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A Parallel Time-Domain Maxwell Solver
Using Upwind Schemes And Triangular Meshes

Jean-Pierre CIONI, Loula FEZOUI, Hervé STEVE

Abstract:

A Finite-Volume/Finite-Element method developed in CFD is applied to solve

numerically the time-dependent 2D Maxwell system. We use a third-order accurate
explicit scheme with triangular meshes.
We are particularly concerned here with scattering problems for both homogeneous
and non-homogeneous materials. Radar Cross Section calculations are presented
and compared with exact or integral method solutions. A parallel version of the
algorithm on the Connection Machine is presented and the performances are com-
pared with those obtained with a fully vectorized version on the CRAY YMP.

Un solveur parallel de Maxwell instationnaire
utilisant des schémas décentrés en maillages triangulaires

Résumé:

Une approximation mixte Eléments-finis/ Volumes-finis développée en mécanique

des fluides est employée ici pour la résolution numérique des équations de Maxwell
instationnaires en dimension deux d’espace. Nous utilisons un schéma explicite
précis a ’ordre trois avec des maillages triangulaires.
Nous traitons ici des problemes de diffraction d’onde aussi bien en milieu homogéne
que hétérogene. Des calculs de Surface Equivalente Radar sont présentés et comparés
aux solutions exactes ou bien aux solutions numériques d’une méthode intégrale.
Une version parallélle de ’algorithme sur la Connection Machine est présentée et les
performances sont comparées a celles obtenues sur le CRAY YMP avec une version
entierement vectorisée.
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Introduction

The interest of the Computational Electromagnetics (CEM) community in time-
domain simulations is increasing nowadays.
At the same time we witness a transfer of the most recent and sophisticated methods
developed in the Computational Fluid Dynamics (CFD) into the CEM domain [23].
The main justification of such a transfer lies in the hyperbolicity of the time-domain
Maxwell system which may be expressed as a set of conservation laws when writ-
ten in total field form. The use of the scattered field variables will just introduce
incident wave terms in the right-hand-side of the system and thus will not cause
any difficulty when applying a numerical method constructed for solving the Euler
system [9, 12, 13].
However some questions have to be discussed such as the divergence-free conditions
which are not usually considered for an Euler solver and also the ability of such a
solver to capture well the Maxwell solutions in the frequency-domain. In the latter
case, one has also to find some good criterion of convergence for the time-domain
solver. These questions will be discussed in this paper and some solutions will be
proposed.
The time-domain solver presented here is based on a mixed Finite-Volume/Finite-
FElement method using a third-order accurate upwind scheme. The time integration
is done using a three stage explicit Runge-Kutta scheme. These ingredients result
in a high-order accurate scheme both in time and space [6, 7].
The method is successfully used to compute numerical solutions of 2-D Maxwell sys-
tem in both frequency- and time-domain with homogeneous or non-homogeneous
materials. The computed solutions are compared with the analytical ones when
possible or with the corresponding integral mecthod solutions otherwise. We have
also used our previous works in parallelising the same algorithm applied to Euler
and Navier-Stokes simulations [24] to present here parallel computations in elec-
tromagnetics on a massively parallel machine: the Connection Machine CM2/200.
Performance results in CPU time and Mflops (millions of operations per second) of
the parallel solver are compared to those obtained with a fully vectorized version on

the CRAY-YMP.



1 Maxwell equations

1.1 Conservative form and hyperbolicity

Electromagnetic scattering problems are governed by Maxwell equations, which
can be written in vector form as:

0B(x, )

—gr T ret(E(x1)) =0

dD(x, N
_% — rot(H(x,t)) = —j(x,1)

where B is the magnetic field induction, D the electric field displacement, E and H
the electric and magnetic field intensities respectively, and j the current density. D
and B also satisfy the divergence conditions:

div(D) =p and div(B) =0 (2)
The electric charge p satisfies the equation:

%—g— + div(j) = 0 (3)
We recall that the divergence conditions are redundant with equations (1) by con-
sidering the conservation law of electric charge (3) and an initial value satisfying Eq.
(2) (see [8] for example). Hence, we only take into account equations (1), assuming
here no current and charge densities (p = 0, j = 0).
D and B are related to E and H through the permittivity €(x) and the permeability
p(x) as:

D=¢(x)E and B=yu(x)H (4)
which corresponds to linear isotropic materials.

In two dimensions, Maxwell equations can be split into two sets of systems as-
sociated to transverse magnetic (T'M) and tranverse electric (T E) waves. In this
paper, we deal only with two-dimensional scattering cases. However, the method to
be presented can be extended to the most general three-dimensional problems.

