N
N

N

HAL

open science

Detecting atomic sequences of predicates in distributed
computations
Michel Hurfin, Noél Plouzeau, Michel Raynal

» To cite this version:

Michel Hurfin, Noél Plouzeau, Michel Raynal. Detecting atomic sequences of predicates in distributed
computations. [Research Report] RR-1872, INRIA. 1993. inria-00074801

HAL 1d: inria-00074801
https://inria.hal.science/inria-00074801
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074801
https://hal.archives-ouvertes.fr

%N RIA

INSTITUT NATIONAL DE RECHERCHE EN lNFORMATIQUE‘ET EN AUTOMATIQUE

Detecting atomic
sequences of predicates
in distributed computations

Michel HURFIN
No¢l PLOUZEAU
Michel RAYNAL

N° 1872
Mars 1993

PROGRAMME 1

Architectures parall¢les,
Bascs de données,
Réseaux et Sysiemes distribués

apport

derecherche_m

. IRISA

INSTITUT DE RECHERCHE
EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu

35042 RENNES CEDEX FRANCE

TéL: 99 84 71 00 - Télex : UNIRISA 950 473 F
Télkécopie : 99 38 38 32

Detecting Atomic Sequences of Predicates in Distributed
Computations ¥

Michel Hurfin, Noél Plouzeau et Michel Raynal

Equipe ADP - Programme 1
e-mail: <Name>@irisa.fr

Abstract

This paper deals with a class of unstable non-monotonic global predicates, called herein ato-
mic sequences of predicates. Such global predicates are defined for distributed programs built
with message-passing communication only (no shared memory) and they describe global pro-
perties by causal composition of local predicates augmented with atomicity constraints. These
constraints specify forbidden properties, whose occurrence invalidate causal sequences. This
paper defines formally these atomic sequences of predicates, proposes a distributed algorithm
to detect their occurrences and gives a sketch of a proof of correctness of this algorithm.

Détection de séquences atomiques de prédicats dans
les exécutions réparties

Résumé

Cet article traite d’unc classe de propriétés globales instables et non monotones appelées
séquences atomiques de prédicats. De tels prédicats globaux sont utilisés pour analyser les
programmes répartis ou les communications se font par le biais de messages (pas de mémoire
partagée). Ils permettent de décrire des propriétés globales sous forme de séquences causales
de prédicats locaux. Ces séquences sont enrichies par des contraintes d’atomicité qui stipulent
des événements qui ne doivent pas apparaitre (i.e. dont I’occurence invalide une séquence cau-
sale).

Cet article donne une définition formelle de ces prédicats, montre leurs intéréts, présente un
algorithme réparti capable de les détecter et dévoile dans ses grandes lignes la démarche suivie
pour prouver I’algorithme.

* This work has been partly funded by a CNRS grant on the study of paralic! traces and by the Basic Rescarch
Action number 6360 (BROADCAST) of the ESPRIT programme of thc Commission of Europcan Communitics.

This paper will appear in the proceedings of the ACM Conference on Parallel and Distributed Debugging, San
Dicgo, May 1993.

Detecting Atomic Sequences
of Predicates in Distributed Computations *!

Michel HURFIN Noél PLOUZEAU Michel RAYNAL

IRISA - Campus de Beaulieu — 35042 RENNES Cedex - FRANCE
{name}@irisa.fr — Fax: +33 99 38 38 32

Abstract

This paper deals with a class of unstable non-monotonic global predicates, called herein atomic
sequences of predicates. Such global predicates are defined for distributed programs built with message-
passing communication only (no shared memory) and they describe global properties by causal com-
position of local predicates augmented with atomicity constraints. These constraints specify forbidden
properties, whose occurrence invalidate causal sequences. This paper defines formally these atomic se-
quences of predicates, proposes a distributed algorithm to detect their occurrences and gives a sketch of
a proof of correctness of this algorithm.

1 Introduction

Analyzing a distributed program and checking it against behavioral properties are two difficult topics [11].
Such an analysis may be done statically, i.e. by structural analysis [11] or dynamically by examining a set of
behaviors exhibited during executions. The current paper deals with this second kind of analysis, and focus
on detecting unstable non-monotonic properties specified as atomic sequences.

