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Communications temps réel sur réseaux a diffusion :

les protocoles CSMA-DCR et DOD/CSMA-CD

Gérard Le Lann, Nicolas Rivierre
Résumé

Parmi les nombreux protocoles publiés qui «résolvent» le probléme des communications temps
réel sur les réseaux a diffusion, quelques uns seulement satisfont les contraintes de robustesse et
de ponctualité propres aux systemes temps réel. Parmi ces protocoles, seulement quelques uns
sont compatibles avec des normes trés répandues, telle la norme ISO/OSI 8802/3 (le «standard
Ethernet»).

Dans cet article, on décrit deux protocoles qui satisfont les trois exigences de robustesse, de
ponctualité et de conformité & une norme. Basés sur les principes bien connus de compétition et
de détection de collision (CSMA-CD), ces deux protocoles fournissent des services déterministes
de livraison de messages, en présence non seulement de trafic périodique et sporadique --
nypoth&ses retenues habituellement-- mais aussi en présence de wrafic en rafale ou apériodique.

Le protocole CSMA-DCR (Deterministic Collision Resolution) convient pour gérer des messages
temps réel sans échéance ou ayant des échéances implicites, types de messages souvent
considérés par les concepteurs de protocoles a passage de jeton ou a scrutation ou de réseaux
discrétisés synchrones. Le protocole DOD/CSMA-CD (Deadline Oriented Deterministic)
convient pour gérer des messages temps réel auxquels sont associées des €chéances strictes.

Cet article a également pour but de démontrer qu’il est possible de résoudre un probléme ouvert
en informatique répartie temps réel, a savoir I’expression de bornes supérieures certaines sur les
temps de réponse, en présence de contrdle décentralisé et de lois d'arrivées apériodiques. Les
bornes sur les d€lais de transmission et sur la durée des époques de résolution de collision sont
données pour les deux protocoles. Pour ce faire, on recourt a des résultats récents en théorie de
I’ordonnancement et a une technique classique en théorie des jeux (arguments d’adversité).

Bien que cela ne soit pas montré dans 1’article, ces deux protocoles peuvent étre généralisés et
utilisés sur des réseaux a diffusion «a haute vitesse» (dont la vitesse est de plusieurs ordres de
grandeur supérieure a celle d’Ethernet). Ils peuvent bien évidemment étre implantés efficacement
sur des réseaux «lents» ou «petits», tels ceux utilisés dans les systémes de transport (automobiles,
trains, avions, v€hicules spatiaux par exemple) ou dans les systémes critiques statiques (centrales
nucléaires ou usines chimiques par exemple).



Real-time communications over broadcast networks :

the CSMA-DCR and the DBOD/CSMA-CD protocols

Abstract

Among the numerous published protocols that «solve» the problem of achieving real-time
communications over broadcast networks, only a few are capable of meeting the robustness and
the timeliness constraints proper to real-time systems. Among these protocols, only a few are
compatible with widely used standards, such as ISO/OSI 8802/3, also known as the «Ethernet
standard».

This paper serves two purposes. First, it contains a description of two protocols which meet the
triple requirement of robustness, timeliness and compatibility with a standard. Based on well-
known contention/collision detection principles (CSMA-CD), these two protocols implement
deterministic message delivery services not only in the presence of periodic and sporadic traffic --
assumptions usually considered -- but also in the presence of bursty or aperiodic traffic.

CSMA-DCR (Deterministic Collision Resolution) is a protocol that is appropriate for handling
real-time messages that have no deadlines or that have implicit deadlines, as often considered by
designers of token passing/polling protocols or time-slotted synchronous networks. DOD/CSMA -
CD (Deadline Oriented Deterministic) is a protocol that is appropriate for handling real-time
messages tagged with strict arbitrary deadlines.

Second, this paper demonstrates that it is possible to solve an open problem in real-time
distributed computing, that is how to express guaranteed upper bounds on response times, in the
presence of decentralized control and aperiodic arrival laws (traffic). Bounds on message
transmission delays and on collision resolution latency are given for both protocols. In order to do
so, we make use of results recently established in Scheduling Theory and combine them with a
classical technique in Game Theory (adversary arguments).

Although this is not shown in the paper, both protocols can be generalized and used over «high-
speed» broadcast networks (orders of magnitude faster than Ethernet). Obviously, they can be
efficiently implemented over «slow» or «small» networks, such as those used in transportation
systems (e.g., cars, trains, aircrafts, spaceships) or in static critical systems (e.g., nuclear plants,
chemical plants).



1. INTRODUCTION

In a non real-time setting, communications over a (distributed) broadcast channel are
accomplished via what is commonly called a multiaccess protocol (the MAC sublayer in the ISO/
OSI reference model). The merits of a multiaccess protocol are usually assessed in terms of
average access delay or in terms of achievable average throughput or channel utilization ratio
under given load conditions.

In a real-ume context, a multiaccess protocol is usually assessed by its ability to transmit
messages «in time». Hence, in this case, a multiaccess protocol should more appropriately be
viewed as a (distributed) «real-time» scheduling algorithm. As will be seen, the scheduling
algorithms we are interested in belong to the «on-line» category. Furthermore, the timeliness
constraints considered correspond to what is often called «hard» or «strict» deadlines. The
decision to investigate the applicability of distributed on-line algorithms to the «hard/strict
deadline» scheduling problem was made for three reasons.

First, we had observed that most resuits published by proponents of «off-line» approaches (e.g.
pre-computed fixed priorities or pre-computed schedules) either are based on unrealistic models/
assuriptions or are unapplicable to distributed sysiems. For example, it is postulated that most
tasks 2re triggered periodically. Periodic tasks only should meet «hard» or «strict» deadlines. It is
postulated that aperiodic tasks are bound to meet «soft» deadlines, i.e. no deadline constraint is to
be provably satisfied for such tasks. This is a fallacious exposition of the real problems as they
srise in real systems. Our research work is targeted at so-called «critical» real-time distributed
(RTD) systems. Off-line approaches are based on full or quasi-full global knowledge or
clairvoyance assumptions. Consequently, the timeliness proofs given under such approaches are
conditioned on the probability that clairvoyance assumptions correctly reflect real (future)
operational conditions. The least is assumed at design time, the better, in the case of critical RTD
systems. Thus our belief that systems are more «predictable» {(assumptions, and therefore proofs,
are more «valid») when their behavior is determined by on-line algorithms.

Furthermore, it can be demonstrated that «off-line» algorithms or methods are based on premises
that are in contradiction with the definition of distribution. Hence, «off-line» algorithms or
methods are no more than empirical solutions to the «strict deadline» scheduling problcm as it
arises in distributed systems.

Second, with RTD systems, two essential properties, namely serializability (of concurrent tasks)
and dependability rest on on-line algorithms. It looked suspicious to us that the third major
property, namely timeliness, could be obtained by resorting to an off-line approach.

The third reason simply is that we found it challenging to demonstrate that, contrary to
widespread belief, it is indeed possible to establish guaranteed timeliness properties «in spite of»
using on-line schedulers and «in spite of» arbitrary arrival laws.

With critical RTD systems, proofs are mandatory. With few exceptioné so far, formal approaches
have not been satisfactory. The main reason is that reality {e.g., unpredictable load conditions or
arrival laws, arbitrary physical deadlines, physically distributed architectures, occurrence of



failures, asynchronous concurrency) is too much abstracted away, thus making the proofs barely
usable in a real setting. Our approach is based on exploiting results in Scheduling Theory and
techniques in Game Theory. More precisely, we seek to express upper bounds on message latency,
using scheduling algorithms that are known to have specific properties. For example, one
algorithm considered has been shown to be optimal in (conventional) centralized systems. Any
feasible task/deadline set is correctly scheduled (i.e., timeliness constraints are always satisfied)
by an optimal algorithm. Hence, any such algorithm is a correct and proven solution whenever
feasibility conditions are satisfied. Some of the work reported consists in deriving a distributed
version of this optimal scheduling algorithm. Feasibility conditions make it possible for a user or
a designer to check a priori whether some (possibly «worst-case») task/deadline set will always
be correctly scheduled. The presentation of the feasibility conditions for the problems and
solutions considered here will be given in a forthcoming paper. Some results on such conditions
have already been established for the periodic and the sporadic cases [GR93].

This work can be viewed as a means to «bridge the gap» existing between the real physical
computing systems and the (so far) simple machine abstractions currently accommodated with
formal approaches. This work can thus be useful in deploying formal approaches much more
widely than has been the case so far.

2. THE PROBLEMS UNDER STUDY

2.1. Two distributed scheduling problems

In the context of this paper, tasks are messages. Under its most general expression, the message
scheduling problem consists in considering messages that carry different «values» (i.e.,
importance to users), such values possibly being time varying. The corresponding scheduling
problem is that of maximizing the returned value for any given message/deadline/value scenario.
In this paper, we consider two simpler problems, where messages do not carry distinct values.

However, we investigate the hard real-time communication problem under the rather
unconventional and difficult assumption that times of message arrivals are unknown, that is under
the assumption that messages are aperiodic, which is a non-assumption.

Let us recall that a sporadic message is an aperiodic message that is characterized by a non-zero
lower bound b on its release/submission cycle (at least b time units elapse between two
consecutive arrivals). An aperiodic message is characterized by b=0 i.e., there is no upper bound
on the number of messages that may be released/submitted at any point in time.