As equations are linear, we will now consider the formulation in scattered fields
with an incident wave solution of Maxwell equations in free space. In this paper, we
will consider the conservative form of Maxwell equations which implies recasting the
system in function of the fields D and B. Hence, the conservative scheme (described
in section 2) will be employed for solving efliciently field discontinuities in case of
non-homogeneous media. One may easily check that the non-conservative form in-
volving (E, H) fields and the conservative one are equivalent in case of homogeneous
media.

In the T M, case (H.z = 0), one has B = (B, B,,0) and D = (0,0, D,) in cartesian



coordinates. Only the non-zero components of the electric and magnetic induc-
tions are considered. Equations (1) and (4) then lead via an appropriate change of
variables to the following conservative form written in scattered field:

Q. + F(Q): + G(Q), =S™ (5)

Ql Co Bx
Q = Q2 = Co By
Q@3 D, [eo

0 Qs/ex
F(Q) = { —Q3/er } ; G(Q) = { 0 }
—Q2/ s @1/,

and S$"¢ = — Q" — F(Q™°), — G(Q™°), where Q'™ denotes the incident field.

In order to deal with non-dimensional material properties, we have performed the
following change of variables by introducing the permittivity €9 and the permeability
o of the free space:

with:

e(x) = €o&,(x) and p(x) = po pr(x).

. . . 1
The relative speed of light is ¢, = e In free space, we have ¢, = y, = ¢, =1

and the light speed is ¢g =

Vel
We note 7 = ¢yt the new time variable which is now expressed in terms of wave
lengths. The right-hand-side of (5), induced by the incident wave Q¢ is equal to
zero in free space according to our assumptions.
The second point to be noticed is the hyperbolicity of Maxwell system.
Let us write (5) as:
Q. + V.F(Q) =5" (6)
with F(Q) = (F(Q); G(Q))". The non-conservative form of the left-hand-side of (6)
writes as:
— , :
Q- + VQF(Q)=58"

. (B 9 R 8Q 9Q\!
where F' = (%F(Q); %G(Q)) and VQ = (E’ %) .
We now consider the following linear combination F(Q, ) = #.F(Q) where n=(n,, 72)
is any non-zero constant vector in IR?. The jacobian matrix A defined as A(Q,7) =

n.¥'(Q) is given by:

0 0 7}2/6,-

0 0 _n]/er (7)
m/pe —mlp. 0

A

3



and its real eigenvalues are:
M=¢|n|, 2 =—-¢|n| and A; = 0. (8)

Concerning the TE, case (E.z = 0), the non-zero components of the electromag-
netic field lead to the following conservative variables:

Q = (—D/e0, —Dy/c0, o B)!
We then obtain:

0 QB/ur
F(Q) = { —Qs/u, ;7 G(Q) = 0
—Q2/e- Q1/er

One can easily deduce the corresponding jacobian by interchanging e, and g, in the
TM case jacobian (7). The eigenvalues remain the same as in the TM case and are
defined by (8).

Maxwell system (5) is then of hyperbolic type and also a law-conservation system
for TM and TFE modes. These charasteristics of Maxwell system (conservativity
and hyperbolicity) lead up naturally to the use of upwind schemes known to be well
adapted to solve numerically similar systems in CFD (see [1, 2, 5] for example).

1.2 Boundary conditions
Perfectly conducting surface

For a perfectly conducting surface, the boundary condition in terms of scattered
field writes as:

nAE = —nAE™ (9)

where m is the outgoing unit normal vector of the surface.

Absorbing boundary conditions

Numerically, we have to restrict the computations to a finite domain whereas an
infinite domain is required. Many authors have developed investigations to define
well-posed boundary value problems. Some perfectly absorbing conditions have
been set up (no parasite waves) but they cannot be used numerically for they are
not local. However, a set of absorbing local boundary conditons which approximate
the perfectly absorbing ones is now well known for the wave equation and Maxwell
system (see [11]). We use here the first-order absorbing condition of Silver-Miiller:

nAE=— [E2nA(mAH) (10)

€o

on a boundary surface in free space. This is a practical radiation condition to
implement but the outer boundary must be set far enough away so that the even-
tual parasite reflections do not interact with the scattering object. This is usually

4



achieved by setting the boundary two wave lengths far from the object. Thus, the
implementation of this boundary condition would lead to a nced of a large amount
of memory when dealing with three-dimensional problems. We work on adapting
the second-order Joly-Mercier condition [10] to our scheme which allows an outer
boundary to be approximately one wave length far from the obstacle.

2 Numerical approximation

A large family of approximate Riemann solvers has been developed in CFD and
these schemes have proven their efficiency in solving problems where field disconti-
nuities appear. This class of schemes seems to be well adapted to the conservative
form of the time-dependent Maxwell system, particularly when dealing with het-
erogeneous media. We focalise our studies on high-order upwind schemes both in
time and space, which allow to treat arbitrary complicated geometries and are well
adapted to vector and parallel computing. We describe briefly in the following sec-
tion the Finite-Volume/Finite-Element method applied to the Maxwell system. For
more details on this method and its applications in CFD fields, one may refer to
[4, 5] for example.

