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Controle de Flux dans une fabrication en ligne

Ahmedou HAOUBA
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RESUME

Dans ce papier, nous nous intéressons au controle de flux dans les lignes de
production composées de séries de machines séparées par des stocks tampons. La
capacité de chaque machine est constante et la demande est connue sur l'horizon
complet. Les ruptures de stocks sont interdites. Le probléeme du contréle de flux
consiste a ajuster la production de chaque machine de maniére & minimiser la somme
des couts engendrés par les stocks intermédiaires et le stock du produit fini. Nous
établissons des propriétés de solutions optimales et proposons une solution
analytique.
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ABSTRACT

The paper addresses the flow control problem in production lines composed of a series
of machines separated by buffers. We assume that the production capacity of each
machine is constant and the the demand is known over the whole problem horizon.
Backlogging is not allowed. The flow control problem consists in adjusting the
production of the machines in order to minimize the total cost incurred by holding
work in process and finished products. Properties of the optimal solutions are
proposed. Based on these properties, we propose a simple analytical solution.
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1. INTRODUCTION

A transfer line consists of a series of machines separated by buffers. Raw materials
arrive from outside the system to the first machine. After being processed by the first
machine, it queues in the first buffer waiting to be processed by the second machine. It
continues in this manner through all machines and reaches the inventory of finished
products after being processed by the last machine. The rate at which a machine
produces is called production rate. We assume the the maximal production rate (or
capacity) of each machine is constant.

Due to its importance in the control of manufacturing systems, flow control has been
widely addressed for various types of production systems both in the deterministic
case and the stochastic case (see [1-10]). In most work, mathematical programming
models were proposed. Linear programming methods were used to find optimal flow
control policies in deterministic case and dynamic programming approaches were
used in the stochastic case.

This paper addresses the flow control in transfer lines. Only the deterministic case is
considered. The objective is to establish some important characteristics of the optimal
control policies. In particular, we establish the some conditions under which the
intermediate buffers are always empty, i.e. zero work-in-process. Conditions under
which a particular buffer is always empty are also established. Finally, a simple
algorithm is proposed for computing the optimal control policy.

To the best of our knowledge, the results presented in this paper are new. As a matter
of fact, analytical solutions to the single machine case were proposed in [3, 8].
However, no analytical solution has been proposed for the multi-stage case.

This paper is organized as follows. Section 2 describes the flow control model. Section
3 presents the results in the single machine case which are needed in solving the
general case. Section 4 first addresses the demand feasibility, some special cases
depending on the costs and the production capacity. It then proposes optimal control
policies in the general case by using results of the special cases. Section 5 presents a
numerical example and Section 6 is a conclusion.

2. PROBLEM SETTING

Let us consider a production line consisting of a series of n machines (M, My, ..., M)
and n buffers (By, By, ..., B) where the buffer B; is at the output of machine M;. The
buffer B, contains finished products which can be used to meet the demand.
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A discrete time model is considered in this paper. Let H be the number of elementary
periods which is commonly called problem horizon.

The following notations will be used throughout the paper :

W; : the maximal production capacity of machine M; during each period

u; ¢ : the production of M; during period t

d; : the demand during period t

sit : the buffer level of B; at the end of period t

G; : the cost incurred by keeping one unit of product in B; by the end of a period

We assume that the demand (di, ..., dyg) is known over the whole horizon. The
control variables to be determined are u;;. The vector [sq4, Sp 4, ..., Snt] describes the
state of the system by the end of period t.

We further assume that the buffers are initially empty, i.e.
sip=0, Vi (1)

The production capacity constraints can be expressed as follows :
0 <y < W, ViVt (2)

The buffer levels can be determined as follows :

Si,t = Sit-1 + Uit - Uir1tr Vi< n, Vt A 3)
and

St =Snt-1 ¥ Upjt - d, Vt 4)

Since the levels of the intermediate buffers are positive and since backlogging is not

allowed, we have :
si¢20, Vi, vt (5)

The total cost incurred by the buffer levels is given by :

n H
2. X.CiSi ¢t

i=1t=1

The flow control problem consists in choosing u; ; Vi and Vt so as to
n H
minimize ¥ ¥ ¢;s;, (6)
i=1t=1

subject to the constraints (1) - (5).



3. SINGLE MACHINE CASE

We first notice that the single machine case has been solved (see {3, 8]). The purpose of
this section is to provide a new solution to this case and to establish properties of this
solution which will be needed later in solving the general case.