The first problem studied, referred to as Q, addressed section 4, corresponds to the case where
messages do not carry explicit deadlines. Bounds on message latency are equivalent to the relative
deadlines that will be provably met for any possible pattern of message arrivals. One particular
way of exploiting these results is to consider that relative deadlines are values of message cycles,
taking the conventional view that message arrival laws are periodic. Of course, bounds obtained
are equally valid for sporadic and aperiodic arrival laws.

The second problem studied, referred to as €2,, addressed section S, is the more difficult problem



where messages carry strict arbitrary deadlines, that are revealed only at times of message
arrivals. ,

Of course, the major difficulty encountered in trying to solve these two distributed scheduling
problems is that of establishing the expression of upper bounds on successful message
transmission latency. In other words, such bounds would measure how reactive a distributed
channel can be, on a per message basis. We show that, contrary to conventional approaches, it is
not necessary to assume full or nearly full a priori knowledge of future arrival scenarios to express
(and predict) such upper bounds.

As will be seen, the protocols described in the sequel have been designed taking into account the
fact that scheduling over a broadcast channel is non-preemptive {preemption would be interesting
only in the case of slow networks or/and long messages but is never used in reality). This is an
important observation, as it tells us that a great many conventional scheduling algorithms/
‘methods proposed for scheduling tasks over (preemptable) processors are not applicable as such
to our problems (e.g. Highest Priority First, with priorities computed off-line using Rate
Monotonic (RM) or Deadline Monotonic (DM) methods). This is somewhat ironic given the fact
that some current mainstream approaches to «hard» real-time issues precisely are based on pre-
computed priorities/preemption combinations.

Actually, the above observation simply illustrates (i) the obvious fact that we have not seen yet a
correct expression of the RM or DM approaches in the case of distributed systems, (ii) the less
obvious fact that we will never see one (there cannot be a fixed priority-based solution to the
distributed scheduling problem, for the reason that such a solution would be based on assumptions
that would inevitably contradict the concept of distribution [LL77, L78]). To be more specific,
adaptations or extensions of the RM/DM approaches to distributed systems (e.g., [L.S86], [SM89],
[SSL89]) can only yield empirical or approximate solutions. With such approaches, it is
impossible to solve the problems we consider, because it is impossible to express guaranteed
upper bounds on (aperiodic) message latency. :

2.2. The channel model

Consider a channel with M message sources connected to it. Taking the conventional off-line
view, absolute or relative times of message arrivals is advance knowledge. This permits the
definifion of a cyclic time frame. Static synchronous time division multiplexing access (SS-
TDMA), pre-computed schedules (e.g. [K et al. 89]) and pre-planned polling (e.g., Fieldbus) are
examples of such approaches. Under our approach, times of message arrivals are arbitrary. In
other words, we can reason about arbitrarily dense message arrivals.

Let m be the physical transmission time of a message. The physical transmission time strictly
needed for k messages will be denoted Ty = m; +...+ my. As with every broadcast channel, a
channel slot time, denoted s, is defined. For example, s ranges between 25 ps and 30 us
(approximately) with the Ethernet or ISO/OSI 8802/3 standards. Our algorithms are extensions of
these standards. They are meant to handle message collisions deterministically.

We are interested in analyzing how «reactive» a channel can be, depending on the scheduling



algorithm used, when being submitted a given message scenario. In order to provably solve
problems Q; and ;, as well as to measure the reactivity induced by our algorithms, we need to
express B, the upper bound on successful transmission latency, for any aperiodic message, i.e. the
worst-case time elapsed between its arrival and end of its transmission.

With problem 2;, B determines what would be the guaranteed message cycles (periodic arrivals)
under a conventional approach. With problem ,, message deadlines are prescribed a priori.
Bound B serves also the purpose of deriving feasibility conditions for any scenario, i.e. for any
combination of message arrival timings and explicit deadlines.

As will be seen, bound B is expressed for any given source, denoted i, and for any given message
ranked ™! in source i’s message waiting queue. In the sequel, we give the general expression of
bound B(i,r). We follow the convention that a message leaves a waiting queue only after it is
completely transmitted.

Besides bound B(i,r), one might also want to know the cost (or the overhead) incurred with our
solutions, as well as the corresponding channel efficiency. Such measures are given. They are
interesting, as there is widespread belief that on-line algorithms can only be inefficient. Channel
efficiency will be denoted A. More precisely, we denote A(i,r) the channel efficiency achieved
whenever it takes B(i,r) to transmit a given message. Quite naturally, A(i,r) is defined as follows :

A(ir) =T,,./B(@{, 1) ,

n(r)
where Ty is the time strictly needed to transmit that sequence of n(r) messages which yields
B(i,r). The overhead incurred, denoted I'(i,r), is 1 - A(1,r).

Another performance measure of interest is the highest incoming message throughput that can be
sustained by a source, with no deadline being missed. More precisely, we define ®(i,r) as the
‘upper bound on the timely influx density, i.e. the density of message arrivals such that deadlines
are satisfied for all messages up to rank r in source i’s waiting queue.

3. OFF-LINE VERSUS ON-LINE APPROACHES

3.1. Clairvoyance assumptions considered harmful

The various approaches to solving £2; and Q, which can be envisioned differ essentially by the
amount of advance knowledge, called clairvoyance, which is assumed to be made available at
design time. Clairvoyance relates to fault and load patterns. We ignore here the issues raised with
the existence of faults. (It is clear, however, that an on-line algorithm is more fault-tolerant than
any algorithm based on off-line computations).

Clairvoyance consists in assuming advance knowledge of future scenarios. Most often, a scenario
comprises the following variables :
- Kg: the actual length of every message that can be submitted,
Kj: the exact number of messages generated by every source (or an upper bound),
K, : the actual uimes of message submissions or arrivals.



SS-TDMA, pre-computed schedules, polling, are examples of protocols based on clairvoyant load
assumptions. It is important to understand that, under a «clairvoyant» approach, knowledge Ky,
K, and K, is needed to design a solution. Such a solution consists in pre-allocating channel slots
or turns to message sources. From Ky, K and K5, one can compute B. Hence, the feasibility of a
scenario can be checked a priori. Clearly, the value computed for B is guaranteed only for the
scenario considered. Would operational conditions violate the clairvoyance assumptions, there is
no guarantee anymore. Furthermore, a new design need be undertaken would Kg or K or K be
modified. :

Clairvoyance based designs can yield proofs only when considering periodic traffic (handled
efficiently in many cases) and sporadic traffic (handled rather inefficiently in most cases). Such
designs are implicitly based on the belief that external event arrival laws (i.e., those observed
from the outside of a system) that may have particular properties (e.g., periodicity) are kept
unchanged by the computation steps that transform those external events into internal events,
namely message submissions over some (internal) shared communication channel. Furthermore,
under an SS-TDMA or a pre-computed schedule approach, it is often assumed that arrival times
(frora the outside, over the channel) are such that mutual exclusion among messages is naturally
obtained over the channel. This very strong hypothesis is what we call the perfect isochrony
assuruption. For the vast majority of real world computing systems, such an assumption simply is
unrcalistic. This very peculiar view can only apply to systems where internal resource contention
or internal queueing phenomena (other than at the channel level) cannot develop. Such an
assumption is valid only with sequeniial automata, not with distributed systems.

‘With distributed systems, resource contention and internal queueing phenomena are unavoidable.
It is impossible to predict every possible future system history, even less at which time would
some particular future global state be instantiated. This is one of the reasons why approaches
based on off-line computations make no sense in the case of distributed systems. In particular,
even if cxternal laws are assumed to have particular properties (e.g., periodicity), this is of no help
to solve the «hard deadline» multiaccess channel probiem. Nevertheless, it can be easily observed
that the term «distributed system» is commonly used by a number of authors, even when
inappropriate. For example, Mars [K et al.89] is not a distributed system. Mars is a wait-state free
synchronous shared bus system based on dedicated processors. The design of Mars and other
similar systems is based on the assumption that there is a perfect match between times of sensor
reads and times of message arrivals over the internal channel (the perfect isochrony assumption).
It 1s easy to demonstrate that the design of such systems is strictly equivalent to the design of a
conventional (centralized) system. The issue is not just a matter of definitions. What can be
demonstrated has profound practical consequences. The design approach adopted for Mars or
similar systems simply cannot be used for real distributed systems.

Being concerned with real world distributed systems, we have to solve the real problem, that is
how to prove timing properties under aperiodic arrivals.
3.2. An approach to reason about the unknown

Our approach is the exact counterpart of clairvoyant approaches. We believe that a design should
be conducted, and general properties should be established, under minimally clairvoyant



assumptions. It is possible to prove the existence of timeliness properties by resorting to the
following approach, which stresses the importance of algorithmic issues. First, an (on-line)
algorithm A has to be selected or designed. Second, an adversary is defined, whose behavior is as
unrestricted as desired. The only constraint that cannot be relaxed is that the adversary has to obey
algorithm A as well. As will be seen, we explore two algorithms. One is called CSMA-DCR,
which stands for Deterministic Collision Resolution CSMA-CD. The other one is called DOD/
CSMA-CD, which stands for Deadline Oriented Deterministic CSMA-CD.