2.1 Variational formulation

Let 7, be a standard finite element triangulation of @, the polygonal approxi-
mation of a computational domain 2. At each node S;, a cell C; is constructed as
shown in Fig. 1. The union of all the cells forms a new partition of §2;:

ns
o =UG
=1
The following discrete spaces are introduced:

Vh = {vh | Vp € CO(Q), Vp ITG Pl, VT € Th}

Wi = {vs | vn € L}(Q), vk |¢c, = constant, i = 1,ns}
where P! is the space of piecewise linear functions.

Figure 1: Cell construction in unstructured grid



We consider the initial and boundary value problem:

[ Q. + V.F(Q) =s™ (x,7) € Q@ x R*
nAE = —nAE™ (x,7) €Ty x R*
4 (11)
nAE=— g‘in/\(nAH) (x,7) € Too x R*
V €0
| Q(x,7=0) = Qo(x) X €N

where T, is a perfectly conducting surface and I', is the artificial boundary. Besides,
Qo satisfies the divergence conditions (2). A variational formulation of (11) is:

Find Q,, € (Vh)3 s V¢h eV
[(@u)rdndzdy + [ VFQuS)dedy = [ Sp=S(gndzdy  (12)

where S is a bijection between spaces V,, and W}, defined by
Vo € Vi, S(¢) = D #(Si)x(Cy)

t=1,n,
We recall that x(8) is the charasteristic function of 8 for every domain 8 € Q.
By choosing ¢, as the basis P! function associated to the node S; and applying a
mass-lumping to the time derivatives, we get the following system:

Area(C)) (Qn)r |s, + /C VFQu)dedy = W (13)

where W'¢ denotes the incident wave contribution which will be discussed later:
Winc — /C S;lnc dil)dy

Using now a Green'’s formula, equation (13) leads to:

Area(C;) (Q},)., |5.' = — Z / F(Qh).u;j do <1>
jek(i) Y%
— F(Qpr).ndo <2>
C;NIy (14)
— F(Qy).ndo <3>
8C; Nl o
+ Wine <4>

where v;; is the outward normal to the interface 9C;; between two cells C; and C;
and K(2) is the set of the neighbouring nodes of the vertex S;.

2.2 Steger-Warming flux decomposition

We describe now the approximation of the term / F(Qp).vi; do. This integral
aC,

is evaluated as:

&, = F(Qu)n



where = (1, m2) = /C v;j do and F(Q4) is some approximate value of ¥(Qy)
along 9C;;. We introduce the numerical flux function @;; chosen as a first-order
upwind scheme depending on the two states (Q); and (Qx); on each side of the
interface dC;;. This is a direct extension of the one-dimensional upwind scheme
definition of Lax, Harten and Van Leer [2] and more details can be found in {4].
We recall that for the linear case, all first-order upwind schemes reduce to the
same [2]. Thus, there is no choice of an upwind scheme for approximating Maxwell
equations in homogeneous media. However, in the case of heterogenecous media,
discontinuities in the fields may appear at the interface of materials. The way the
discontinuities are treated may depend now on the choice of the scheme. We use
here the flux decomposition of Steger and Warming [3].

We now introduce the following notations before describing the scheme. The jaco-
bian A(Q,n) = .F'(Q) being diagonalisable, it may be written:

A=TAT" |, A= diag(l)

where Ay are the eigenvalues of A defined by formula (8). One defines A* =
TA* T7! where A* = diag(maz(At,0)) and A~ = diag(min(Ag,0)). The numerical
flux function of Steger-Warming is given by:

&Y = 77(Q;,Q;) = A*(xi,m) Qi + A (x;,1) Q;

where Q; = Q(Si), Q; = Q(S;), x; and x; are the coordinates of nodes S; and S;
respectively.
The split matrices in the heterogeneous case are:

£’ =6 & &/Z(x)
areomy = SN g gt gz
6200 ~620) 1

—622 £162 €2/ Z(x)

aem) = SO e ar gz
£L2(x) —&LZ(x) -1
where (£;,£;) is the unit outgoing normal of the cell interface and Z(x) = E;((i%
Hr(X
Z(x) = #r(x) respectively in the TM and TE case. Taking Q; and Q; as constant

€-(x)
on each cell, this approach results in a first-order approximation of the fluxes.
2.3 High-order approximation

We construct now a third-order accurate scheme in space using the extension
of Van Leer’s MUSCL method to finite elements [1, 4]. One way to achieve high-
order accuracy is to increase the degree of the solution interpolation in a cell and to

7



evaluate the fluxes with some extrapolated values Q;; and Qj; at the cell interface
dC;;. This extension requires the evaluation of the gradient of the solution at each
node and a modification of the &;; function arguments. The high-order flux function

is written: ow w
¢.’j = ¢.’j (Qistji)
1 —
Qi = Qi +5(VQ):S:S; (15)
1 —
Qi =Q; - 5(VQ);S:S;

The nodal gradients (%*Q);Yj may be defined in several ways. One possible choice
of definition is the so-called hermitian gradients [5):

E)Q'H - Area(C /./ eQd:cdy

1

Aire(T) &
- Area(C;) T,%T 3

> Qlsy Vels, (T)

where S;x (k = 1,2,3) are the three vertices of the triangle T and ?cp |5, (T) the
constant gradient on T of the P1 basis function associated to S.