In the single machine case, we can neglect the index concerning the machines and the
buffers and the problem becomes:

H
minimize Y cs, @
t=1

subject to the following constraints :

0<u <W,Vt 8
St = Sg.1 + Ug - dy, V't 9)
s¢=>0, Vt (10)
so=0 11

As can be noticed, the optimal control policy is independent of the inventory holding
cost ¢ and we denote the problem (7) as SMP(W, [d;]) in the following.

Let us consider a mapping [6] = ®(W,[d,]) : IR x IRH — IRH*1 defined as follows:
+

o1 =(oy +d¢ - W)", Vi<t<H (12)

where
O'H =0

Consider also another mapping [vt] = ¥(W,[d]) : IR x IRH — IRH defined as follows:
Yy = Min{W,0t+dt}, Vi1<t<H (13)

Theorem 1.

The demand is feasible iff 6y = 0. In case of feasible demand, ‘I’(W,[dt]) and d)(W,[dt])

provide the optimal control policy and the optimal inventory trajectory respectively.

As it can be noticed, the optimal control policy consists in producing as late as possible
and this policy leads to lowest inventory levels over the whole horizon. The proof of
this theorem is based on the following two lemma.

Lemma 1.

t<t<H s=t

(@) 6y_1 = Max{o, Max {ids -(r—-t+ 1)W}}, Vi<t<H
(14)



(b) Oy =011+ vt—dt, Vi<t<H (-15)
(©0<v <W,  Vi<t<H | 16

Proof of Lemma 1:

Claim (a) can be easily proved by induction and by using relation (13). Claim (c) is
obvious from relations (12) and (13). Claim (b) can be proven by using relation (12) and
the following relation :

Uy = Min{W,O't +dt} = Oy +dt - Max{O, Oy +dt —W}

Lemma 2 :
In case of feasible demand, let [s,] be the inventory trajectory of a feasible solution to
problem SMP(W, [d;]). Then,

S¢ > Oy, VO<t<H

Proof of Lemma 2 :
Let us prove this lemma by contradiction. Assume that there exists an integer t > 0
such that

oy >s; 20
From lemma 1.a. there exists an integer t* with t < t* < H such that :

*
Oy = ids —(*=t)W > s,
s=t+1

From constraints (8) and (9), we have :

*

T 7* 7"
spr=s5p+ Y (ug—dg)Ssp+ Y(ug—dg)Ssp+ X (W-ds)

s=t+1 s=t+1 s=t+1
Combining the last two relations, we obtain :
™ T
spr < 2dg—(T*-t)W+ > (W-dg)=0
s=t+1 s=t+1

which contradicts the feasibility of [s,].
Q.ED.

Proof of Theorem 1 :

The optimality of ‘P(W,[dt]) is a direct consequence of Lemma 2. Let us proof the

feasibility. From Lemma 1, it is obvious that the mapping provides a feasible solution

whenever s=0. Let us show that the demand is not feasible if oy > 0. In this case,
Lemma 1.a. implies that there exists a positive integer t* > 0 such that

1*

Yds-t*W>0

s=1
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As T*W is the maximal production capacity during the first t* periods and the buffer is

initially empty, the above relation implies that the demand is greater than the

maximal production capacity during the first t* periods and it cannot be satisfied.
QED.

From Lemma 1l.a., it is obvious that the mapping is non-increasing in the machine
capacity W.

Corollary 1.

The mapping d)(W,[dt]) is non-increasing in W. More precisely, for any two positive
numbers W7 and W5 with Wy 2 W5 20, it holds that:
(Wi, [d;]) < @(Wy,[d])

From lemma 1, it can be easily shown that if the demand is always lower than the
capacity, then the inventory is always empty and the machine follows the demand.

Corollary 2.
If dy < W for all t, then ®(W,[d;])=[0] and ¥(W,[d,]) = [d;].

4. GENERAL CASE

In this section, we first address the feasibility of the demand. We then address several
special cases depending on the inventory holding costs or the production capacity.
These results are then used to solve the general case.

4.1. Demand feasibility

The feasibility of the demand depends on the machine with the smallest production
capacity called bottleneck machine. We prove in the following that the demand is
feasible iff it is in the case of single machine whose capacity is the one of the bottleneck
machine. The demand feasibility condition established in the single machine case can
be used to check the demand feasibility of the general case.