Techniques based on adversary arguments are widely used in Game Theory. Combining such
techniques with awareness of current state-of-the-art in the areas of Scheduling or/and Algorithms
(for the selection of A) is the key to proving the existence of finite time bounds, even when
considering unrestricted adversaries.

In this paper, we demonstrate the power of this approach by establishing the expressions of
bounds on message latency for any source of messages, analyzed as a player against an adversary
referred to as Zg, which represents the environment and the other message sources, and which is
free to generate an infinite amount of messages at any point in time (Z is fully unrestricted)!. Of
course, those bounds established for Zg are also valid for partially restricted adversaries, which
we refer to as Zy, k > 0, k being representative of the degree of restriction imposed to the
adversary. Nevertheless, better bounds can be established when considering Zy# Zy. This is part
of our on-going work. In this paper, we concentrate solely on adversary Z,, as it is widely
believed that bounded response times cannot be guaranteed when considering infinite influx of
external events (messages in our case). This is a mistaken belief.

Bounds are established as general functions of variables, denoted Balg(i,r), where alg is the
multiaccess/scheduling algorithm used, i is the name of the message source considered and r is the
rank (in source i’s waiting queue) of the message being considered. These bounds are established
~ without assuming knowledge Kg, K1, Ko.

The variables ncédcd to express bounds Balg(i,r) are as follows (see annexes 2 and 3, where
algorithms and associated variables are presented) : ' '

* for CSMA-DCR and DOD/CSMA-CD :
- W, the upper bound on message length,
- Q, the static binary tree size, determined after Q-1, the greatest index in use,
- (1), 4(2),...,5(v(i)), the v(i) static indices allocated to source i,

% for DOD/CSMA-CD, in addition to the above :
- ¢, the duration of a deadline equivalence class,
- F, the time tree size, in number of leaves (or indices) used,
- deadlines (relative to unknown times of arrival) of messages generated by source i.

Those functions giving bounds By),(i,r) being expressed, they can be valued for every imaginable

| 1. Interestingly enough, these techniques are also receiving increased attention from some of our colleagues
working on formal methods [R93, p. 31].



scenario. Similarly, in Mathematics, general formula are established (theorems) and then applied
to particular cases. It is important to understand that assumptions w.r.t. load and arrival laws are
made a_posteriori, only for computing the actual resulting values of By,o(ir), as well as for
checking the feasibility of any given scenario. Note also' that considering Zg is equivalent to
considering all possible (non-countable) arrival timing patterns. As a consequence, we can reason
about bounds B,,(i,r) considering global loads, not being forced to enumerate individual loads on
a source-by-source basis, as is often the case with clairvoyant approaches. In other words, the
power of our proofs is infinitely superior to that of proofs established under clairvoyant
assumptions.

One additional variable is needed to express the highest overhead incurred (or the lowest
efficiency achieved) by our algorithms, that is L, the smallest possible message size.

3.3. Why CSMA-CD based algorithms

The class of on-line algorithms we have chosen to use to solve problems £2; and €2, is the well-
known class of CSMA-CD protocols. We will not bother presenting the well known advantages of
such protocols regarding simplicity, robustness, flexibility/adaptability. It is also a well known
fact that CSMA-CD currently is the dominating technology as far as local area networking is
concemned.

In addition to these advantages, another major reason for choosing CSMA-CD based algorithms
is that CSMA-CD is the only existing class of standard protocols that do not use fixed priorities.
Contrary to widespread belief, those multiaccess protocols that rest on fixed priorities cannot be
considered to solve problem €y or €, as fixed priorities come in the way of any on-line
scheduling algorithm proven to be appropriate (or, possibly, optimal).

With CSMA-CD protocols, collisions must be resolved. However, under particular circumstances,
that match many realistic scenarios, collisions cannot occur in fact. Recall that pg is the smallest
possible message size. Consider a conventional solution (SSTDMA, polling) under some feasible
load and under the perfect isochrony assumptions. If By =>s, then no collisions can occur.
Consequently, under such assumptions, that are commonplace with conventional off-line
solutions, a CSMA-CD protocol behaves exactly like a conventional solution. The rationale for
choosing an ad-hoc or customized solution that is no more satisfactory than a standard one should
thus be carefully examined.

For all other cases, that is i < s, or jg = s but no perfect isochrony assumed, collisions can occur.
With CSMA-CD, having pg < s yields poor efficiency in general (padding comes into play).
Nevertheless, CSMA-CD still is applicable. Messages are automatically (and artificially)
expanded, if needed, so that i = s holds true.

The essential algorithmic ingredient used in CSMA-DCR and in DOD/CSMA-CD is binary tree
search. Before embarking on describing how bounds can be derived, it is important to understand
how collisions are deterministically resolved when using binary tree search. We refer the reader to
annex 2 for this purpose.



Bounds By,(i,r) achieved by our algorithms can be compared with those obtained under an off-
line approach, provided them too are proven to hold for aperiodic traffic. Such a detailed
comparison is left for a future paper. The former bounds should normally be worse than the latter,
as our solutions are designed under limited advance knowledge. Limitation stems from :
- our explicit rejection of clairvoyance,
- the distributed nature of problems Q; and Q, ; in a distributed system, a local instantiation
of an on-line scheduler is provided with local knowledge only (a subset of all messages
waiting to be scheduled).

It turns out that it is not always the case that algorithms based on off-line computations perform
better than on-line algorithms.

4. SOLUTION, BOUNDS AND PERFORMANCE FOR PROBLEM €,

The major objective here is to give the expression of Byjg(ir), considering messages that have no
strict deadline explicitly declared.

Knowledge of these bounds makes it possible for a designer/user to derive the (relative) message
deadlines that are guaranteed. Taking the conventional off-line/rate-monotonic view that relative
deadlines correspond to message periods, these bounds are the lower bounds of the periods that
will be satisfied for every scenario being provably feasible. However, as observed before, and
contrary to those results established under the restrictive periodic/off-line approach, our results
apply to every possible case of arrival laws.

The algorithm selected to solve €; is CSMA-DCR. A description is given in annex 2. Again, the
major objective of this work is not to describe a deterministic «Ethernet» protocol that has been
published before (see references in annex 2). Rather, we seek to demonstrate the power of
adversary arguments in solving open problems in the area of «hard real-time» or «reactive»
computing. Consequently, the description given annex 2 is essentially meant to provide the reader
~ with a flavor of what CSMA-DCR is. The focus really is on the fact that binary search is the basic
algorithmic ingredient. Therefore, it is those essential properties germane to binary trees that
really matter. All properties P used throughout this paper can be found in annex 1.

4.1. Strategy of adversary Z,

Knowing source i’s indices t;(1), t;(2),...,tj(v(1)), and knowing that r consecutive indices need be
used by source i to process a message ranked r in source i’s waiting queue, adversary Z, will
generate a collision before or at the same time when source i first attempts transmitting, this
depending on the values of source i’s indices. More specifically, the adversary will seek to
generate the longest sequence of r consecutive intervals, transmitting its own messages, each
interval being delimited by source i’s indices. How can we find the expression of this longest
sequence, denoted a;(r) ?

Consider a waiting queue containing x messages and let m, be the message ranked first. Given the
convention adopted (see section 2.2) that a message being transmitted is ranked first in a waitin
queue until fully transmitted, it is easy to see that the largest sojourn time for a message ranked x
upon arrival corresponds to an earliest arrival time equal to end of transmission of m.
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Consequently, we have to consider intervals half-open on the left in order to identify a;(r).

4.2. Bounds B 4..(1,r)

Consider every interval Jt;(d), t;(d+1)], d € [1, v(i)] with t;(d+1) computed modulo q. We can
apply property P4 to compute the time needed to search such intervals. Indeed, with adversary Zy,
every such interval is full, that is Z, generates as many messages as there are indices available on
every interval. We need to consider two cases, depending on whether an interval belongs to one
tree or «Spans» two consecutive trees. ’

% Ford e [1, v(i)-1], the exact search time is ¢{tj(d), tj(d+1)} (see annex 1). Exactly n;(d+1) =
t;(d+1) - tj(d) messages are sent while searching interval Jt;(d), tj(d+1)]. Hence, A’(d, d+1),
the exact time elapsed between end of transmission of message with mdex t(d) and end of
transmission of message with index t(d+1) is :

A(d,d+1) = Tn_(d+1)+s-(p{ti(d),ti(d+1)} ,

where notation Ty is as defined section 2.2. As exact message lengths are unknown, bound p
is used, which yxelds the following bound :

A(d,d+1) = u- n;(d+1) +s-(p{ti(d),ti(d+1)}

% For d = v(i), not all indices are used, as interval jf(v(i)), 1;(1)] «bridges» two consecutive
trees. Exactly nj(1) = Q - (v(i)) + (1) messages are sent over interval Jt;(v(i)), t;(1)] and the
exact search time is @{(v(i)), 4,(1)+q}. Addition is modulo q. Hence :

AV, 1) = eng (D) +5- 9y (vD), 4 (1)}

Let A; be the sequence A(1,2), A(2.3),..., A(v(i),]1) repeated ad infinitum. Sequence aj(r) is the
longest sequence of r consecutive elements that is found over A;. Exactly v(i) sequences need be
computed to identify a;(r). Hence : :

d+r-1
By, (b0 = max { 3 Mok+D)}
de{t,v(@)] ~ «k=d

Observe that the actual sequence, as generated by Zj, may contain messages that may be shorter
than p, and therefore could be different from sequence a;(r). For example, this would happen if
small messages only were generated in the first interval of a;(r), and large messages only in some
other interval, making that interval the first one in fact in the «real» a;(r). Nevertheless, the
duration of any sequence of r consecutive elements instantiated by Zg is necessarily bounded by
the duration of a;(r).
V(i)
We will denote n(r) = Z n, (j) the exact number of messages transmitted over sequence a;(r).
j=1
Ranking r for a message is determined by the local arrival law and by the scheduling policy used
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by its source. Given that messages carry no explicit deadline under problem Q, first-in-first-out
seems appropriate. Therefore, a message is ranked ™ whenever it enters a waiting queue that
contains r-1 messages upon arrival.