For accuracy and stability reasons [6], we use the following interpolation:

Qi;=Qi+: {(1—2ﬂ)( ~ Q) +28VQlS:S; )
. , B € (0,1)
Q,~.~=Q,~—§{(1—26)(Q,~—Q.~)+2ﬂVQ§’-SeSj} '

This interpolation involves a convex combination of centered slopes (Q; — Q;) and

half-upwind ones (VQ .S:S;) in analogy to the one-dimensional case [7]. Finally,
we take 8 = - as an upwmd parameter in order to achieve a quasi third-order
scheme in spa.ce for unstructured meshes. In case of structured meshes, this scheme
is exactly third-order accurate. Let us note that no limitation technique is used in
our high-order scheme since the system is linear in the unknown variables even in
the heterogeneous cases treated here.

Material interfaces

In the presence of dielectric materials, the solution (computed in scattered fields)
is also driven by the incident term noted as S™¢ (5). This term, involving both
time and space derivatives of the incident wave, is turned into fluxes since the
incident wave is assumed to be solution of Maxwell equations in free space. This is
a practical way to ensure no contribution of this term in free space (same spatial
approximation for the two parts of $°) and to have an homogeneous approach
between the unknowns (scattered fields) and the given incident field.

8



Hence, there is no nced to treat apart the material interfacc with this scheme.
One can easily check that the fluxes remain continuous across a material interface
independently of the discontinuities of the permittivity and the permeability; the
properties of At and A~ insure the discrete Lax jump conditions applied in total

ﬁelds: [ ]
nAE =0 SW SW __
[n/\H]_—O}‘:'(pii + o7 =0

Boundary conditions

The terms < 2 > and < 3 > of the right-hand-side of (14) contain the physical

boundary conditions which are usually expressed in terms of electric and magnetic
fields (E, H).

Perfectly conducting surface :
On the surface I'y, the field is assumed to satisfy the condition (9). Thus, the
boundary term < 2 > is computed as:

r __(n2 gnc)

/ A (n1 Q) do (TM case)
ac;nTy, (n2 Q1 . Q»_,)/#r

(n2 Q3)/pr
/ —(n1 Q3)/ - do (TE case)
L 8C:Ty inc nc
_(nZ Q] —ny Qz
where (0 ;=;..3 are the components of the computed field Q on T, Q'™ is the given

incident field and n = (n;,n;) is the outward normal to I',. Let us note that in
this procedure, the boundary condition (9) is applied in a weak form.

/ F(Q)ndo =
8C,nTy

Absorbing condition :
The artificial boundary I',, is assumed to be set in free space. The first-order

boundary condition of Silver-Miiller (10) then reduces for both TE and TM cases
to the following equation:

Q3 = N2 Q] — Q2 (16)

The above condition may be inserted, as it is, into the term < 3 > which becomes:
12

'/;Ceﬂl‘oo F(Q)n do = ./é;c,»nl‘oo (Tl2 Ql — Ny Qg) nil do (17)

Here again, the boundary condition is satisfied in a weak form only.

One may also use an upwinding which sorts automatically between the in- and
out-going informations and then sclects the right boundary condition to be consid-
ered. In our case (Maxwell system), this condition is associated to waves which



travel at speed — ¢ . As it was done inside the computational domain §2, we choose
the Steger-Warming scheme on the boundary ', which is written now:

&7 = 2%"(Qi, Qu,n) = ATQi + A7 Qo

where Q; is the computed scattered field on I'o, and Q, is the scattered field outside
the domain ). Assuming that the scattered field is zero outside the domain, one
gets:

& = ATQ; (18)

This expression may be viewed as an absorbing condition (no information entering
the domain). Furthermore, one can easily check that the two ways the boundary
condition on [', is considered are equivalent. Indeed, using the relation (16), one
may rewrite the formula (17) as:

ng

1
/ F(Q)ndo = - (n2Q1— Qe+ Qa) | n1 | do
8CinT oo 2 JaCinlre 1

The latter formula gives explicitely the flux @fozv One may conclude that using
an upwind scheme at the outer boundary corresponds to a first-order absorbing
condition.