Let
W = Min Wi
1€i€n
and
c= Min ¢
1<i€n

Theorem 2.
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The demand is feasible iff the single machine problem SMP(W, [d]) has at least one

feasible solution.

Proof :
Let M, be the bottleneck machine, i.e.
Wm = Min W,

1<i<n
For any feasible control [u; 4] of the general case, [up, ] is clearly a feasible control of the
single machine case SMP(W,,, [d¢]).

On the other hand, for any feasible control [v,] of SMP(W,,, [d{]) and its related
inventory trajectory [o}, the control policy [u;] with u;, = v Vi and Vt is a feasible
control because of the following relations :

0<uj=vi<Wp €W, Viand Vt

sit =0, V1<isn-1, Vt

Snt=0¢20, Vt
where [s; ;] are the inventory level trajectories related to the control [u; ].

QED.

In the following, we assume that the demand is feasible.

4.2. Case: W, =W

It corresponds to the case in which the bottleneck machine is at the end of the
production line.

Theorem 3.

If W, = W, then the optimal control policy is given by :
[ul,t] = [uzlt] =..= [un,t] =¥(W,[d;])

The intermediate buffers are always empty under the optimal control policy, i.e.
sit=0, V1<i<n-1,Vt

Proof :

The control [u;,t] is trivially a feasible control and the intermediate buffers are always
empty, i.e.

si¢=0,  VI<i<n-1Vt
Let us prove the optimality. Consider a feasible control [u;,] and its related inventory
trajectories [s; ;]. The control of machine My, i.e. [uy ] is a feasible control of the single
machine case SMP(W,,, [d;]). From Theorem 1, we have :

Spt 2 s;,t, Vit
Furthermore, since the inventory levels s;; are nonnegative, then :

* .
Si,t 2 Sit, Vi<i<n-1,Vt
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The above two relations imply the optimality of [Ui,t].
Q.ED.

43.Case:c,=¢
It is the case where the output buffer of the production line has the lowest inventory
holding cost.

Theorem 4.
If ¢ = ¢, then the optimal control policy is given by :

[ul,t] = [uz,t] = [un,t] = ‘P(w,[dt])

The intermediate buffers are always empty under the optimal control policy, i.e.
sit=0, V1<i<n-1,Vt

Proof :

The control [ui,t] is trivially a feasible control and intermediate buffers are always

empty, i.e.
si¢=0,  VI<i<n-1,Vt

Let us prove the optimality. Let M,,, be the bottleneck machine, i.e.
Win=W

Consider a feasible control [u; ] and its related inventory trajectories [s; ¢J. The control
of machine M, i.e. [uy, ] is a feasible control of the single machine case SMP(W,,
[d{])). From Theorem 1, we have :
n n
Ysitz Ysit=snr, Vi
i=m i=m 17)
Compare the total inventory holding costs of these two policies. We have :

n H . H "
I CiSipt = 2 CnSn,t
i=1t=1

~-~
|
ey

IA
M

(by relation (17))

0
=
2]
bt o
-

IA
Mz T
M> 4 M3

(since c, =0)

-~
1l
=
5
[@]
-
wn
-
-

IN
M=
™M
0
o

~~

’

._
I
ol
~
1l
—h

Q.ED.

4.4. Case of increasing inventory holding cost
In this case, we have
< Cy <..< Ch



Theorem 5.
If the inventory holding cost ¢; is increasing in i, then the optimal control policy is

given by :
[u;t]=‘}’ Min W;,[d]|, V1<i<n
‘ i<j<n
Proof :

In order to prove the feasibility and the optimality of [ui,t], let us consider a series of

machines {Mp,(1), Mm(2), ---» Mm(py} with increasing production capacity defined as

follows :
Wm@ = Min W;

and
W= Min W, Vi<is<
m()) m(j-1)<i<n ' j=]

Of course, m(J) = n and by convention m(0) = 0. It obviously holds that :

[ui] = ¥(Wmgp[dd),  VmG-D <i<m() (1s)

and

s:,t =0, vm(j—-1) <i< mf(j),Vt (19)
(a) Feasibility of [ui,t]
From the definition of [ui,t], it obviously satisfies the production capacity constraints

of all the machines. Thanks to relation (19), we only need to prove that the inventory

»
levels Sm(j),t are non-negative.

Since m(J) = n, Theorem 1 implies that :
[sman.t] = 9(Wingpy [1])

which ensures that Sp(j)¢ 2 0 for all t.