Most properties useful to the computer scientist interested in distributed program analysis refer to global
states of distributed computations. But evaluating global predicates (i.e. predicates on global states) is
notoriously a difficult task in a distributed context, because there is no real global state but only a set of
local states whose evaluation cannot be done instantaneously . Research efforts in the distributed program
analysis and debug field have produced interesting results for evaluating stable properties [2, 6].

While detecting unstable properties is notably more difficult than in the case of stable ones, since their
occurrences are transient, interesting results have been obtained, for instance by Haban and Weigel [5],
Miller and Choi {12], Garg and Waldecker [4], and Cooper and Marzullo [3]. The current paper exposes
results belonging to a context similar to the first three ones, but focuses on a new class of global predicates,
named hereafter atomic sequences. Informally speaking, such sequences are defined by a pair of sequences of
local predicates: expected properties and unwanted properties, which should not occur during a computation.
Miller and Choi [12], as well as Garg and Waldecker [4] have published a solution for detecting sequences when
the unwanted properties sequence is omitted, in other words these works focus on detecting occurrences of
expected sequences of local predicates. Haban and Weigel in [5] give an implementation for detecting atomic
sequences of length two.

When atomicity constraints are omitted, sequences exhibit a kind of monotonicity property with respect
to prefix occurrence detection [15]: if a sequence is made of three predicates then it is sufficient to detect
each predicate in turn, with no need to discard solutions later; the length of predicates already satisfied is a
non-decreasing function of time. Atomic sequences do not have this monotonicity property [15]; a prefix of
predicate sequence may have been found satisfied by a computation at some time and is then invalidated by
occurrence of a forbidden event.

The current paper answers this problem: detecting a sequence of m local predicates, while other predicates
continuously evaluate to false. Moreover, our algorithm is able to count how many times the atomic sequence

*This work has been partly funded by a CNRS grant on the study of parallel traces and by a Basic Research Action #6360
{Broadcast) of the Esprit Programme of European Communities Commission.

tThis paper will appear in the proceedings of the ACM Conference on Parallel and Distributed Debugging, San Diego, May
1993.

was satisfied by the computation. Before this new algorithm is exposed in Section 4, formal definitions of
the computation model and of the predicate semantics are given in Sections 2 and 3; a sketch of proof of the
detection algorithm is given in Section 5.

2 A model for distributed computations

2.1 Structure of distributed programs

In this paper we consider programs made of n processes (Py, Pa, .. ., P,), which communicate and synchronize
by the only means of message passing. These messages are exchanged through communication channels,
whose transmission delays are arbitrary but finite. Communication is loss and error-free, but FIFO delivery
of message on a channel is not required. Neither shared memory nor a global clock are assumed available.
In other words, we consider a distributed asynchronous computation model.

2.2 Distributed executions

Events occurring during a process execution are of three types: message emission, message receipt and

internal event. Initial state of process P; is noted s?. Process P;’s p'! event occurrence is noted e?; when
this event occurs, P;’s state changes from sf."l to s¥. Hereafter process P;’s local history during a given
computation is defined by sequence h; = s?s!s?.... Thus the whole computation history is noted by a tuple

made of the n local histories:
H=(hi,ho,...,hi,... hy)

The set of local states reached by a computation is structured by a partial order relation noted —,
defined as follows:

((t=7)A(p<y9)

or
There exists a message a such that
r+l . ..
e; is emission of a to P;
VP Vs! s — 57 = p . . J
LA A] < e; is receipt of a from P;
or

There exists a local state s such that:

?
J

-
\ sf-—‘sk_’s

This definition is nothing else than Lamport’s relation [9] applied to local states instead of events. In order

to ease definitions in the rest of this paper, we also define an abstract state s~! defined by Vi,s™! — s?. A

distributed execution is thus defined by a partially ordered set (H, —).

2.3 Causal past and causal future

For every local state s¥ two sets are defined as follows:

pasts} = {sf|s] — sF}
future s = {s;’|sf—-*sj}

3 Sequence of predicates with atomicity constraints

3.1 Local and global predicates

A predicate LP; is local to process P; if it only mentions variables local to P;. We write s¥ |= LP; when
LP; evaluates to true in state sf. Let LP® be an ancillary and abstract predicate which evaluates to true in
statec s™! only. Every event occurrence may be designated by an ad hoc local predicate. We will use such
predicates to pin-point relevant events.