2.4 Time integration

The above discretisation leads to the semi-discrete system associated to each
node S; (the subscripts S; and A are dropped):

Q- +¥(Q) =0

where ¥ contains the space discretisation and incident wave terms.
We need an accurate time integration when dealing with unstationary problems.
The most simple and efficient way to construct a third-order accurate scheme is to
use a three-step explicit Runge-Kutta method. Besides, this method requires little
storage and fits perfectly to massive parallelism. It goes as follows:

QO _ Qn A
Q =Q - a _TI) Q™Y 1=1,2,3
Qn+1 — QS

2.5 Radar Cross Section evaluation

The method presented above solves Maxwell equations in a finite domain and we
get the time-dependent scattered field when an object is illuminated by an incident
plane wave. This is the near-ficld solution while the bistatic Radar Cross Section

10



(RCS) evaluation requires the computation of the scattered field intensity at infinity
in the frequency-domain. The bistatic RCS is defined in two dimensions as:

| Q5 |2
/\Smc I2

= lim 2=r
r—00

where | Q\gmc | is the amplitude of the incident wave and @;s the Fourier component
of the time-dependent solution [16]. @3 refers to the variable E, or H, whether we
consider the TF or T M mode.

To get a time-harmonic solution, calculations are pursued until the fields reach a
sinusoidal steady state depending on the frequency of the incident wave. Conver-
gence comes from the limiting amplitude principle {18] and the complex field in
the frequency-domain is computed from the time-history of the solution by using
a Fourier transform. The far-field solution then comes via an asymptotic approach
using the Green function. From the theory of integral equations and an asymptotic
expression of the Hankel functions, one can get the following far-field representation

[16, 19):

0(r,8,U) = | = e~/ e*7 (i 6,0 (19)
with:
P(k,¢,U T / (8115 + ik (ns. e)U) e~ tkroes.e (z5) do(zs) (20)

where S is a surface (generally taken in free space) around the body, res the
coordinate-vector of a surface point, re (or (r, ¢) in polar coordinates) the coordinate-
vector of a point at infinity and k is the wave number.

For an incident plane wave of unit amplitude, the RCS may be finally written as:

o = 7 | P(k6,Qs) I

2.6 Convergence to the steady state

When we approximate periodic solutions of Maxwell system (for RCS calcula-
tions for instance) using a time-marching method, one should consider the following
points:

(a) ensure that the steady state is well reached.

(b) ensure that no extra-calculations have been done.

(c) how to accelerate the convergence while maintaining a high accuracy in time.
The latter point is nowhere here considered. Points (a) and (c¢) may be summed up
in defining a good convergence criterion.

We used first the criterion proposed in [13] with a perfectly conducting cylinder
test case. The solution is then supposed to have reached the periodic state when it

11



is of the form:
Q(x,7) = Qo(x)cos(kT + ¢o)
where k = ol is the wave number of the incident field. Such a solution verifies the

c
differential equation in time variable:
Q =-£’Q (*)

The discretisation of (*) allows to define the following criterion:

6¢Q3 + det2 Qg) (x,/\ + (Tl — l)dt) “L2 n > 1
“ (61Q3 + k2dt? Q3) (X, )‘) ”L2 ’ B

We performed, on the same test case, calculations with two different values of
the time step: dt and 2dt. The corresponding time-histories denoted LO(dt) and
LO(2dt) respectively are plotted on Figure 2. We observe that the LO(dt) residual
reaches a value of an order of magnitude less than the second one LO(2dt). The
observed behaviour of this residual shows that the criterion LO is dependent on the
time step. Indeed, reducing the time step leads to a better approximation of (*).
However, this seems to be in opposition to points (b) and (c).

We suggest here a criterion based on the energy as a test of convergence. This
test is performed either on the transverse electric field or on the transverse magnetic
one using the L, norm of the scattered field. The energy is evaluated on the whole
domain at each period in time:

o L5 06m ) = 1Q5 (5 (=) M) )|
[T Qs N T- 1Qs (50 D]

We performed the calculations until the residue E1 reached some fixed value ( 1073
in this case). The RCS solution obtained at this stage compared very well with the
exact one but we noticed that the RCS solution was already accurate some time
steps earlier. Thus, many more operations than needed were performed.

Finally, we suggest to improve the criterion F1. This is achieved by evaluating
the L; norm in a convex domain including the illuminated body and delimited by
the surface where the RCS calculation is performed (E2). Now, errors due to the
artificial boundary affect no more the value of the residue. It is meaningful since
only local informations around the body are needed for RCS evaluation.

The three criteria LO , E1 and E2 are compared in Figure 3. E2 is the criterion
which senses the steady state the better. Besides, we did not observe any depen-
dency on the time step for this one.

This criterion is costless in memory storage and time, and seems to be well adapted
to time-periodic simulations as far as the numerical method converges. It seems
that time-marching methods could not be very efficient to solve scattering problems
involving non convex bodies. In this case, the trapped rays (in inlets for exam-
ple) may affect the convergence drastically. Solutions do not any more converge at
exponential speed to the periodic steady state. Some authors suggested methods
to accelerate the convergence either by enforcing the periodic state through a min-
imisation technic [14] or by introducing the frequency of the incident wave in the
scheme [22].