For any j < ], Theorem 1 implies that :
] .
':Z sm(i),t:|= (D( m(j)/ [ t])
1=)
The inventory levels s:n(j),t can thus be determined as follows:

. ] . J .
[Sm(j),t]:[gj Sm(j),til_[i_%]sm(j),t:| & Wi [di]) - &(Wngin[dt])

As Wn(j) £ Wm(j+1), Corollary 1 implies that :
[sm(j),t] = (D(wm(j)r[dt]) - (D(wm(j+1)/[dt]) 2
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(b) Optimality of [Ui,t]
Let us consider another feasible control [u;;] and its related inventory trajectories [s;].
From Theorem 1 we have :

251 t = Esm(l) t, V1<j<], vt
i=m(j) i=j

Since cj is increasing in i, we have :

Cm(1) Esl t 2 Cm(1) Zsm(,) ¢Vt

i= m(l) i=1
n ]
(cm2) - Cm(l)) 35t 2 (Cm(2) ~ ) 3 Smi,t vt
i= m(2) i=2
(cm() = €m@-1)5m(t 2 (Sm() ~ Cm-1) JSm,t- vt

By summing up these relations, we obtain :

m(j+1)-1 ]
Z Cm(j) 2sit2 X Cm(])sm(]) tr vt
=1 i=m(j)  j=1 (20)
Let us compare the total inventory cost in each period. Then,
n n
Ycisit 2 X csiy (sinces; >0)
i=1 i=m(1)
J m(j+D-1
=3  Xcisig
=1 i=m(j)
J m(j+1)-1
2 Y Cm(j) XSi¢ (sincec; isincreasing)
ji=1 i=m(j)

A |

2 21 m(j)s:n(j),t (from relation (20))
)

=}

=3¢ sl t (from relation (19))
i=1

QED.

The following theorem shows that the optimal control policy can be expressed in
another equivalent form. This new expression claims that in case of increasing
inventory holding cost, each machine produce as late as possible in order to meet the
demand from its immediate downstream machine and its production is independent
of the control of its upstream machines.

Theorem 5'.
If the inventory holding cost ¢; is increasing in i, then the optimal control policy is

given by :
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[unve] = # (W [a])

and
[u’{;] (Wl,[u,ﬂ t]) Vi<i<n-1

Proof :
We only consider the case of two machines, i.e. n = 2. The general case can be handled
in a similar way.

We notice that the production of machine M; is the same as that under the control
policy of Theorem 5, i.e.

[Uz t] [uz t] ¥(Wa,[dy])

Let us prove that [ul,t] [ult]We distinguish two cases : W; =2 W, or W < W,.
Consider first the case of Wy 2 W». In this case,

(3] = ®(Min{W;, W,},[d,]) = ¥(W,.[d,])

5] = (e u )

As u;_ t £ W < W, for all t, Corollary 2 implies that :
[ul t] ‘P(er[ugt]) = u;:t] =¥(Wa,[d]) = [u;,t]

Consider now the case of Wy < W,. In this case,
[u; t] =¥(Min{Wy, Wa},[d;]) = ¥(Wy,[d\])

] = ([ ]

We first remind that the single machine problem SMP(W,, [Uz,t]) has at least one
feasible solution. This can be easily proven by the following two facts : (i) [ul,t] is a

feasible control of the problem SMP(W;, [uz,t]); and (ii) [uz,t]=[uz,t]. Theorem 1
implies that :

[s1.¢] 2 [s17] 1)

Remark also that [ul t] is a feasible control of the single machine problem SMP(W;,

[d{]). Since [ul t] = lP Wl [d ]), Theorem 1 implies that :

[51 t+52t] [51t+52 t]
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Since [sé,t] = [S;t] = ®(Wy,[dt]), we have :

» %
[Sl,t] s [Sl,t

(22)
Relations (21) and (22) imply that :
[SI,t] = [Srt]
which means that :
[u] = [u33]
QE.D.

4.5. General case
This section derives optimal controls by applying results of the special cases previously
addressed.

Theorem 6.
Let {Bp(1), Bp(2), --- Bp(p)} be a series of buffers with non-decreasing inventory holding

cost defined as follows :
Cb(l) = Min Ci

1<isn )
Cb(j) - m(jl-\—/%r:iSn i vi< )= J
and
b(J) =n

The optimal control policy is given by :

[u,{’(i)'t] = ‘V(Wir[“g(m),t]), Vi<i<)-1
[“;'t] = [u{,(p,t], vb(j—1) <i < b(j)

where
W;= Min W, Vi<j<]

) b(j-1)<i<b(j)

Remark that this theorem claims that the optimal control policy depends on the order
of the inventory holding costs but it does not depend on their exact values.

