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Abstract: We consider conceptual optimization methods combining twoideas: the Moreau-
Yosida regularization in convex analysis, and quasi-Newton approximations of smooth func-
tions. We outline several approaches based on this combination, and establish their global
convergence. Then we study theoretically the local convergence properties of one of these
approaches, which uses quasi-Newton updates of the objective function itself. Also, we
obtain a globally and superlinearly convergent BFGS proximal method. At each step of
our study, we single out the assumptions that are useful to derive the result concerned.
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Une famille de méthodes de quasi-Newton proximales
Résumé : Nous considérons des méthodes conceptuelles d’optimisation combinant deux
idées: la régularisation de Moreau-Yosida en analyse convexe et les approximations quasi-
Newtoniennes des fonctions régulieres. Nous développons quelques approches basées sur
cette combinaison et établissons leur convergence globale. Nous étudions ensuite d’un point
de vue théorique les propriétés de convergence locale d’une de ces approches, dans laquelles
les mises-a-jour utilisent la fonction originale. Nous présentons aussi une méthode de BFGS
proximale qui converge globalement et superlinéairement. A chaque étape de notre déve-
loppement, nous précisons les hypotheses minimales nécessaires a ’obtention des résultats.



1. Introduction. We consider in this paper algorithms to solve
(1) min{f(z):z € RV},

where f is always assumed closed proper convex (we follow the terminology of [30]: f takes
its values in IR U{4oc0} but is not identically +o0; closedness means lower semi-continuity).
Additional assumptions on f will also be made, when studying rates of convergence.

Our algorithms are based on the use of the prozimal mapping: given z € RY and a
symmetric positive definite N x N matrix M, f is perturbed to the strongly convex function:

2) Pu(2)i= [(2) + 5 (M(z = 2), 2 = 2)

(u,v) := «Tv is the usual dot product in RY and | -| the associated norm. Note that ¢y

has a unique minimizer. The image of z under the proximal mapping is:
(3) pu(z) := argmin{gy(2) : z € RV},
Throughout, we will find it convenient to use the notation

o = pui(e)

A traditional way of solving problem (1) via the proximal mapping (3) is the prozimal
point algorithm: see [19] and [31]. This method generates a minimizing sequence {z,} by
the recurrence formula

(4) Tpgr 1= ah = pyr(an),

with a possibly varying matrix M of the form M = ¢,1I, ¢, > 0. In view of the optimality
condition for (3)

af =z — M~ 'g?, for some gP € O f(xP),

the proximal point algorithm can be seen as a “preconditioned implicit gradient method” to
minimize f. The method is implicit since the subgradient used in the formula is evaluated
at zP, not at z, and the preconditioning is realized by the matrix M.

Another motivation for this approach is the Moreau- Yosida regularization of f: see [21]
and [31]. This is the function f? whose value at z € R is:

(5) [P(z) := om(2?) = min{ f(2) + % (M(z - ),z —x):2€c RN},

Indeed, the minima of f coincide with those of fP and this latter function is convex, finite
everywhere, and fairly smooth: with no additional assumption, f? has a Lipschitz continuous
gradient given by the formula

(6) VfP(z)= M(z —aP) = ¢°.
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Then the proximal point algorithm written in the form
Fupr = 2l = 2, = MM (2, — 2) = 2, — M7V (z,)

can also be viewed as a preconditioned “explicit” gradient method to minimize f?.

Thus, the Moreau-Yosida regularization provides a link between classical and non-
smooth optimization: a natural and attractive idea is to minimize fP by a variable metric
method of the type

(7) Tpg1 1= Ty — LMV fP(2,) = 2 — t, M M (2, — 2P).

The stepsize 1, > 0 can be computed as usual, and the matrix M, can be generated
according to a quasi-Newton formula [8], M,,4+1 := qN(M,,, Y, s,), using

(8) Sp 1= Tp41l — Ty, Yn = pr(xn-l-l) - pr(xn) = *(W(xn-l—l - xfb_}_l — Tyt x]TDL)

(other choices for s,, and y,, are possible, see [18]).