4.3. Overhead, channel efficiency and timely influx density

Adversary Zg yields bounds By.(i,r) as shown above by maintaining the channel constantly busy

with sending longest messages and generating repeated global collisions, hence generating
repeated tree searches with Q active indices for every tree searched. In doing so, Zy maximizes

the bounds but also maximizes the efficiency of the tree search algorithm as well as the channel
efficiency (see property P,). Let us examine the overhead incurred and the MAC-layer channel

efficiency ratio achieved when using CSMA-DCR against Z over a;(r). These variables, denoted
I"(i,r) and A(i,r), have been introduced section 2.2.

The upper bound of A(i,r) is A’(i,r) = B.n(r)/Bg.(i,r). The lower bound of A(i,r), denoted A”(i,r),
is obtained by replacing p with pg. This yields A”(i,r) = Hg.n(r)/Bg{i,r). Note however that
bounds B.,(i,r) are also reduced accordingly. That is, W is replaced with g in the expressions of
the A’s. :
Consequently : A”(@Er) £ AGr) £ A'Gn),

and 1-A(ir) < I'Gr) £ 1-AG,1).

As illustrated by the numerical example given below, bounds By (i,r) are guaranteed for channels
that can be «highly» loaded, corresponding to A’(i,r). Hence, with CSMA-DCR, the adversary is
facing the dilemma that it cannot simultaneously maximize bounds B and jeopardize A. Shooting
for a poor A will minimize bounds B accordingly.

The upper bound on source i’s timely influx density is ®g.(i,r) = 1/By(i.1).

4.4. A numerical exampie

Consider a channel with a number of sources for which 56 indices are made available. Consider
source i, that has been allocated the following 3 indices : t;(1) = 18, (2) = 41, t;(3) = 50. The
upper bound on message duration is ). One finds :

AM1,2)=23u+22s, A23)=9u+9s, AB,1)=24p+26s.
Let us have s = 40 ps. :

4.4.1. Bounds for source i with highest channel efficiency
Let us choose pt = 300 ps.

By (,1) = A(3,1) = 8.24 ms, Bycr(1,2) = A3, 1)+A(1,2) = 16.02 ms,
Bgcr(i,3) = AG,D+A(1,2)+A(2,3) = 19.08 ms, Bycr(i:4) = By (1,3) + A(3,1) =27.32 ms, etc.
Channel efficiency, overhead and timely influx density

Let us consider r = 3. One finds n(3) = 56. Therefore : A’(1,3) =0.88 (and 17(,3)=0.12).
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Let us apply these figures to Ethernet technology. We have established that, for the conditions
considered, CSMA-DCR can sustain a (stable) MAC-layer throughput as high as 8.8 Mbits/s (i.e.
2,935 messages/second) in which case a bound of 19.08 ms (B(i,3)) is guaranteed for any
message that is ranked 31 in source i’s waiting queuc this being obtained for a source i’s timely
influx density as high as ®4..(1,3) = 3/19.08 103 = 157 messages/second.

Let us observe in passing that an additional merit of CSMA-DCR is that it allows the operating of
Ethernet technology under load conditions that usually yield complete collapse.

4.4.2. Bounds for source i with lowest channel efficiency

Let us choose yg = 60 us. One finds :
Bger1,1) =248 ms, By,(i,2) =4.74 ms, By,(i,3) =5.64 ms, By,(i,4) =8.12 ms, etc.

nnel efficien verh nd dmely infl it

For r = 3, one finds A”(3,3) = 0.596 (and I(,3) = 0.404) which corresponds to 9,929
messages/second. Bound 5.64 ms is guaranteed for a source i’s timely influx density as high as
D4.(1,3) = 3/5.64 103 = 531 messages/second.

5. SOLUTIONS, BOUNDS AND PERFORMANCE FOR PROBLEM Q,

In addition to the objectives we set ourselves when considering problem £2;, we now seek to
demonstrate that adversary arguments are useful also to reason about aperiodic (unknown)
message arrivals when messages carry strict relative deadlines that are revealed upon message
arrivals only.

There is widespread belief in the off-line camp that such a problem cannot be solved rigorously,
ie., that it is impossible to prove the existence of bounds Byj,(i,r) . We show that this belief is
mistaken. :

Messages being tagged with deadlines, we now require that messages in waiting queues be
ordered (locally) according to Earliest Deadline First (EDF) policy [LL73].

CSMA-DCR, which has the virtue of being deterministic, can obviously solve problem Q,. The
bounds By (i,r) established section 4, and guaranteed in the presence of adversary Zg, remain
unchanged when considering problem €2, assuming that FIFO is the local scheduling policy
used. This i1s because CSMA-DCR does not exploit the deadlines associated with messages. Of
. course, one could envision combining CSMA-DCR with local EDF policy. Corresponding bounds

B4 (1,r) would differ from those given section 4, for the reason that «being ranked rﬁ‘» for a
message would have a different meaning (see further).

We will not explore this combination, for the reason that it is dominated by another algorithmic
_combination, namely local EDF and DOD/CSMA-CD (see annex 3), which explicitly exploits the
deadline information provided on-line in a distributed manner. The major reason why DOD/
CSMA-CD is worth considering is rooted into an optimality result that extends the applicability
of (on-line) EDF scheduling to the non-preemptive case. Optimality of non-preemptive EDF in
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the absence of overload was first demonstrated for periodic and sporadic tasks in [JSM91]. This
result has been recently extended to the case of aperiodic tasks [MR94].

Would DOD/CSMA-CD be a centralized algorithm, then it would follow that DOD/CSMA-CD is
optimal, because centralized DOD/CSMA-CD is strictly equivalent to non-preemptive EDF. The
binary tree search mechanism used in DOD/CSMA-CD serves the purpose of rendering DOD/
CSMA-CD executable in a fully distributed manner. We can only speculate that this particular
incarnation of distributed non-preemptive EDF is optimal (no proof developed yet).

To summarize, combining local EDF policy with DOD/CSMA-CD allows for implementing a
global EDF policy, which cannot be obtained when combining local EDF policy with CSMA-
DCR.

5.1. Strategy of adversary Z,

Consider some source 1, a message m ranked first in waiting queue upon arrival at time T, with a
relative deadline D. Transmission is attempted if the channel is idle. If a collision occurs, or if the
channel is busy upon arrival at T, current m’s time index p, is computed (see annex 3). If p, <F,
then m participates in the current time tree search ; otherwise, source i waits until a reference
event occurs to compute a new time index for m.

Consider now that message m is not ranked first in i’s waiting queue upon arrival. Rather, over the
interval delimited by T and the time of successful transmission of m, source i will service r-1
messages at least ahead of m. (How to interpret variable r is described section 5.2).

As EDF is the scheduling algorithm used locally, this means that r-1 messages at least are
generated by source i over this interval, that have absolute deadlines smaller than or comparable
to E = 1 + D. Two deadlines are said to be comparable whenever they yield the same time index.
The bound on this interval duration is B 3o4(1,1).

In order 1o prohibit «early» transmission of m right after 1, the adversary keeps the channel busy,
by sending messages back-to-back or by generating collisions resulting into epochs such that m is
precluded from participating. Let n be the smallest (earliest) reference time such that m will
certainly be associated a time index that will be current (i.e., m will be scheduled).

+ T *E="C+D
[ il = 1. * ¢ & & & T = | [ 1
i 1 T ] L < 11 v T
———— e
il —
o+l &
T ol E=t+D
* e o ¢ o o T
i ) I o 1 I =y 11 O |
| N I 1 ~ | 1 A 1 L > |
kT ¢ = duration of a deadline equivalence class

Figure 1 : role of laxity factor o
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The rule used to compute time indices is given in annex 3. Given that such a computation involves
a laxity variable v replaced with [ v, the integer closest to v, and considering that Tv+12])=v,it
is obvious that &t verifies ® = E~ (o + 1/2)c (see figure 1). Indeed, for any infinitesimally
small §, at time t = E - (o + 1/2)c + 9, it follows that :

Pm = Py, m) = max {0, r (o4 1/02)c—8 _I—a}+p* +1=max (0,0} +p*+1=p*+1,

where p* is the value of the time index searched last.

This guarantees that m will be part of the first time tree search initiated after time E - (o+1/2)c. It
is easy to verify that ® cannot be smaller than E - (a+1/2)c. The proof is by contradiction. Indeed,
for any smaller value of ®, one would have p,, > p*+1. Consequently, the adversary could
generate messages having deadlines smaller than E, resulting into time indices ranging between
p*+1 and pp,-1, thus prohibiting m from being scheduled, thus contradicting the definition of .