Lon = I

, n>1
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2.7 Divergence error

We do not consider the divergence-free conditions in our model, since they are
redundant in the continuous equations. Numerically, we only take these equations
into account at the initial time. We use piecewise linear functions in our scheme, ob-
viously not satisfying these conditions. Many authors using Finite-Element methods
in electromagnetics make sure of these conditions by using a space of divergence-free
discrete functions {20] or more recently using a divergence correction method [15].

Our numerical approximation is not based on a Finite-Element method but a
Finite-Volume one which belongs to the class of conservative schemes. Piecewise lin-
ear functions are used here to interpolate the fields at the cell interfaces. Although
it is well known that these schemes are appropriate to treat divergence terms, nev-
ertheless we look at the conservation of the divergence-free property by our method.
We refer to [13] for a similar study on FCT methods.

Unstructured grids do not yield an unic way to discretize the divergence. We
evaluate this divergence in a weak way and we compare it for three different size
grids where a square body is illuminated by an incident plane wave. At each time
step, we consider the L., norm of the divergence of the solution. The divergence
reaches quickly a periodic state whose average amplitude is numerically observed to
be O(h) where h is the mesh step (Fig. 4). Furthermore, one can notice the great
influence of the space accuracy of the scheme on the divergence: the amplitude
is reduced by a factor five when comparing a first-order and a quasi third-order
scheme in space (Fig. 5). We can conclude that the Finite-Volume method used
with unstuctured meshes does not conserve exactly the divergence-free conditions
and depends essentially on the mesh thickness as well as on the accuracy of the
scheme. However, the good accuracy of the RCS calculations (section 4) obtained
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with meshes corresponding to 12 up to 20 points per wavelength shows that the
distortion of the divergence observed with unstructured meshes has no significant
influence on the solution.
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Figure 5: First- and third-order scheme comparison

3 Numerical experiments

3.1 Unstationary experiments

We simulated two scattering problems of a pulse impinging on a metallic cylinder
of circular or square section.
A continuous T'M incident wave whose electric field is of the form:

Ee = cos{| k| (x cos ¢ +y sinp — ct)}
is taken on half a wave length and set to zero elsewhere. The expressions of H:"™
and H;"C are deduced from Maxwell equations:

~ sing _. : cos ¢ _.
H:’l C — E;Tl C , H;YIC J— E:nc
jec pe
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where ¢ is the angle of incidence. The initial time is chosen just before the pulse
encounters the body and the wave is coming from the right side.

Figure 7 shows a good behaviour of the total field solution. The incident wave
is perturbed near the body in order to satisfy the boundary conditions. One can
distinguish very well the scattered wave on the right side. No deterioration of the
solution appears at the corners of the square section cylinder.

3.2 Time-harmonic results

Some bistatic RCS simulations are presented for infinite circular cylinders and
compared with exact solutions [17]. TE and T'M results are shown both in perfectly
conducting and coated cases.

The bodies are illuminated by a continuous harmonic incident wave and the calcu-
lations are performed until the solution reaches a sinusoidal steady state. We use
a criterion based on the energy (section 2). We compute only the real part of the
solution and get the complex field representation through a Fourier Transform.

The RCS response is normalized by the wave length and plotted on a logarithmic

scale:
RCS
)
We represent the RCS in db as a function of the viewing angles # where the value
180° of @ always represents the backscatter point. The case of a metallic cylinder

o = 10* Logyo (

2%
surrounded by the vaccum is presented on Figure 9 such that kao = 10 (k = —;—)

where k denotes the wave number and g the radius. One can see a good agreement
with the exact solution for both TM and TFE cases with a mesh (Fig. 8)
corresponding to 20 points per wavelength near the body.