For example, the BFGS formula can be used; because its convergence just requires
Lipschitz continuity of the gradient ([25]), the resulting method will converge always glo-
bally, and superlinearly in the “good” cases when fP has a Lipschitz continuous Hessian.
Now come implementation issues: how can we compute 227 and how will its computa-
tion —or rather its approximation— affect convergence properties? As pointed out in [9], [1],
bundle methods are a possible proposal. Given z = z,, they provide a way of constructing
a sequence {p*} tending to pps(z) when k& — oo; more importantly, they also provide an
efficient stopping criterion to apply a recurrence formula such as (4), the proximal point
being replaced by its approximation p*. We refer to [15], [5] for an accurate account of
bundle methods from this point of view.

Starting from these ideas, we distinguish three possibilities.

e Algorithmic Pattern 1 (AP1):

STEP 0: The symmetric positive definite matrix M is fixed throughout, say M = I. Start
with an initial #; and some matrix M;. Set the iteration counter n = 1.

StEP 1: Given z,, generate a sequence p* — pps(z,), for example by a bundling algorithm,
until the associated stopping criterion is satisfied.

STEP 2: Compute a stepsize t, > 0 to obtain
=, — L, M M (2, — pE
Tp41l = Tn nily, 4 (xn pn)

Step 3: Update M, by a quasi-Newton formula using (8). Increase n by 1 and loop to
Step 1.

Unfortunately, bundle methods, which produce the estimate p* in Step 1, rely heavily
on the update formula z,,; = pF. The reason is that Step 1 is stopped when f(pfb) is
sufficiently smaller than f(z,); but this decrease does not seem to allow f(z,41) < f(zn)
in Step 2. We refer to [20] for first steps into the analysis of the above strategy.
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ReEMARK 1.1. Incidentally, a second question is the choice of M: after all, the best
matrix for (1)-(3) should be M = 0, in which case no update of z,, would be needed.
Among other things, M should somehow take into account the scaling of the problem. O

A way round this difficulty is to take in (5) a varying matrix M yielding z,41 = L.
This results in the following variant:

e Algorithmic Pattern 2 (AP2):
STEP 0: Start with some initial point z; and matrix M;. Set n = 1.

SteP 1: Given z, and M,,, generate a sequence pF — pm,, (z,), for example by a bundling
algorithm, until the associated stopping criterion is satisfied.

STEP 2: Take

.k
.’En+1 = pn

Step 3: Update M, by a quasi-Newton formula using (8). Increase n by 1 and loop to
Step 1.

The need for an artificial M is thus eliminated (barring the initial M), and the spirit
of bundle methods is preserved; but now, the difficulty is in the quasi-Newton field: we
no longer have a fixed Moreau-Yosida regularization fP, whose Hessian is going to be
approximated by {M, }: we rather have a varying function f? which depends on M,,, giving
birth to a sort of vicious circle.

REMARK 1.2. Exploratory experiments with this latter algorithm indicate that some
eigenvalues of M, may have a tendency to approach 0; in view of Remark 1.1 this is not
bad ( f? becomes closer to the true objective f), but will certainly result in delicate analysis
and numerical implementation. On the other hand, preliminary experiments also indicate
that this pattern deserves study: the algorithm behaves quite well on a benchmark of test
problems for nonsmooth optimization ([32]). o

In this paper, we concentrate on a third alternative, based on an idea of [28]:

o Algorithmic Pattern 3 (AP3): Take (AP2) but, instead of (8), let the quasi-
Newton update use more simply

(9) Sn = Tn41l — Tn, Yo = Vf(@ny1) — V().

Then the algorithm is just that of (AP2) with the following last step:

Step 3: Update M, by a quasi-Newton formula using (9). Increase n by 1 and loop to
Step 1.