Knowing the value of &, the adversary will delay as much as possible the start of the static tree
search that will service message m after time ®. The adversary achieves this by triggering a time
tree search right before &, noted tsy, thus excluding m from that search. Obviously, the time index
used for that search is p* (see figure 2). Furthermore, the clairvoyant adversary determines the
arrival times of Q—~v (i) messages from knowledge of their relative deadlines, so that the
Q- v (i) time indices computed from the resulting absolute deadlines are equal to p*+1.

As we seek to establish an upper bound for m’s service time, we have to assume that Zj is able to
involve source i as well in delaying start of service for message m. This translates into having v(i)
messages processed by source i, with time indices also equal to p*+1. Consequently, static tree
search ss; that follows ts; corresponds to a full static tree.

Under this scenario, termination time of ss; is the latest reference time such that pp,, as computed
by m’s source, will be the time index in use with ts,. This reference time will be referred to as m’s
latest eligibility time, denoted t,, (see figure 2).

5.2. Bounds B 4,4(1,r)

Let us first observe that being ranked ™ at source i for message m means that it could not be
transmitted before its latest eligibility time t;;, and that between t,, and the time when it will be
effectively transmitted, source i will service r-1 other messages ahead of m.

Under problem 5, messages carry explicit deadlines and EDF is the local policy used by every
source. Hence, the above is equivalent to saying that over interval [, T + Byo4(r-1)], exactly
r—1+v (i) messages are serviced by source i ahead of m. By definition, these messages have
absolute deadlines smaller than or comparable to E = 1+ D. Among these, exactly v(i) messages
have deadlines smaller than or comparable to E - c¢. These messages are processed during static
tree search ss; (see below).

To express Byoq(1,r) is equivalent to identifying a sequence of r consecutive intervals similar to
sequence a;(r) as considered for expressing By(i,r). However, trees of height log q + log F should
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be considered (rather than trees of height log q). We will not bother to do so. As shown below, a
good upper bound on the search times involved can be easily found. This bound yields a simpler
expression of Bdod(i,r)z. .

a) Bounding the time tree searches

Let g’ = [1/v(i) ] be the number of time tree leaves to be searched to service m after time ty,.
(Notation [x] stands for ceiling value of x). Given Zy’s strategy, the exact number of time tree
searches undertaken after time wis g = g’+1.

possible
1nitial T t
' collision *
% — 1t . —— L i ——
tsy $81 tsy ) tsg $Sg
(p*+1) ‘ (p*+2) (p*+g)

ts = (partial) time tree search ss = (complete) static tree search
Figure 2 : worst-case scenario after time 7t

Given the rule used to compute time indices (see annex 3), which yields an increment of 1 exactly
for those messages declared schedulable but not serviced yet, it follows that the g time tree leaves
searched are adjacent. Hence the total time spent in searching these g consecutive leaves is
¢{X1,Y3}, as given by property P4, with X; = p* and Y, = p*+ g, for some p*.

Taking advantage of property P,, the adversary spreads these g consecutive leaves over the

greatest possible number of time trees, all trees being full, to the exception of the first and last
ones. The adversary allocates leaves over these two trees according to some worst-case strategy.
The number of leaves allocated to each of these two trees is any value comprised between 1 and

F—-1.Letuswritey = g/Fandh=g - l_'y_l F. Depending on the value of h, the adversary has a
choice between the following two strategies :

(cq) construct Ly! full trees and allocate the remaining h leaves evenly across the first and last
trees, with h < F,

(cp) construct I_YJ - 1 full trees and allocate the remaining F+h leaves evenly across the first and
last trees, withO <h <FE

As JXy, F - 1] (resp. {0, Y5]) is the full interval corresponding to the first (resp., the last) tree, it
seems that we should compute a bound for the combined search times over both intervals, for
every possible value of the pair (X;,Y;). We will not bother to do so. Indeed, for case (c;), it can
be observed that the overall search time is bounded by the time needed to search [y1 full time
trees. The same observation applies for case (cp).

Let'¥'; be the bound on the overall time tree search needed to process g consecutive time indices.

2. We leave it as an exercise for the reader to devise the expression of a better bound
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We have shown that this bound is as follows (function 6 is defined annex 1, property Py) :

¥, =[716f = 7] (F-1)

b) Bounding the static tre¢ searches

With adversary Z, all static trees are full, possibly to the exception of the last one. Let x be the
index used by source i to service m. We have x=t;(v(i)-®), with ® = g’v(i) - r.

Active indices in the last tree range over complete interval [0,x]. Active indices in other trees

range over complete interval [0,Q-1]. Hence, n(r), the corresponding exact number of messages
transmitted (or active indices) after time 7 is as follows (see property Py) :

nn=(1+g -HQ+x+1=gQ+x+1
Total static tree search time ‘5 is as follows (see property Py) :

¥, = g (0*(Q-1) +€) +¢" (x)
c) Overall bound

Let us write ¥(i,r) =¥ + ¥,. Then, the result :

Bgog (b 1) = M=T+s-¥(i,n) +T o

Byog(Lr) = D—(a+1/2)c+s-¥(i,r) +Tn(r)

The expression of B4(i.r) yields an obvious condition on o for m’s schedulability. Integer o is
. the smallest integer verifying the following condition :

a2 [s¥(,r)+T 1/c=1/2 .

n(r)
Knowledge of feasibility conditions allows for the checking of any given set of messages/
deadlines. Whenever these conditions are satisfied, it is proven that :

(i) the channel cannot enter overload situations,
(ii) bounds Bo4(i,r) are guaranteed,

whatever the message arrival imes will be. This is how DOD/CSMA-CD can be put to work in
practice. This reflects our original motivation, i.e. to take advantage of the demonstrated
optimality of centralized non-prccmpuve EDF in the absence of overload. As indicated before, we
consider that DOD/CSMA-CD is an interesting decentralized version of centralized non-
preemptive EDE,
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5.3. Overhead, channel efficiency and timely influx density

Adversary Z does not necessarily maximize the channel efficiency when maximizing the bounds.
Indeed, between time T and time &, Z) is free to keep the channel busy using any strategy ranging
between the following two extremes (see property Pp) :

- Q-leaf collisions (static trees) and F-leaf collisions (times trees) only, which yields the highest
channel efficiency, .
- 2-leaf collisions only, which yields the lowest channel efficiency.

Source i's strategy over interval [t,n[ also influences channel efficiency. Bounds on channel
efficiency over interval [t,n[ can be easily computed. Let us focus on those bounds corresponding
to interval [x, T+By,4(i,0], which is consistent with the analysis given for CSMA-DCR.

The MAC-layer channel efficiency ratio A(i,r) is thus defined as the channel efficiency achieved
over interval [x, T+By,q(i,0)]. It follows that :

A(iyr) = 'rn(r)/[t + Bdod(ivr) - n] = Tn(r)/[s ‘P(l’r) + Tﬂ(f)]'

Variable n(r) is as defined section 5.2. Using the notations introduced section 4.3, lower bound
A”(i,r) is obtained considering messages of length g, and upper bound A’(i,r) is obtained
considering messages of length L.

Of course, I'Gi,r) = 1 - A(L,1). A detailed analysis of ®4,4(i,r) falls out of the scope of this paper
(such an analysis is related to feasibility conditions, to be addressed in a forthcoming paper).
Here, we will simply assume that after time %, messages amrive according to the worst-case
scenario as generated by Z, which yields Byo4(i,r). Consequently, the upper bound on source i’s
timely influx density is ®@4,4(i,r) = [r + V())/[T + Byoq(i,r) - t}. Note however that this expression
is correct provided that v(i) messages arrive «in time» so as to be processed during static tree
search ssj.

5.4. A numerical example

Parameter values used are those given for the CSMA-DCR example (section 4.4). In addition, we
select the following values : F = 8, ¢ = 17 ms, and D = 60 ms for all messages. Consider further
that feasibility conditions computed for other sources have led to choose o = 3. The possibility of
computing Bgoq(i,r) results in determining the highest value of r for which the constraint

D =60 ms is always satisfied by source i.

- 5.4.1. Bounds for source i with highest channel efficiency
Recall that we have L =300 ps. Variabled =D - (o + 1/2)c = 0.5 ms.

Bgod(1,1) =0.5 + 0.04 [64 + ¢*(18)] + 75 x 0.3 = 26.44 ms,
Bgod(1,2) = 0.5 + 0.04 [64 + ¢*(41)] + 98 x 0.3 = 34.22 m:s,

Bgod(i,3) = 0.5 + 0.04 [64 + ¢*(50)] + 107 x 0.3 = 37.28 ms,
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Bgod(i:4) = 0.5 + 0.04 [121 + ¢*(18)] + 131 x 0.3 = 45.52 ms,
Bgod(1,5) = 0.5 + 0.04 [121 + ¢*(41)] + 154 x 0.3 = 53.3 ms,

Bgod(i,6) = 0.5 + 0.04 [121 + ¢*(50)] + 163 x 0.3 = 56.36 ms,
Bgod(i,7) = 0.5 + 0.04 [200 + ¢*(18)] + 187 x 0.3 = 65.48 ms.