3.2 Gilobal predicates

Scveral definitions are possible for the global predicate concept. A first possible definition refers to comparing
valucs of variables taken in different processes; for instance, if variables 2; and z; belong to processes P,
and P respectively then predicate ; > z2+4 is global, because it involves two different processes. Detecting
such predicates with particular modalities (definitely or possibly) has been studied by Cooper and Marzullo
in [3] (see also [1] for a nice presentation), and implies the construction of the lattice of all possible global
statcs. This construction is very expensive but seems unavoidable when dealing with this kind of global
predicates.

A different type of global predicates relies on composing local predicates in several ways. For instance,
Miller and Choi define sequences of local predicates in [12], Garg and Waldecker propose sequences, con-
junctions and disjunctions of local predicates in {4]. In [5] Haban and Weigel design a language for local
predicate composition; although no formal semantics is given for this language, it introduces an interesting
ncgation operator in local predicates pairs. In the current paper this negation operator is used for sequences
of arbitrary length.

3.3 Simple sequence of local predicates

Let LP; be a predicate local to process P;. Detecting whether there exists local states s where LP; is
satisfied (i.e. such that s¥ |= LP;) is a trivial problem, as is counting these states.

More generally, a sequence of m local predicates LP}l; LP?Q;...;LK'; defines a predicate SEQ(!+™)
whose solutions are sequences of local states (s?};s??;...;s™) such that:

m m
(sPissf2i. s s8m) | SEQU ™ <= (N (s | LPE)) A(\ (82 € future s777))
u=1 u=2

An interesting problem is then detecting whether this predicate has solutions, and how many times was
this predicate satisfied by a given computation. Predicate SEQ(I'“""') is a formalization of the following
question: did some given event occur on process P;, (i.e. does a local state s' exist, such that s} = LP}l),
and was this event occurrence causally followed by another given event occurrence on process P;, (expressed
by sf? = LP?,), and so on?

Two sequences of local states are distinct if and only if they differ by at least one local state. Figure 1
displays an example where squares stand for local states; white squarcs represent local states which do not
satisfy any local predicate, while grey squares indicate that the corresponding state satisfies at least one
local predicate; in this last case the rank within sequence SEQ1 ™) of the predicate satisfied is written
above the square. For instance, the eighth local state of process P; satisfies predicate LP{ as indicated by
number 4 above the corresponding square.

S S
11 4 4 4
i U Iu H"
2 2 2
T] {Hi
3 3 3
R i {}

Figure 1: Simple sequence

Moreover, Figure 1 illustrates the following facts:

e Predicate SEQ(I"“A) corresponding to sequence LP}; LP]?; LPZ; LP}1 has eight solutions,

e Sequence LP}; LP?; LP}; LP}; LP} (noted SEQ“"“’S)) has only four solutions.

3.4 Sequence with atomicity constraints

In some situations, a sequence of predicates satisfied by a sequence of local states is a valid solution only if
some events did not occur between the first and last events satisfying the sequence. In this case the property
to be detected is not monotonic, because when a forbidden event occurs any sequence prefix already satisfied .
can no longer be prefix of a solution. Hence acceptable solutions are free of occurrence of forbidden events;
for this reason we name them atomic sequences.
A forbidden event may occur on any process, so atomicity constraints are defined by a conjunction of

local predicates in the following way:
CA = ~-NPy A-NP; A...A-NP,

Hlence atomicity is broken (i.e. CA becomes false) as soon as there exists a local state s of some process P;
such that sf |5 NP;. If process P; is not involved in constraint CA then NP; always evaluates to false.

Let SEQ"'® be a sequence LP}l; LP,?,, and let CSEQ"?) be a new sequence defined from SE'Q“'Z) and CA;
solutions to CSEQ“‘” are defined as follows:

(s5)52) b= SEQU™

and

(7, 822) | CSEQMD) =

Vi,1 <i<n, Vs,s € h; Nfuture s} Npast sF? :
(s E~NFy)

Figure 2 illustrates this definition. Sequence CSE’Q(I'z) is verified only if none of the NP; is satisfied by local
states within the grayed out area.

