the mixture components. This entropy measures the overlapping
of the mixture components. The normalized entropy criterion NEC that
we considered finally has been adapted for taking account the case K = 1.
Numerical experiments show encouraging results compared with the perfor-
mances of classical criteria. In particular, it seems that NEC does not suffer
the overestimating tendency of AIC or an underestimating tendency as shown
with BIC and AWE in the reported numerical simulations. Moreover, calcu-
lating the criterion NEC does not involve numerical difficulties such as those
that can appear when using some criteria (ICOMP, MIR. . ).

Further experiments in various situations are needed to investigate more
precisely the efficiency of NEC. And, our 'ad hoc’ procedure to test K =1
versus K > 1 can only be applied for Gaussian mixtures. Future research is
needed to provide a general procedure to decide between K =1 and K > 1
for any mixture model. But, henceforth, the entropy criterion NEC can be
thought of as successful to propose a reasonable number of clusters arising
from a mixture model.
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