The highest acceptable value for r is 6. Relative deadline D = 60 ms is always satisfied for every

possible arrival scenario that does not lead source i to process more than 9 messages between time

1: + 0.5 ms and time 7 + 56.36 ms. This yields maximum source i’s timely influx density
do d (1,6) = 9/55 86 1073 = 161 messages/second.

Channel efficiency

Let us choose r = 3 again. Then, n(3) = 107. This yields :
A’(1,3)=107x0.3/{107x 0.3 +0.04 x 117] = 0.872.

Bound B,4(i,3) given above (37.28 ms) is obtained along with a MAC-layer channel efficiency

ratio as high as 0.872 (i.e. for a global arrival rate equal to 107/36.78 103 = 2,909 messages/
second).

5.4.2. Bounds for source i with lowest channgl efficiency

Bounds are established as those computed above, by replacing p = 300 ps with pg = 60 us in the
expression of Ty . Therefore :

Bgod(i,1) = 8.44 m:s, B‘dod(i,2) =10.7ms, Bgyg(@,3)=11.6ms,

Bdod(i'_4) =14.08 ms, Bgy4(,5) = 1:)6.34 ms, etc.,

Bgod(1,28) = 59.48 ms, By(i,29) = 61.74 mmus.

The highest acceptable value for r is 28. Relative deadline D = 60 ms is always satisfied for every
possible arrival scenario that does not lead source i to process more than 31 messagcs between

time T + 0.5 ms and time T + 59.48 ms This yields This yields maximum source i’s timely influx
density CD dod (1 28) =31/58.98 103 =525 messages/second (from source 1).

Channel efficiency

Again, consider r = 3 and n(3) = 107. This yields :
A”(@1,3) =107 x 0.06 / [107 x 0.06 + 0.04 x 117] = 0.578.

Bound Bj,4(1,3) given above (11.6 ms) is obtained along with a MAC- layer channel efficiency
ratio not lower than 0.578 (i.e. for a global arnval rate equal to 107/11.1 1073 = 9,639 messages/
second.
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Applying these results to Ethemet technology, we have demonstrated that, for the conditions
considered, with DOD/CSMA-CD, the bounds and the timely influx densities given are
guaranteed for a channel sustaining a (stable) MAC-layer throughput as high as 8.72 Mbits/s.

Again, for regular Ethernets, such speeds usually yield total collapse.
6. CONCLUSION

We have explored two scheduling problems that arise in the context of «hard real-time»
communications taking place over a distributed broadcast channel. We have described two on-line
algorithms that are solutions to these problems.

CSMA-DCR (CSMA-CD with Deterministic Collision Resolution) is an algorithm that is
appropriate for handling real-time messages that have implicit deadlines, as often considered by
designers of token passing/polling protocols or time-slotted synchronous networks.

DOD/CSMA-CD (Deadline Oriented Deterministic CSMA-CD) is an algorithm that is
appropriate for handling real-time messages tagged with arbitrary and strict deadlines.

Bounds on message transmission. delays and on collision resolution latency are given for both
algorithms. :

Such bounds are interesting for the reason that they have been established without making any
assumption w.r.t. message arrival laws and timings. They have been established using adversary
arguments, which seems to be a fruitful technique when trying to solve a «hard real-time»
problem for aperiodic arrivals and arbitrary deadlines. We believe that designs similar to ours,
conducted under minimal advance knowledge, are the only correct designs in the case of critical
hard real-time systems. Proven bounds are always valid, contrary to those established under
conventional off-line approaches, that rest on too many clairvoyance assumptions, that can be
casily violated at run-time.

Too many flawed arguments have been and are being used by backers of off-line approaches. We
view this paper as a contribution to a much needed clarification of the off-line versus on-line
debate.

Regarding the applicability of our results, it is important to understand that CSMA-DCR and
DOD/CSMA-CD can be implemented «on top of» or «within» conventional Ethernet or ISO/OSI
8802/3 chips. Recall that CSMA-DCR and DOD/CSMA-CD are «plug-to-plug» compatible with
standard CSMA-CD technology. This technology being so much widespread, the cost involved in
bringing slight modifications to current VLSI chip designs should not be an issue, compared to the
size of the markets waiting for real proven solutions to the hard real-time communication
problem. Although not shown here, CSMA-DCR and DOD/CSMA-CD algorithms can be used
over arbitrarily «fast» channels (e.g., 100 Mbits/s Ethernets that implement a ternary channel).
Obviously, these algorithms can be efficiently implemented over «slow» or «small» networks,
such as those used in transportation systems (e.g. cars, trains, aircrafts, spaceships) or in ground-
based critical systems (e.g., nuclear plants, chemical plants).
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Glossary

CSMA-CD
CSMA-DCR
DOD/CSMA-CD
EDF

AG,r)
@(i,r)

G

t0)

Carrier Sense Multiple Access - Collision Detection
CSMA - Deterministic Collision Resolution
Deadline Oriented Deterministic/CSMA-CD
Earliest Deadline First

Unrestricted adversary

Physical transmission time for k messages

Channel slot time duration

Upper bound on message service time where alg is the multiaccess/
scheduling algorithm used, 1 is the message source considered and r is the
rank in source i’s waiting queue of the message considered

MAC-layer channel efficiency, where i and r are as introduced with
Bag(ir)

Upper bound on source i’s timely influx density (messages from source i
per time unit)

MAC-layer overhead, where i and r are as introduced with Bag(l.1)
Upper bound on -message length .

Lower bound on message length

Number of static indices used (Q-1 is the highest index)

Smallest power of 2 greater than or equal to Q

j‘h static index allocated to source 1, indices being ranked by increasing
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v(i)

(XY}
o*{Y}

values

Number of static indices allocated to source i

Duration of a deadline equivalence class

Time tree size, in number of leaves (time indices), a power of 2

Upper bound on search time for isolating k leaves in a t-leaf balanced
binary tree

Tight upper bound on search time for isolating k leaves in a t-leaf balanced
binary tree ; 9}{ = min (éi, t—1)

Tree search efficiency

Laxity factor

- Time index

Relative deadline of a message

Absolute deadline (E =1 + D) of a message arrived at time ©
Exact search time over full interval ]X,Y]

Exact search time over full interval ]0,Y]

Exact search time to «leave a tree» after full interval [0,z] has been
searched, with z < Q
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Annex 1 : essential properties

The balanced binary tree properties useful in establishing bounds B,j,(i,r) are given below. Search

times are expressed in tree nodes visited, for t-leaf trees. A tree node corresponds to a collision or
to an empty channel slot (search of an empty sub-tree). Variable t is equal to F when considering
time trees, and t is equal to q when considering static trees. Notation log stands for log base 2.

In this paper, we adopt the convention that the «winning» set is the subset formed with «small»
indices (e.g., subset [0, t/2[ for the first dichotomy). Also, tree searches start from the left (that is
from index/leaf # O for the first dichotomy).

Property Py
A good upper bound E_,{( on search time for isolating k leaves in a t-leaf balanced binary tree was

given by different authors (see [KG85] for a summary). This bound is as follows, for 1 <k <t
(integer part of x denoted | x ) :

g}( = k+|k log (t/k) ]

It can be observed that for certain values of k, this bound is not tight. This can be established by
considering the first derivative of continuous function C&L = k[1+1log (t/k)] — 1 defined over

the continuous interval [2,t]. This derivative is 1+ [In(t/k) —1}/In2 (where In stands for
neperian log), which is positive for k < 2t/e and negative for 2t/e < k < t. Therefore, C&L isa
strictly increasing function of k for k < 2t/e and a strictly decreasing function of k for k > 2t/e.
Observing that 0 < & - C& <1, that &} = 2 log tand that &' = t, it follows that & >t—1 for
kg sk <t, for some k( comprised between 2 and 2t/e.

As it is known that the search time cannot be greater than t-1, we will use the following bound :
Py: 6:( = min{t—l,é{(} .

Consequently, if Ty is the time needed to physically transmit (without collisions) the k messages
(i.e. leaves) searched, then the time needed to fully resolve a k-message collision is bounded by
Ty +s6; .

Property P,
P, : Tree search efficiency has a lower bound that is an increasing positive function of k, the
number of indices searched (i.e., messages involved in a collision).

The lower bound of tree search efficiency is u = k/ (k+ 9;() .
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Proof

Given that uy is a discontinuous function, we proceed by proving that uy,; is always greater than

ug. The sign of uy,; - ug isthe signof G = (k+1)8; -k 6] ..

Let us first consider function D = (k+ l)i:{—k&fﬁl = (k+1)| Xy [—k[ Xy, ] where
X, = k log (1/k). We seek to establish that D > 0, that is :

RARGI AR SRR

Knowing that [UJ~| V] =[U-V] or [U-V]+1, and selecting the most constraining
equality, we have to establish :

() LXkJ+k[_log(k+1)—logt+k log(1+1/k) {>0

For k > 1, it is known that log(1 + 1/k) > 1/k. Therefore, (®) is demonstrated if the following holds
true : I_Xk_] +k —k{log (t/k) +log [k/ (k+1)] | >0
Knowing that | kV | =2 k| V], it suffices to show that :

k| log (t/k) | +k-k|log (t/k) +log [k/ (k+1)] |>0 ,

which is wivially true. Hence, D > 0 for 1 <k <t, which implies u, , ; >u, when considering
function &.