Future s;,

NP,

— BT s

re

Figure 2: Sequence of length 2 with an atomicity constraint

Atomic sequences may be extended to lengths greater than 2. Sequence CSEQ“"""") is then defined by the

composition of a sequence of m local predicates LP}l; LP;;...;LP; and of a sequence of m — 1 atomicity
constraints CA%; CA3;...; CA™. Each atomicity constraint CAY specifies events whose occurrences are

forbidden between detection of IZP}‘“"_Il (at depth u — 1) and detection of LP{’ (at depth u):

CA" = ~NPy A-NPy A...A-NP; 1

>

A set of local states (s7';s72;...;s7™) satisfies CSEQY™) if and only if

1%,
(shrisfns..isfm) | SEQU™

Vu,2<u<m, Vi,1<i<n,
Vs, s € h;Nfuture sf*>' Npast s> : (s | ~NFY)

and

In this form predicate CSEQ®* ™) cannot specify that some events occurring before detection of LP}‘
are forbidden. To lift this restriction, sequence LP}I; LP?,; ...; LP is extended to LP°; LP}l y..s LP and
an initial atomicity constraint CA!, describing unwanted initial events, is added to the sequence of atomicity
constraints, giving CA'; CA%;...; CA™. These new forms together define predicate CSEQ(O""'"‘). As by def-
inition predicate L P is satisfied in state s~!, solutions to CSEQ(®™) have the form (s7Y;sFh;sh2 . sim).
Note that if CA! = CA? = ... = CA™ = true then CSEQ(O"""") = SEQ(+™) The following notation is
used to represent CSEQ™);

CSEQOr™ =, ¢ LP’;[CA'|LP} ;[CA’|LP}

25

lcA™)LPR

Figure 3 shows a simple example, and Figure 4 indicates for five different global predicates the count of
solutions detected by the algorithm of Section 4.

LR LR LR
i, Al
NB,_
n, — 0
LP, LR

. — —a

Figure 3: Sequence with atomicity constraints

Y

Y

Y

Predicates Number of solutions
LP, ;LP, 6
LP, ; [<(LP,)] LP, 2
LP;, ; [-(LP;)) LR, 3
LP, ; [~(LP;,) A ~(LP,) LP, 1
LPy ; [S(NFPy)) LA, 0

Figure 4: Solutions detected

3.5 Related work

Algorithms for detecting existence of solutions for sequence of predicates without atomicity constraints are
given in [12, 4]; these algorithms do not give the count of solutions. In [5] an algorithm for detecting
atomicity constraints is presented; a predicate noted@(A, B, C) specifies that predicate A and predicate B
should be satisfied, with a causal dependency between them, and that predicate C should not be satisfied
in between. This algorithm is limited to atomic sequences of length two, and no formal definition of the
predicate detected is given (see [14] for a critique of this solution).

3.6 Use of these global predicates

When used to analyze or debug distributed computations, simple sequences and sequences with atomicity
constraints basically address the two fundamental properties a programmer is interested in, namely safety
and liveness. More specifically, simple sequences allow to describe execution paths and consequently express
liveness properties (“will something — here this path — happen?”). On the other hand sequences with
atomicity constraints are more suited to invalidate an execution path that occurred and thus allow expression
of safety properties in a negative form (“do bad things happen?”).

Counting the number of solutions (as does algorithm of Section 4) is of course meaningless if the number
of solution is huge. In that case only boolean answers are interesting. But the number of solutions depends
on the form of the global predicate, and so the user defining LP;{ predicates (liveness side of the searched
for property) and CA" predicates (safety side) must be careful to avoid specifying trivial properties.

Lastly, counting solutions of sequences of predicates has an interesting property. The interested reader
can verify the following result. Let #(GP) the number of solutions of global predicate GP. If A and B are
two predicates local to processes P, and P, then we have : #(A A B) = (#(A) * #(B)) - (#(4; B) +
#(B; A)). The left member of the equality is the number of consistent global states whose local states of
P, and P, concurrently satisfy A and B. As shown by the equation, this number can be computed by the
algorithm by the calculation of the four values : #(A),#(A; B),#(B) and #(B; A).

4 The detection algorithm

The algorithm presented in this Section detects unstable non-monotonic properties expressed by a predicate
of the form CSEQ(O"""") and computes the number of solutions that satisfy this predicate.