Naturally this has little meaning in the framework of nonsmooth optimization: (9) re-
quires differentiability from f. Furthermore, we will pay little attention to implementability
issues, i.e., on the actual computation of each proximal point z£. Our ambition here is
limited to exploring preliminary results to combine methods for nonsmooth optimization
and classical quasi-Newton methods.
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The paper is organized as follows. In the next section we state an abstract algorithmic
pattern which accommodates any of the above strategies (AP1-3), and we give conditions
guaranteeing global convergence. This section does not rely on the actual computation of
proximal points 2F , neither on specific formula generating the matrices M,,. We obtain in § 2
our global results without any additional assumption on f. In the following sections, when
we consider the local analysis of specific quasi-Newton formulae, we require V f to be locally
Lipschitzian, we assume also that it admits directional derivatives at z. In Section 3, we
adapt to our case the criterion of [6] for superlinear convergence. Then we give superlinear
convergence results for a wide class of quasi-Newton methods, including PSB and DFP,
assuming that f has at z a Hessian, in a “strong” sense. Under the same assumptions,
we concentrate in Section 4 on both global and superlinear convergence of a conceptual
algorithm using the BFGS update. Finally Section 5 gives some concluding remarks.

2. Global Convergence. In this section we prove the global convergence of the algo-
rithms described abstractly by the General Algorithmic Pattern (GAP) below. Let (z,,, M,,)
be the current iterate with M,, symmetric positive definite. Then, according to (4) and (5),
the corresponding proximal point will be:

1
(10) z? = par, (xy,) = argmin{ f(2) + 3 (Mp(z —2),2—z): 2 € RV}
We set
W, =M.

LEMMA 2.1. With the notation and assumplions of Section 1, the following holds:
(i) The proximal point z¥ is well defined and given by

(11) zy = an — Wagy,
with
(12) gn € 0f(ah).
(i1)
(13) f(ah) < fzn) — (Wagr, g7) -

(111) x, minimizes [ <= z, =2b <= gl =0.
(iv) For all y with f(y) < f(al), there holds

(14) <1V[n(y - xﬁ),y - $£> < <Mn(y - wn)v?/ - xn> .

Proof. The minimand in (10) is lower semi-continuous and strongly convex; moreover,
for any z € dom(0f) it has the subdifferential 0 f(2)+ M,,(z—z,,). Existence and uniqueness
of its minimum (that is the proximal point) is therefore clear, as well as the optimality
condition (11)-(12). To obtain (13), multiply (11) by ¢~ and use (12). The equivalences in
(i27) follow easily from (7) and (¢7). As for (iv), take y with f(y) < f(z2). Using (12),

(@) > f(y) > f(2h) + (g7, y — 2h),
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so that, with (11),

(M, (z,, — 2P),y —2P) <0.

Then develop the relation |Jlﬁf7%/2(xn —-y)? = |]W71/2(37n — 2P + 2P —y)|? to obtain (14). 0D
Thus, the decrease of f from z,, to zf is at least (g2, W, g?), a positive number unless
x, is optimal. The Moreau-Yosida regularization takes the value

(15) PP(n) = FER) 4 5 (@ = 2y Ma(ah, — 20)

and, using (11) we set

(16) b= () = (o) = f(a) = f(50) — 5 (o Wagh)
Observe that, in view of (13),

(17) %<g£,anfL> < by < flza) — f(22).

We consider in this section a very general pattern, in which f is simply required to
decrease at each iteration by at least a fixed fraction m of §,, interpreted as a “nominal
decrease”.

¢ General Algorithmic Pattern (GAP):

STEP 0: Start with some initial point z; and matrix M;y; choose some descent parameter
m €10,1[; set n = 1.

STeEP 1: With é,, given by (16), compute z,4; satisfying
(18) f(@ni1) < fan) = méy,

(Note: for this, Proposition 2.2 below is helpful).
STeP 2: Update M, increase n by 1 and loop to Step 1.

For a nominal decrease, the use of the value f(z,)— f(z2)in (18) may seem more natural
than our é,. A substantial advantage of (16), however, is that implementable methods are
known to guarantee (18) without computing any proximal point. In fact, if f is replaced
by some smaller function 7 in the proximal problem (10), we get a smaller optimal value,
which can be used to overestimate the nominal decrease.