Two TE cases are also presented for the previous metallic cylinder but coated
with a lossless dielectric of thickness (a; — ap). We use the same mesh as in the
previous case (Fig. 8) with &, = 2.56 and u, = 1 in the coating. We have
in the first case (Fig. 10) kay = 7.7 and kap = 7. One can notice the good
accuracy of the solution and the ability of the solver to treat coated materials and
field discontinuities. The solution of Fig. 11 is the same test case with a higher
frequency ( ka; = 11, kap = 10). The numerical solution compares well with the
exact one despite the numerous variations. However, the response is not so accurate
as in the previous examples. This is probably due to the coarseness of the mesh used
since the number of points per wavelength in the dielectric coating is here about
12. This number (12) seems to be a minimum, because the solution would not be
accurate enough with less points according to the parameters of this test case.
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The series of the previous examples is interesting since exact solutions are known.
The next experiment is less academic.
A metallic NACA0012 is illuminated by a transverse magnetic plane wave at in-
cidence ¢ = 90°. The body is four wave lengths long and the frequency of the
incident wave is 1.2 Ghz. It corresponds to a number kay = 12.57 . The number
of points per wave length is on average around 15 near the body. Figure 12 depicts
the scattered electric field. The solution in the backscatter area has a wave front
which corresponds very well to the geometry of the body. In the forward area, the
solution is in opposition with the incident field. This is clearly seen on Fig. 13
showing the total field. This corresponds to the shadow region.
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We can notice that the RCS diagram (Fig. 14) is oscillation free. In contrast with
the previous examples, we can observe two maxima for the viewing angles § = 0°
and approximately § = 180°. The first one corresponds to a receptor placed in front
of the incoming wave. A large amount of energy has travelled along this direction.
The second one which was not observed with the circular cylinders is due to the
flatness of the body. The rays are little diffracted in the backscatter area.

The RCS is compared on the same figure (Fig. 14) with a numerical integral method
solution [21]. The mesh step used was of A/50 on the surface with the integral
method while it was of A/40 near the body in our simulations. The difference is less
than 0.5 db regarding the whole range of the viewing angles. This gives an excellent
agreement between the two solutions.
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Figure 12: Scattered electric field Figure 13: Total electric field
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Figure 14: RCS with an incidence angle ¢ = 90°
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4 Parallel implementation on the Connection Ma-
chine

4.1 Presentation of the CM2/200

We first recall the main features of the Connection machine CM2 [26] before
describing the parallel algorithm.

The CM2 is a SIMD (Single Instruction Multiple Data) distributed memory ma-
chine containing up to 64K (K=1024) bit-serial processors having their own memory.
These processors are arranged 16 to a chip in a hypercube topology (of dimension 12
for the 64K configuration). Each weitek (a pair of chips) may be supported by a 32
or 64-bit floating point accelerator (FPA) which increases floating point calculations
rate by a factor of 20. The weitek clock speed is 7 MHz (10 Mhz for the CM2/200).
Mainly two communication forms can be provided from the Connection machine:

- ROUTER: The general mechanism (ROUTER) allows parallel accesses among
the distributed memory so that any processor can access the memory of any
other processor. General communications use the router network which con-
nects the chips on the hypercube.

- NEWS: The NEWS (North-East-West-South) network is a structured mech-
anism which optimizes grid communications by exploiting the four nearest
neighbours connections. NEWS network is much faster than the ROUTER
one but requires regular patterns.

In addition to the Paris execution model available on all CM2 models, the Con-
nection Machines supported by 64-bit FPA (the CM2/200 is one of them) provide
the slicewise model [27] through CM-Fortran compiler switches. These two models
are source-code-compatible although the organisation of the memory is drastically
different.

The virtual processing facility of the Connection Machine allows the use of more
processing nodes than it is physically available. This is achieved through a splitting
of the local memory. Each physical processing node simulates some number of
virtual processing nodes and the ratio between the virtual ones to the physical ones
is called VPR. The two models execute virtual processing in a similar way but the
number of the physical processing nodes is different for a given machine-size. Thus,
the slicewise model does not require a power of two VPR like in Paris; one can reach
high values of VPR quite easily and exploit in a better way the capabilities of the
CM2/200 while using less memory.

The main improvements are that elemental computations requiring no commu-
nication can be speeded up noticeably and less memory is used. However, this
enhancement in performance may only be obtained using the CM-Fortran language
which offers a large set of tools for array computations.
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4.2 Description of the algorithm

The numerical method described in section 2 leads to the following serial algo-
rithm:

For each time-step :

Step Al : Compute the nodal gradients

Step B1 : Compute the interpolated values and fluxes
Step C1 : Update the solution at nodes

Step Al involves computations on neighbouring triangles on each node. Step Bl
computes and gathers quantities on neighbouring edges while step C1 contains nodal
computations.

One can notice that the three steps require the manipulation of three classes of ob-
jects: triangles, edges and nodes. Several choices of parallel data structure have been
analyzed in [24] for the implementation of a CFD code on the CM2; it was shown
that the vertex-based parallel structure including nodes and geometric neighbour-
ing node data is the most appropriate for the mixed Finite-Volume/Finite-Element
method. This distribution has been used in this study. The parallel algorithm then
consists of the three steps Al, Bl, Cl1 completed by the communication phases:

Step A0 : Communicate the neighbour states.
Step BO : Communicate the neighbour gradients.
This choice is a compromise in the sense that it minimizes the amount of communi-
cations but leads to redundant computations in steps Al and Bl.