4.1 Local observers

Each main computation process P; is associated with an observer process OBS; whose task is first to detect
P;’s states satisfying relevant local predicates (LP;, and NP{) and second to cooperate with the other

observers in order to evaluate CSEQ(O""'"'). To this aim, each observer uses the following local constants

and variables:

e LP : array(i..m] of predicate;
LP[u] is initialized to LP} if CSEQ® ™) includes such a predicate, or to false otherwise. Let us
recall that for a given depth u there is one and only one process whose LF} is not trivially false.

e NP : array[1..m] of predicate;
NP[u] is initialized to NP} if such a predicate exists in CSEQ(O""'"'), or to false otherwise.

e NB_SOL_CSEQ : array[0..m] of integer;

NB_SOL_CSEQ[u] contains the current count of distinct solutions to CSEQ(O """ "), to the knowledge of
observer OBS;. In the initial state, NB_SOL_CSEQ[0]=1 holds, by definition of LP° and in this state
Vu,1 <u<m :NBSOL CSEQ[u] = 0.

e NB_SOL_INV.CSEQ : array[0..m-1] of integer initialized to 0;

NB_SOL_INV_CSEQ[u-1] is OBS;’s local count of solutions to prefix LP*;[CA')LP} ;...;[CA*~'|LP}}
which have been invalidated because CA" evaluated to false. The set of solutions that are counted in
NB_SOL_INV_CSEQ[u-1] are not valid prefixes of solutions to CSE‘Q(O"“’“).

e DEPTH : integer initialized to {;

This variable indicates OBS;’s local knowledge of the current depth in CSEQ(™) of the search for
solutions. OBS; participates to the observation of P;’s local predicates and to the detection of new
solutions to CSE'Q(O""'“) for u < DEPTH and to the detection of the first solution to CSEQ(O""’DEPTH).
Initial value of DEPTH is 1.

4.2 Cooperation between observers

The causality relation defined between local states of processes depends on message exchanges (see Sec-
tion 2.2). Any pair of observer(OBS;, OBS;) needs to know this causality relation and thus they have
to exchange some information about message exchanged between P; and P;. The classical technique of
piggybacking is used to transmit control information between OBS; and OBS;, as follows. Suppose that
process P; sends a message m to process P;. OBS; appends to m information about its local knowledge
of solutions to CSEQ(O""'"'), more precisely the following data is appended to m: OBS;’s DEPTH value,
vectors NB_SOL_CSEQ[O..DEPTH-1] and NB_SOL_INV_CSEQ[O..DEPTH-1]). Upon receiving this information,
OBS; updates its own variables.

4.3 The algorithm
An observer OBS; handles three kinds of events when they occur in process P;:
e emission of a message by P;: OBS; appends control data to the message, as explained above;
e receipt of a message by P;: OBS; extracts the control part of the message and updates its local variables;

e some local predicate of P; (i.e. LP; or NP}) that belongs to CSEQ©DEPTH) (i.e. 1 < u < DEPTH)
DEPTH) then

For each of these predicates CSEQ(O"""‘), 1 < u < DEPTH, OBS; checks:

— whether new solutions exist (this is the case when local predicate LP} evaluates to true in the
current local state s%).

— whether some solutions to CSEQ(O""'“"I) are invalidated (this is the case when predicate NP}
evaluates to true in s¥).

OBS; updates its context by incrementing NB_SOL_CSEQ [u] in the first case, and NB_SOL_INV_CSEQ[u-1]
in the second case. OBS; updates NB_SOL_CSEQ[u] only if valid solutions to CSEQ(O """ “=1) gtill exist.

More formally, OBS;’s behavior is defined by the next three statements.

S1 : When P; is in a local state s; that verifies LP? or NP* for 1 < u < DEPTH
begin
for u := DEPTH downto 1 do
begin
if (NB_SOL_CSEQ[u-1] > NB_SOL_IKV_CSEQ[u-1]) then
begin
if LP[u] then
begin
NB_SOL_CSEQ[u] := NB_SOL_CSEQ[u] + (HB_SOL_CSEQ [u-1] - NB_SOL_INV_CSEQ[u-1]);
if ((u = DEPTH) and (DEPTH < m)) then DEPTH := DEPTH + 1; fi; (o)
end;

fi;

if NP[u] then
NB_SOL_INV_CSEQ{u-1] := NB_SOL_CSEQ[u-1];

S2 : When F; sends a message a
begin
Add (DEPTH,NB_SOL_CSEQ[O. .DEPTH-1] NB_SOL_INV_CSEQ[0..DEPTH-1]) to message a;
end;

S3 : When P; receives a message (a,d,T1,T2)

begin

Deliver a to F;;

DEPTH := max(DEPTH,d);

for u := 0 to (d-1) do
begin
¥B_SOL_CSEQ[u] := max(NB_SOL_CSEQ[u],T1[ul);
NB_SOL_INV_CSEQ[u] := max(NB_SOL_INV_CSEQ[u],T2[u]);
end;

end;

4.4 Remarks

Every observer OBS; manages two vectors LP and NP to store predicates LPi¥ and NP;'. Arrays are used
here for ease of exposition, but they are replaceable for efficiency by two lists of (depth of predicate ,
predicate) pairs (predicates trivially constantly evaluating to false are not included in these lists).