For k2k,, 9{( = t—1, whereas &1‘( 2t— 1. In order to complete the demonstration that G > 0,

- two cases need be considered only, as E,{( is an increasing function of k (see property Py).

*Case 6] = £l <t—land 6] , =t-1<§

In this case, we have F,L . 1> t— 1. The proof given above applies a fortiori when replacing iltu 1
with t- 1 in the expression of D, which yields :

G= (k+1)§ -k(1-1)>D>0
HCIICC, Ug41 > Uk.

t _ gt -
*Case 8, =0, |, =t-1
The sign of uy, - ugis the signof : G = (k+1)6} -k 6}

Hence, Ups1 ~ Uk

=t=1-

End of proof.

It follows that Ay, the lower bound of channel efficiency [Ak =T,/ (T + sef()] also is an
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increasing positive function of k. This is easily established by developing Ak+ 1~ Ay The sign of

A, 4, isthesignof m(k+1) 9{( - mkell(+ | (where m = T, /k), that is the sign of G.

Property P,
P3 : g, the exact search time to «leave a tree», index z being the last one searched and interval
[0,z] being full, is the exact search time over (empty) interval [z+1, t-1], thatis :

= o (W) —-1,
where W =t - z and 6(W) is the number of powers of 2 in W.

Proof

W =t - z is polynomial in powers of 2. Each power of 2 represents a binary sub-tree. Every such
sub-tree being empty, search time is 1 (the root) per sub-tree. The only sub-tree being non empty
is the one that contains index # z. That sub-tree search (which is 1) should not be accounted for.
Hence the result.

End of proof.

Property P,
P4 : The exact search time over full interval ]X,Y], denoted ¢{X,Y} is as follows :
e{X,Y} =Y-X+0(X)—-0c(Y)+d[z+e+logt—0(2)],

with § = 0 if X and Y belong to the same tree, & = 1 if X and Y belong to two adjacent trees.
Variables o(z) and € are as defined in property P3. Index z is the last index searched in the first

tree, when considering interval ]X,Y] spanning two adjacent trees.

Let us first establish the following property P’4:

P’4 : The exact search time over full interval [0,V]. denoted' p*(V), is as follows :
o (V) =log t+V-0(V)

Proof for P’ :

Any integer V can be developed as follows :
Vo= 242 420

Each power of 2 corresponds to a full binary sub-tree (having all its leaves searched) and to the
first leaf of the subsequent sub-tree. Consider a tree Ty, of height h = log t (see figure Al).
Consider in T‘L the leftmost tree T, of helght aj and consider interval ] 0, 2 My, decomposed into
interval ]0,2"' [and leaf # 2% Let (p (2 ') be the time needed to search interval ] O, 2% ]
starting from leaf # 0. This time is equal to the time needed to search (full) T, (think of leaf # 2%
replaced with leaf # 0), starting from root a;. That is : ¢* (2™ = - 1. Tfns reasoning can be
iterated over V, which yields :
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¢" 2™
o' (2™ = 2%-1

(P* (zaO(V)) = %M _1

h=1logt
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7/ AN
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\'%

Figure A1l : a binary tree representation of an integer

The time needed to reach leaf # 0, starting from the root of Ty, has to be accounted for. By
summing up, we obtain the desired result :

0" (V) = logt+V -0 (V)

In the particular case when V =t - 1 (full tree), it is known that 6(V) = log t. Therefore :
¢ (t—1) =1-1.
End of proof.

Proof for P,

Consider first X and Y belonging to the same tree. Obviously, we can write
e{X, Y} = 0" (V) -¢" (X).

It follows that : 0{X, Y} = Y-X+0(X) -06(Y)

Consider now X and Y  belonging to two adjacent trees. We have
0{X, Y} = @{X,z} +e+¢" (Y). Using the results established previously, the general
expression of @{X,Y} is easily found.

End of proof.
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Annex 2 : the CSMA-DCR algerithm

Principles

CSMA-DCR is a deterministic variation of the Ethernet standard or of the ISO/OSI 8802/3
standard. CSMA-DCR stands for Carrier Sense Multiple Access with Deterministic Collision
Resolution (or 802.3D for Deterministic 802.3). This algorithm was first described in [LR84]. It
resembles other deterministic tree protocols. Presentation of CSMA-DCR salient features can be
found in [BFR87] and [L.87]. An analysis of CSMA-DCR performance in faulty channels can be
found in [PS91]. Various options of this algorithm have been implemented in a number of
products [e.g., the FACTOR factory LAN from CAP-APTOR (France), the Récital/Ethernet D-
103 VME board from Dassault Electronique (France), the 82596 Ethernet chip from Intel (USA)].

CSMA-DCR is fully compatible with the ISO/OSI 8802/3-Ethernet standards. In other words,
conventional CSMA-CD chips and CSMA-DCR chips can co-exist and exchange messages over
the same shared medium. CSMA-DCR is compliant with standard interfaces defined for OSI
layers 1 and 2* (physical and logical link layers). The reason is that the variation simply consists.
in replacing the probabilistic binary exponential back-off algorithm with a deterministic binary
tree search algorithm. Clearly, this modification has no impact on the other elements of the
CSMA-CD protocol or chips. '

Binary tree protocols belong to the well explored class of tree protocols, that have been shown to
exhibit very interesting properties (stability and efficiency in particular).

While no collision occurs, CSMA-DCR behaves exactly like CSMA-CD. Upon collision
occurrence, CSMA-DCR iteratively dichotomizes the set of message sources. Only an upper
bound on the number of sources need be known at configuration time.

Description

Every message source uses the following run-time variables :

% channel status, a ternary variable (the only global one), representing the following channel
states :
- channel busy, normal transmission underway,
- channel busy, collision,
- channel idle,

% a set unique indices (possibly only 1).

Of course, a source that is allocated t > 1 indices does not «collide with itself» when it has several
messages pending. If a source experiences a collision while it is transmitting one of its messages,
and the channel was initially idle, then, it will transmit up to t pending messages during the

resulting epoch. To others, this will look like competing with up to t other sources.

CSMA-DCR comes under different options, selected at configuration time, represented by the
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following variables :

% a boolean, indicating whether the tree mode selected is «general» (full tree search starting from
the root) or «leaf» (tree search starting from the rightmost or leftmost «leaf», i.e. the smallest or
the highest index)

* a boolean, indicating whether the epoch entry mode selected is «blocked» (only those messages
involved in the original collision can be transmitted within the corresponding epoch) or «open»
(messages transmitted within the epoch are those involved in the original collision plus those
that arrive later but in time, i.e. before their index has been searched).

Under the leaf mode option, CSMA-DCR performs at least as well as the SS-TDMA or polling
protocols. Property P, demonstrates that higher efficiency is obtained when minimizing the
number of tree searches needed to transmit a given number of messages. Hence, the open entry
mode is more efficient than the blocked mode. In the sequel, we consider the general mode and
the open epoch entry mode exclusively.

Every source follows the CSMA-DCR algorithm, even if inactive (no message pending).

Let Q be the total number of consecutive indices allocated to the message sources. An index is the
(static) name of a balanced binary tree leaf. Let v; be the number of indices allocated to source i.
Let q be the smallest power of 2 greater than or equal to Q. Consider a collision occurs. Let k be
the number of messages that need be isolated among Q (potential messages) during the resulting
epoch, i.e. the resulting binary search. Each source knows which indices it owns and is able to
locally sense the ternary CSMA-CD channel (channel idie, channel jammed (collision), regular
(clear) transmission). Upon collision occurrence, every source dichotomizes the (v1rtual) binary
tree which has Q leaves potentially active among a total of q. Only one of the two resulting
subsets (the «winning» set) is allowed to remain active. The «winning» sources are allowed to try
again as soon as the channel gets back to idle (i.e. in s time units). The iteration is reversed
whenever the winning set either is empty or contains exactly 1 active source (that transmits its
message collision-free). Obviously, the complete resolution of a collision is conducted in bounded
time (see property Py, annex 1).

In this paper, we adopt the convention that the «winning» set is the subset formed with «small»
indices (e.g., subset [0, g/2[ for the first dichotomy). Also, tree searches start from the left (that is
from index/leaf # O for the first dichotomy).

Properties of search times in balanced binary trees are used to develop the expressions of the
bounds (see annex 1).

Example

An example for a 16-index, 1 index/source configuration is shown figure A2. If we assume that
messages have an equal duration of 6s (s is channel slot time) and that s = 40 ps, it follows that the
6-message collision is fully resolved in exactly 1.8 ms after entering the epoch (i.e. start of
channel slot #1).
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chronological
ordering

channel status

\, 4 C : collided channel slot ( number of colliding stations)
1/ V : empty channel slot
‘ X : successful ransmission (static source index)
Cheomologieal |1 23 45 6 7 8 9 10 11 12 13 14 15
channel 1o | ¢ c|v]c|x|x|x|c|v|c x|c|x|x|
. 21212 22l3|5 12 12] 12| 14| 14 15
static
source 31313 3 14 14 15
index 515 15 15
12
14
15

ume

Figure A2 : a CSMA-DCR epoch
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Annex 3 : the DOD/CSMA-CD algorithm

Principles

DOD/CSMA-CD is similar to CSMA-DCR. The major difference stems from using indices that
are computed on-line, rather than resting solely on indices that are pre-allocated to sources.