PROPOSITION 2.2. With the notation above, let 1 be a closed convex function on RN
satisfying v < f and set

(19) 7 := argmin{¢(2) + % (My(2 — 2,),2 —x,) : 2 € RV,
(4) If

(20) J(m) < f(an) = m[f(an) = $(7)],
then (18) is satisfied by x,41 = 7.
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(i) If z,, does not minimize f, there exists ¢, > 0 such that f(7) — ¢(7) < €, implies

(21) J(m) = o(m) < (1= m)[f(zn) = &(7)],

which is equivalent to (20).
Proof. In the inequality

9(r) = J(@2) < G(T)+ 5 (Malr = 22,7 — 22) — (z2),

over-estimate the right-hand side by replacing successively 7 by 2 and ¢ by f. Using (11),
(16) we obtain

(22 $() = [(on) < JER)+ 5 (Wagh 62) — f(0) = b

because m > 0, (¢) is clearly proved.

Now the equivalence between (21) and (20) is straightforward. If z,, does not minimize
[, then 2P # z,, and gf # 0. In view of (22), we see that (21) = (20) is satisfied whenever,
for example,

f(m)—(r) < (1 -=m)d, =€, > 0.

aad

The idea underlying (20) is classical in line-searches and trust region algorithms, if
we interpret ¢ as a model for f, whose value at the trial iterate 7 is a target for f(z,41).
Proposition 2.2 only says that our descent test (18) is passed whenever the model is accurate
enough at 7. Bundle methods, precisely, construct such a model which is piecewise afline,
resulting in a quadratic program for the proximal problem (10); see for example [5].

In the convergence result below Apin(W) denotes the smallest eigenvalue of a symmetric
matrix W; (23) is natural to rule out perturbed functions @ps of (2) departing too much
from f.

THEOREM 2.3. Assume thal the closed convex funclion [ has a nonemply bounded sel
of minima, and let {z,} be a sequence generated by (GAP). Then {z,} is bounded and, if

(23) i_o: Amln(VVn) = 00,

any accumulation point of {x,} minimizes f. The same properties hold for the sequence of
proxzimal points {zP} and it also holds liminf |g?| = 0.

Proof. Our starting assumption implies that the level sets of f are bounded (see [30],
Theorems 8.4 and 8.7 and [13], Proposition 1V.3.2.5); the sequences {z,} and {22} are
therefore bounded by construction. In what follows, f will denote the minimal value of f.

Combining (17) and (18), we have

1 1
24 — (W,gt,gP) < —
(24) 2< gb.gb) < p-

(f(zn) = f(2ny1)),
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which gives by summation

o0

> (Wagk, g8) <

n=1

(f(z1) = f) < o0

S

and therefore
> Amin(Wa)|g8]? < oc.
n=1

In view of (23), the sequence {|gZ|*} cannot be bounded away from 0: there exists a subset
Ny C IN such that lim,en, g2 = 0.

Extract from Ny a further subset, say Ny C Ny, such that {zf },.cn, tends to some limit
z. Because of (12), the closedness of the subdifferential mapping implies that 0 € 9f(z) : =
minimizes f and f(z) = f.

Now {f(z,)} is nonincreasing and has a limit f*; also (W,g%, ¢~) — 0 in view of (24).
Pass to the limit in (18), written for n € Ny: we obtain

[ =mlf =),
which implies f* = f. Then any accumulation point of {z,} is also optimal. ano

3. Local Convergence. From now on, f is assumed differentiable (and therefore
finite everywhere). We use the notation g(z) for the gradient of f at z, as well as g, = g(z,,)
and g7 = g(a?).