Checking for satisfaction of local predicates does not necessarily involve repeated evaluations of these
predicates; classical techniques for process reactivation in conditional critical regions can be used [13].

If one is not interested in counting solutions to CSEQ®"™) a simple modification halts the observer

set upon the first occurrence of a solution: the following line should be inserted at the place marked
with o (i.e. as soon as a solution is found).

if u = m then
broadcast STOP to OBS;,Vj,1</7<n
endif

This broadcast may be implemented by piggybacking also. In this simplified case of first occurrence
detection, better modifications of the algorithm are also possible. When predicate LF} ’s value changes
from false to true, no new evaluation of this predicate is needed until a message is sent (Figure 5) or
predicate NP¢*! evaluates to true (Figure 6).

At the end of the computation, for the only observer OBS; such that LP[u] has not been initialized
to false, the variable NB_SOL_SEQ[u] indicates how many prefix solutions of length u were found;
consequently, it is possible to find out depth v such that CSEQ® ") is satisfied at least once
and CSEQ(®**1) is never satisfied (if v < m): v is the length of the longuest prefix for which
partial solutions exist. Moreover, an algorithm for breakpoints computation such as those given
in {10, 12] can be synchronized with the present algorithm and be triggered by detection of solutions
to CSEQ(® %) sequences. Moreover in an interactive context (for instance in a distributed debugger),
sequence CSEQ(O """ ™) may be defined dynamically. '

Figure 5: No new evaluation of LP} is needed during interval t

LP| LF, LP| NE*' LP|

Figure 6: No new evaluation of LP} is needed during interval t

5 Sketch of the proof
5.1 Notations

Before P; produces its first event e}, the associated local observer OBS; calls procedure test (that encap-
sulates the statement S1 of the algorithm). This first invocation is denoted testl. OBS; then executes this
procedure after each event e/ produced by Pi. The invocation which follows €f is denoted test?!.
Execution of the procedure test has no effect on the current local state of P;. Only control variables
(DEPTH,NB_SOL_CSEQ,§B_SOL_INV_CSEQ) can be modified. Let c.? (respt c:**') the state of all these control
variables just before (respt after) the execution of test?. Event ef can modify local variables of P; and local
control variables of OBS; provoking a transition from the pair of states (s? _l,c?p ~!) to the pair of states

(s?,¢??). The sequence of all these modifications is represented in Figure 7. Let us note that ¢F~! # 2
only if ef is a message reception (see statement S3).

L] 1 [
test | test | test |

1
s” s’ s’

-]

-o |- o
- |- ®
- | = -

cr! c? c'bd

Figure 7: The local states (s) and the states of the control variables (c) of P

The successive values of a control variable V of OBS; are denoted:

0 1 2 2p+1
v‘.,v'.,...’v? v‘,P o

PR]

5.2 Statement of safety and liveness properties

Recall that at any depth u there is only one local predicate LP[u] distinct from false; so let P;_ the only
process to which LF_ is associated.

Let x(u,p) be the number of solutions of the predicate CSEQ(®*) when s¥ is the last local state of
process P;_. More formally:

6 ! 195,

x(u,p) = Cardinal({ (s ;8! 5 ...;67) | (0 < pu S p) A (57188, ..;s0") | CSEQUO ¥ })

The safety property expresses the detection is consistent (i.e. the number of solutions found don’t exceed
the actual number of solutions). This is formally stated by:

Vu, 1 <

u, 1 < u m
veh, 2 €

=IA

} FB_SOL_CSEQ”*![ul < x(u,p)

The liveness property expresses the detection is effectively done (i.e. each actual solution is found). This
is formally stated by: ‘

zus,;- 1 3?: '; i-m } ¥B_SOL_CSEQ”*'[ul > x(u,p)

The proof of these properties is done by recurrence on u (the depth of the predicate) and on p (the rank of
the local state considered). Due to space limitations, the reader is referred to [7] that displays this (technical
and long) proof.