Indices computed dynamically are called time indices. They represent deadline equivalence
classes. All messages that are (dynamically) assigned the same time index have «comparable»
deadlines (see further). A ‘virtual time tree is defined, of size F. Tree searches being more efficient
with full trees (see property P), it is wise to pick up F as a power of 2 (our assumption).

Consider a source x that attempts to transmit a message m at time 1 (first attempt). Message m has
a relative deadline D. Let E = 1 + D be its absolute deadline (see figure 1). We need to consider
two cases.

« idlex»
At time £, sensing the channel idle, source x starts transmitting m. If no collision occurs, m is
done. If a collision occurs, x proceeds as described below.

« »

«Channel busy» means that a collision has just occurred or has occurred in the past, not fully
resolved yet (i.e., the corresponding time tree search still is in progress).

In order to determine whether or not it is allowed to try transmitting m, source X must compute
Pm, the time index associated with m. Obviously, a (dynamic) reference time that is common to
all sources need be defined.

A reference time is the time of occurrence of a reference event. There are two types of reference
events : '

- initial collision, i.e. the opening of a time tree search,

- termination of a static tree search (2 la CSMA-DCR).

The current reference time is the reference time of the most recent reference event. A static tree
search is initiated when a collision occurs while a time tree leaf is being searched. This is an
indication that several sources are trying to transmit a message belonging to that deadline
equivalence class. Time tree searches and static tree searches are conducted using CSMA-DCR.

Description

A scheduling horizon H is implicitly defined. This is needed to approximate perfect (centralized)
EDF. Recall that in any real-time system, processors (and therefore message sources) maintain a
common global time reference, via synchronized clocks (this need is not specifically related to the
utilization of DOD/CSMA-CD). In the sequel, we ignore issues related to the impossibility of
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having perfectly synchronized clocks. In general, with broadcast channels, the precision (denoted
1) maintained by a set of synchronized clocks is «good», i.e. in the order of a few channel slot
times, even with deterministic synchronization algorithms. The fact that distributed time precision
1 cannot be zero does not jeopardize the behavior of DOD/CSMA-CD. At worst, this can only
yield deadline assignment inversions limited to an amplitude of . It might be worth noticing that
reference times used with DOD/CSMA-CD are not obtained by reading a clock. Such times are
defined after channel state transitions.

A source that has several messages pending ranks them by increasing deadlines (local EDF
(Earliest Deadline First [LLL73])).

The size of a deadline equivalence class, which is denoted c, is first determined. This defines
H=cF. However, DOD/CSMA-CD uses F rather than H to approximate perfect EDF. There is a
trade-off decision involved in choosing c. Too small a value for c, for a given F, would reduce H,
this possibly resulting into deadline misses for feasible scenarios. Augmenting F would result into -
increased overhead for searching the time tree. Too large a value for ¢ would jeopardize the
objective of approximating perfect EDF. In the sequel, we do not consider any particular choice
for c. We simply want to ensure that all time tree leaves can be searched.

Consider an initial collision occurring at reference time t;. All sources involved compute their
current time indices. For a message with absolute deadline E, time index py is as follows :

po=IE-tp)/c]-a,

where [ k] stands for integer closest to k. Constant ¢ (a positive integer) is a laxity factor, known
to all sources, whose purpose is to permit transmission attempts that are not necessarily
constrained to take place within the last (before deadline) deadline equivalence class.

The time tree search is conducted a la CSMA-DCR by all sources which have computed pg < F.
That source with the smallest time index, say p*, transmiits first, unless at least two sources own
that same time index. In that case, a static tree search is initiated, also conducted a la CSMA-
DCR. When this tree search is over, say at reference time t;, a new time index p, is computed by
those sources that have messages pending. In order to search the time tree consistently, it has to be
that p; is greater than p*. Furthermore, we do not want to make any assumption on the policy
applied w.r.t. messages that may have missed their deadlines (they may be filtered out or not). If
such «late» messages are not detected and suppressed, they could be assigned negative time
indices. This would yield backward time tree searches, which is unacceptable. In order to account
for cases where p; computed at time t;, as shown above, would yield p; < p*, time index p; must
be computed according to the following rule :

p1 =max {0, [(E-t)) /c]-a) +p* +1
Observe now that this formula may yield p; > pg. This would be the case, in particular, whenever
static tree searches last less than c. Consequently, a message that was initially considered as being

schedulable (pg < F) may become non schedulable (its transmission may be relegated to some
subsequent time tree search). This is quite normal, as the opposite may also occur, i.e. this
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message may become schedulable again in the same time tree. This would be case for example in
the presence of a sufficiently long static tree search. Note, however, that once ime E - (o + 1/2)c
has been reached (time x in section 5.1), a schedulable message remains schedulable.

Let p* be the time index corresponding to the time tree node whose search has resulted into the
most recent collision. Let t be the termination time of the corresponding static tree search.

Using t as a reference time, source i computes py, as follows :
Pm = Py m) = max (0, [E- 0 /cl- o} +p* +1

Obviously, p*+1 is the value of the time index to be searched next (i.e., during channel slot
It, t+s]).

If pp, is the smallest time index computed, then m is transmitted right away, if m also is first in i’s
waiting queue and in the case no collision occurs. It takes exactly [t/vG)] time tree/static tree
searches to process m successfully, v(i) being the number of static indices allocated to source i,
and r being the rank of message m (local EDF ranking). If p,, 2 F, source i does not participate in
the current time tree search (i.e., source i remains silent).

A time tree search might terminate searching empty leaves/inactive indices (all time indices
computed are greater than F). When a time tree search is completed, the channel is considered to
be back to idle.

Every source records the value of the current reference time. Consider a source z that becomes
active (a message n arrives in its empty waiting queue). Time index py, is computed as shown
above. Assume that p, is current (i.e., is the time index being searched) and that a collision is
being resolved (a static tree search is in progress). Assume further that a static index (allocated to
z) is still available for n.and not searched yet. Then, n is processed during that search. This is how
the open entry mode option (see annex 2) operates under DOD/CSMA-CD.

Example

An extension of the example used in annex 2 is shown figure A3. Messages have an identical
transmission duration of 6s (s is the channel slot time). Relative deadlines upon occurrence of the
initial collision (time tg) are given in table 1, as multiples of s.

Additional parameters are F = 4, ¢ = 35s and o = 0. The first reference time is tg (initial collision
is detected). That is, ty occurs one channel slot after the epoch is entered. Sources compute their
time indices (shown table 1) and start searching the time tree. A static tree search is necessary to
service those sources that have static indices 5 and 15. Message # 5 is done at time tj + 8s.
Message # 15 is done at time ty + 14s.

The second reference time is t; (end of the first static tree search), that is t; = tg + 14s. Sources re-
compute their time indices (shown table 2), with p* = 0. Message # 3 is done at time tg+ 20s. A
static tree search is necessary to service those sources that have static indices 12 and 14. Message
# 12 is done at time ty + 32s. Message # 14 is done at time tg + 38s. Notice that source # 2 stops
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participating in the epoch (its new time index = F).

The third reference time is ty = ty + 38s. Source # 2 re-computes its time index, with p* = 2 (see
table 3). Given that p > F-1 (5 > 3), message # 2 still is not schedulable. It takes 1 channel slot to
complete the current time tree search. Message # 2, which is transmitted within a 1 message time
tree (not shown on figure A3), is done at time ty + 45 s (no time index computed as there is no
collision).

Hence, assuming that s = 40 ps, it follows that transmission of the 6 messages considered is
completed in 1.8 ms after detection of the initial collision, that is 1.84 ms after entering the epoch.

Note that this scenario would not have been feasible with CSMA-DCR for the example
considered. Indeed, message # 5 would be done at time t + 23s and message # 15 would be done at
time t + 45s (with t = t - s). Both messages would miss their deadlines. Hence, in this particular
case, DOD/CSMA-CD is able to solve a problem that cannot be solved with CSMA-DCR, this
being achieved at an additional cost of 1 channel slot.

4
@/@\7 time tree

LD,

o S SN e
C PYIC T VY J0rs 3/ VOO
4 O 5 0 9 10 static
Bd R
. 13 2 14 2
shronologica @ \

i .] 4_,_.—-nme index (shown only if successful transmission)

@* channel status

¢ :collision (number of colliding sources)
v :empty channel slot
. . x :successfull transmission (source index)
chronological y
ordering 1121 3141516] 718} 9]110111}1131331415/16
chamelstaind C [ C [ C | X XX [|C |C|V[C|JV]C|X]|X|VIX >t
time index v 0 1 212
. 51515 51j3 12|12 12 12112114 2
static
index 1511915 14}14 14 14
313
12
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Figure A3 : a DOD/CSMA-CD epoch
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source static index 5 15 3 12 14 2
relative deadline 10s 17s 29s 65s 56s 104s
(initial collision)
computed time index p 0 0 1 2 2 3
Table 1: parameters at reference time ty

source static index 3 12 14 2

relative deadline (at t;) 15s 51s 425 9%0s

computed time index p 1 2 2 4

Table 2: parameters at reference time t;

source static index 2
relative deadline (at tp) 66s
computed time index p 5

Table 3: parameters at reference time to
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