We specialize in this section the General Algorithm Pattern of Section 2 along the
lines of (AP3) in Section 1: we suppose the proximal point z? is computed exactly and the
symmetric positive definite matrix M,, is updated at each iteration by a formula such that
the quasi-Newton equation holds:

(25) Mys18n = Yn,

where

Sp = Tp41 — Tny,  Yn = Gn+1 — Gn-

In these circumstances, the pure prox-form of (AP3) is clumsy, as observed in [20]
and [28]. Indeed, take the “ideal” situation in which f is quadratic with a positive definite
Hessian matrix A, and take M, = A in the algorithm. Then, z? is the minimizer of

1
<gn,x - xn> + 5 <2A(£C - .Tn),SC - xn> s
which is only half-way towards the real minimum of f. A natural cure would be to do a
line-search along the direction 2? — z,. This idea will be used in Section 4, but in the
present local study, we assume that the “ideal” stepsize of 2 is taken.

In a word, we consider in this section the following algorithm:

¢ Quasi-Newton proximal algorithm (qN-AP3):
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STEP 0: Start with some initial point z; and a positive definite matrix M;. Set n = 1.
STEP 1: Compute 2 := pp, (24,).
STeP 2: Update:

(26) Tpg i=Tp — 2M 7 gP = 2, + 2(al — x,).

Step 3: Update M,, by a quasi-Newton formula satisfying (25). Increase n by 1 and loop
to Step 1.

Keeping here the notation of the preceding sections, we set
(27) en =T, —T, €=zl -7 and o, :=|e 1]+ |en].
Recall that we have from Lemma 2.1, with ¢ := g(a?),
(28) g + M, (2P — z,) = 0.
Finally, remark that (26) gives

(29) b = %wn + %$n+1 and el = %en + %€n+1-

In this section, we study the local convergence properties of the sequence {z,} generated
by Algorithm (qN-AP3). We always assume that the gradient of f has directional derivatives
at z, a minimum point of f; our smoothness assumptions are reviewed in Section 3.1. In Sec-
tion 3.2, we prove the linear convergence of {z,,}, assuming that (21, M;) is “good enough”
and that a bounded deterioration property holds for {M,} as is done in [14] for standard
quasi-Newton algorithms. We characterize the superlinear convergence in Section 3.3, gi-
ving the proz-version of the well-known characterization for superlinear convergence of [6].
Finally, under stronger smoothness assumptions, we obtain local and superlinear conver-
gence results for a wide class of quasi-Newton formulz, including the prox-versions of the
PSB and DFP algorithms. For this we extend the approach of Grzegérski [12] to variational
quasi-Newton methods with variable norms and to the “proximal” framework.

3.1. Smoothness assumptions. In this subsection we state the assumptions needed
for the sequel. We start by recalling some classical notions. An operator H from RY to
RN is positively homogeneous when H(tv) = tHv, for all v € IRY and all ¢ > 0. Such an
operator is said bounded if

|H| := sup |Huv|

v|=1

is finite. It is equivalent to say that H is continuous at 0. Observe that we use the same
notation for the Euclidean norm in IRY and for the induced operator norm.

For the local analysis, only the behaviour of f in some neighborhood of z is relevant.
Actually, our assumptions throughout involve a convex neighborhood Q of z.
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— First of all, we require the gradient to be locally Lipschitzian around z: there is a constant
L, such that

(30) Ve,y € Q, |g(z) = g(y)| < Lylz — yl.

— We postulate that g admits at Z a directional derivative ¢'(z,d) for all d € IRYN. To stress
that we are only interested in ¢’ at the fixed solution point z, we will generally use the
notation H for the mapping d — ¢'(z, d). In other words,

(31) f1d = A(d) = lim g(z+ t‘? —9(2)

Observe that H is positively homogeneous by definition and bounded because of (30):
|H| < L.

— We will often suppose that the directional derivative (31) exists in a strong sense at z
([22], [23], see also [4], where the word strict is used). This means

(32) i 9@ -9y —Hz—y)
(l'vy);(fvf) [z -yl
T#y

— Our final results need the difference quotient in (32) to converge at a specific rate, namely:
for some positive constant L and all x,y € Q,

(33) lg(x) — g(y) — H(z — y)| < L(|z — 2| + |y — 2) |z — y].

Needless to say, (33) implies (32), which in turn implies (31).