6 Conclusion

In this paper a class of unstable non-monotonic global properties has been defined and studied. These
unstable properties are global since they refer to local predicates from distinct distributed processes, and
non-monotonic because partial solutions to these properties may be rejected by occurrence of invalidating
predicates, named atomicity constraints. An algorithm detecting occurrence of atomic sequences has been
given and a sketch of its proof presented. These sequences are useful in analyzing and debugging distributed
programs. This algorithm is implemented in the distributed debugger Erebus [8].

Acknowledgments

The authors wish to thank C. Jard and C. Maziero for interesting discussions on distributed program analysis.

References

[1] O. Babaoglu and K. Marzullo. Consistent global states of distributed systems: fundamental concepts
and mechanisms. In S. Mullender, editor, Distributed Systems 2™¢ edition, ACM Press, Frontier Series,
1993.

(2] K. M. Chandy and L. Lamport. Distributed snapshots: determining global states of distributed systems.
ACM TOCS, 3(1):63-75, 1985.

(3] R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc. ACM/ONR Workshop
on Parallel and Distributed Debugging, pages 163—-173, Santa Cruz, California, May 1991.

{1 V.K. Garg and B. Waldecker. Detection of unstable predicates in distributed programs. In Proc. of
the 12th conf. Foundations of Software Technology and Theoretical Computer Science, pages 253-264,
Lecture Notes in Computer Science 652, Springer-Verlag, New Delhi, India, December 1992.

10

»

(5]

[6]

(7]
(8]
9]
[10]
[11]
[12]
(13]
14]

(15]

D. Haban and W. Weigel. Global events and global breakpoints in distributed systems. In Proc. of the
21st Hawaii Inl. Conf. on System Sciences, pages 166-175, January 1988.

J.-M. Hélary, C. Jard, N. Plouzeau, and M. Raynal. Detection of stable properties in distributed
applications. 6** ACM SIGACT-SIGOPS, Symp. Principles of Distributed Computing, Vancouver,
Canada, 125-136, 1987.

M. Hurfin. Réexécution et analyse de la dynamique des programmes répartis (Replaying and analysing
the dynamics of distributed executions). Thése, Université de Rennes I, (to appear), 1993.

M. Hurfin, N. Plouzeau, and M. Raynal. A debugging tool for Estelle distributed programs. Journa!l of
Compuler Communications, May 1993.

L. Lamport. Time, clocks and the ordering of events in a distributed system. Communications of the
ACM, 21(7):558-565, July 1978.

Y. Manabe and M. Imase. Global conditions in debugging distributed programs. Journal of Parallel
and Distributed Computing, 15:62-69, 1992,

C.E. McDowell and D.P. Helmbold. Debugging concurrent programs. ACM Compuling Surveys,
21(4):593-622, 1989.

B.P. Miller and J. Choi. Breakpoints and halting in distributed programs. In Proc. 8'* IEEE Int. Conf.
on Distributed Computing Systems, San Jose, pages 316-323, July 1988.

H.A. Schmid. On the efficient implementation of conditionnal critical regions and the construction of
monitors. Acta Informatica, 6:227-249, 1976.

R. Schwarz and F. Mattern. Delecting Causal Relationships in Distributed Computations: In Search of
the Holy Grail. Technical Report 215/91 (36 pp), University of Kaiserslautern, 1991.

M. Spezialetti and J.P. Kearns. A general approach to recognizing event occurrences in distributed
computations. In 8? IEEE Int. Conf. on Distributed Computing Systems, San Jose, pages 300-307,
July 1988.

11

Unité de Recherche INRIA Rennes
IRISA, Campus Universitaire de Beaulieu 35042 RENNES Cedex (France)

Unité de Recherche INRIA Lorraine Technopdle de Nancy-Brabois - Campus Scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 VILLERS LES NANCY Cedex (France)
Unité de Recherche INRIA Rhéne-Alpes 46, avenue Félix Viallet - 38031 GRENOBLE Ccdex (France)
Unité de Recherche INRIA Rocquencourt Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)
Unité de Recherche INRIA Sophia Antipolis 2004, route des Lucioles - B.P. 93 - 06902 SOPHIA ANTIPOLIS Ccdex (France)

EDITEUR
INRIA - Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

ISSN 0249 - 6399

VTR
RR.1872=*