Sketch of proof :

First, similar to the proof of theorem 4, it can be shown that under the optimal control
policy, all the buffers except {By(1), Bp(2), ..., Bp(p)} are always empty. This implies that
the machines {Myj),1, Mp(j)+2/ ---» My +1)} produces at the same speed.

As a result, the optimal control policy can be derived from an equivalent production
line composed of ] machines (7, My, ..., M) and | buffers (By, By, ..., B)) where the

inventory holding cost of buffer 3; is equal to Cp and the production capacity of
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machine %4 is equal to wj. The optimal control policy of this new line is given by
Theorem 5. Finally, the production of the machines {My)+1, Mb(j)+2, - Mb(j+1)} is
equal to that of M.

QED.

Similar to the proof of Theorem 6, the following equivalent form of the optimal
solution can be derived. '

Theorem 7.
Let {(Mm(1), Mm(2), ---» Mm())} be a series of machines with increasing capacity and {Byj),
Bp2), ---» Bp()l a series of buffers with non-decreasing inventory holding cost defined as

follows :
W= Min W, V1gj<
MG " pot)<icn )=
Cb(j) = Min Ci, V1< ] < ]

m(j)<i<n
and
b(0) =0 and b(J) =n
The optimal control policy is given by :
[ui4]= ¥(Wanp [de]). WBG-D <i<b()

Q.E.D.

5. ANUMERICAL EXAMPLE
Consider an example of 12 machines and 10 elementary periods, i.e. n = 12 and H = 10.
The production capacity and the inventory holding costs are given in Table 1.

1 1 2 31415 617 |8 9 10| 11 | 12
Wil 71| 8 5 110 |11 811012 19 11 {10 | 11
G |6 |107 813 617 1|5 919110 7

Table 1: Production capacity and inventory holding cost

The demand is [d{] = [2, 1, 3, 3, 7, 2, 2, 10, 12, 4]. The minimal production capacity is
equal to 5 and the demand is feasible.

We apply Theorem 7 to find the optimal solution. First, we obtain J = 3 and
W) =5 m(1) =3, pq)=3and b(1) = 5
Wm(2) =8, m(2) =6, Cp2) =5 and b(2) =8
Wina) =9, m3) =9, cy3) = 7 and b(3) = 12

The optimal control policy is then obtained and given in Table 2.
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t\i] 1 2 3|14 ]5 6|7 1819 [|10]11]12

0;0]0,0]0;,0]0;00;0]0;,0]0;0]0,0]0;,0{0;0]0;,0]0;0

0;210,210;210:;210;2 10:;210;,210;21(0:;2]10:2]10;21606;2

0;510,510;5|0;514,510;110;,140;110,110;110;,1{0;1

0,510;510;510;516;510;,310;3]10,3]0;3{0;310;310;3

0;510;510,510;,518;5]10,3/0;3]10,310;3(0;310;3]0;3

0;510;510;5{0;,516,510;710;710;70,7]0;710,710;7

0;510;,510;510;519,510;2]0;,2|0;21{0;210;,2|0;,2{0;2

0;5]0;5140;,5]0;516;5]0,8/0,812;,8|0,6|0;,6|0;6]|4;6

0;,510;,510;510;513;5]0,8{0,8[1,80;,9|0,9|0;,913;9

O | R |IN| |l WIN]|=]O

0,5]10;,5]0;510;510;,5}0;8{0;8]0;,8]0,9[0;,9[0;9(0;9

—
o

0;410;,410,4]|0;,40,4]0,410;4]0,410;4[0;,4]10;4]0;4

Table 2: The optimal control policy (s;, u; )

6. CONCLUSION

This paper addresses the optimal flow control for transfer lines. We consider the case
in which the production capacities are constant and the demand is known over the
whole horizon. Properties of the optimal control policies have been established. In
particular, some sufficient conditions under which the intermediate buffers are always
empty have been proposed. We also established some sufficient conditions under
which a particular buffer is always empty. Finally, a simple algorithm has been
proposed for computing the optimal control policy.

Future research work consists in extending the results to other manufacturing
systems. We believe that similar results can be obtained for assembly systems.
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