The use of unstructured meshes yields non-regular patterns for communications.
As NEWS-network cannot be used in this case, we optimize the inter-processor com-
munications by using a communication compiler of the system. This communication
compiler (Fastgraph) consists in storing and optimizing the message paths so that
address calculations are performed once for all time steps. However, this requires
the mesh to be static which is our case throughout this study. A mapping technic
has been associated with the compilation of the communication graph in order to
find a good projection of the mesh nodes onto the hypercube [25].

4.3 Performance results and comparisons

We present in this section several performance results of the Maxwell solver
obtained on the Connection Machine 8K-CM2/200. Both simple and double preci-
sion results are compared with the CRAY YMP mono-processor (64-bit precision)
results as well as with the 8K-CM2 ones (32-bit precision).

The algorithm implemented on the CRAY was highly vectorized by a colouring
technic on edges and triangles of the meshes. All the measures were plotted for a
set of four unstuctured meshes consisting of 8K up to 64K nodes.

We first evaluate the percentage of communication time over CPU time (Fig. 15)
under the slicewise execution model (CM2/200, 32-bit precision). The main part of
the CPU time (80%) is spent on communicating when no communication compiler
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is used (with or without mapping). Address calculations form the most expensive
part of the communication phase when dealing with an irregular graph. It does not
depend significantly on the way the nodes are mapped onto the hypercube. The best
results are obtained when using a good mapping together with the communication
compiler (FG as Fastgraph) whose contribution is very important. Finally, we can
reduce the percentage of communication time to about 20% .

Different Connection Machines and execution models are compared in single
precision (Fig. 16). Executing under the paris model on the CM2/200 allows us to
win about 30% in time compared to the CM2 results; this corresponds exactly to
the increase of the clock speed on the CM2/200 (10 Mhz against 7 Mhz). We can
also measure the efliciency of the slicewise model: we get more than a factor 2 with
the CM2 in favour of the CM2/200.

The last results are comparisons between the CRAY YMP and the CM2/200.

Although single precision results under paris (Fig. 17) are of the same order than
the ones of the CRAY, the double precision is still costly. Concerning the slicewise
model, the CM2/200 is faster than the CRAY in any case (Fig. 18).
Particularly, the 8K-CM2/200 (32-bit precision) is almost twice faster than the
CRAY YMP mono-processor which deals at least with 64-bit precision. Never-
theless, single precision was enough to obtain accurate results for the test cases
presented in this paper.

In the next figures, the letters S, P, SP, DP refer respectively to Slicewise model,
Paris model, Simple Precision and Double Precision.
VPR denotes the ratio (user’s nodes)/8K .
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The performances of the solver in Mflops (millions of operations per second) are
reported in Table 1 both for the CRAY YMP mono-processor and the 8K-CM2/200.
We point out that the redundant operations are not counted in the evaluation of
the performance (in Mflops). Indeed, this is unfair to the Connection Machine since
the redundant operations (which are not necessary for the obtention of a solution)
are effectively done.

| Machine | Mflops |
CRAY YMP (64-bit) | 113
SK-CM2/200 (64-bit) | 83
SK-CM2,/200 (32-bit) | 124

Table 1: Performances in Mflops

However, the performance results on the 8K-CM2/200 in single precision (32-bit)
are better than those obtained on the CRAY YMP (64-bit). Nevertheless, they are
not so satisfying regarding the real peak rate of this Connection Machine, which is
evaluated to be around 1.5 Gflops. One may explain this loss of performance by two
main reasons:
e 20% of the CPU time is spent on communications between processing nodes (Fig.
15). This is due to the use of irregular patterns on hypercube topology.
e redundant operations are not considered in the evaluation of the Mflops although
they are numerous.

However, the performance results (in terms of CPU time and Mflops) show that
the present Maxwell solver runs efficiently both on a vector and on a massively
parallel computer.

5 Conclusion

We developed a time-domain Maxwell solver using a method coming from
Computational Fluid Dynamics. We used an accurate upwind scheme in a Finite-
Volume formulation with unstructured meshes and proved its efficiency to treat
coated materials. The good comparisons of the computed solutions with the exact
ones, whenever possible, show that this solver is reliable. Moreover, the method pre-
sented compares very well with an integral method in the harmonic case. It is not
necessary to consider the divergence-free equations with this conservative scheme.
Besides, this solver does not involve any particular technic to treat the field discon-
tinuities occuring at material interfaces.

A massively parallel version of the algorithm has been implemented on the Connec-
tion Machine. The main performance results show that a 8K-CM2/200 is almost
twice faster than a CRAY YMP mono-processor (in terms of CPU time) for this
type of application involving irregular communication graphs. We think that the
parallel code is well optimized, as the communication time seems hardly reducible.
The extension of this solver to more general cases, such as anisotropic media, electric

24



or magnetic losses, seems straightforward and will be investigated. This solver also
extends directly to the three-dimensional case. Moreover, this time-domain parallel
solver may be more useful for some more genuine instationary problems than the

scattering of pulses, such as simulations of charged particule beams in electomag-
netic fields.
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