It is interesting to relate our assumptions with some other notions of weakened diffe-
rentiability already stated in the literature; see for example [23], [16], [14], [24]. We recall
first that, under the Lipschitz property (30), the limit in (31) becomes uniform in d: (31)
is then equivalent to

(34) g(z +h)=g(z)+ Hh + o(|h]), when h — 0,

that is, H is the B-derivative of g at z, in the sense of [29].

Assumption (32) turns out to be rather strong, even though it is a purely punctual
condition. In fact, it can be seen as in the proof of [23, Theorem 2], that it implies the
linearity of H; and this just means that H is the strong Fréchet derivative of ¢ at z.
To grasp the essence of (32), consider the case when g has directional derivatives in a
neighborhood of z: (32) just expresses the continuity of the mapping = — ¢'(z,-) at z; this
comes from the following theorem, which is an equivalent formulation of Theorem 2 in [23].

THEOREM 3.1. Let g : RN — RN be a mapping satisfying (30) and having directional
derivatives g'(z,-) for all x € Q. Then the three statements below are equivalent:

(1) the directional derivative H of (31) salisfies the stronger limit property (32),

(i) g is Fréchet differentiable at T in the strong sense,
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(ii1) the mapping x — ¢'(z,-) is continuous al T; in other words,

sup |¢'(z,d) — ¢'(z,d)| — 0, whenz — z.
|d|=1

For an interpretation of our last assumption (33), assume again the existence of ¢'(z,-)
in a neighborhood of z: (33) connotes something stronger than the above continuity property
(i17), namely the “radially Lipschitz” property stated in (35). This comes from the next
result, an equivalent formulation of Lemma 2.2 in [14]. It is here that the convexity of Q is
important.

THEOREM 3.2. The hypotheses are those of Theorem 3.1. In addilion, assume there
exists a constant I such that

(35) sup |¢'(z,d) — ¢'(z,d)| < Llz —z| forallz € Q.
|d|=1

Then, for all x and y € Q:

l9(2) = g(y) — H(z —y)| < Lmax{|e — 2|, |y - z[} [« —y],
so that (33) holds.

3.2. Linear convergence and bounded deterioration. In this subsection, we prove
the linear convergence of Algorithm (qN-AP3) when the generated matrices M, satisfy a
“Bounded Deterioration” property (Theorem 3.4). Before doing this, it is useful and ins-
tructive to analyze one step of the algorithm (Lemma 3.3). Our results are obtained under
an extra assumption: there exists a positive definite matrix M such that

(36) [I-M1'H <7<1.

Assumption (36) is just a way of expressing that the positively homogeneous operator H
is not too far from the open set of positive definite matrices that is convenient for the
convergence analysis. This assumption was also made by Ip and Kyparisis [14]. When H
is linear, condition (36) implies the nonsingularity of H. When H is only a continuous
positively homogeneous operator, however, the surjectivity of H is guaranteed (see the
proof of Lemma 2 in [23]) but not its injectivity.

LemMMA 3.3. Suppose that (30), (31) and (36) hold. Then, for all r > 7/(2 — T), there
exist positive constants €, € and p such that if one iterate (z,,, M,,) of Algorithm (qN-AP3)
satisfies

(37) |z, —z| <& and |M,— M| < é&,
then M, is positive definite with |M'| < u and the next iterale x,1 salisfies

(38) |Zpt1 — 2| < rle, — 7.
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Proof. Let r > /(2 — 7); there exists ' > 7 such that r = #'/(2 — r'): just take
r':=2r/(14 r). Now, choose é; > 0 so that

_ _ 1 -1 5
and  &|M~||H]| (— _@2) <-r

39 ¢ _
39 @< 37]

1
| M1

and set

(40) wi= (o - a)

By the first inequality of (39), p is a positive constant. Now, because ¢(z) = 0, we have in

(34) g(z) — H(z — z) = o(|z — Z|). Therefore, there exists ¢; > 0 such that

,
(41) e-zl<a = |gle)- Hz—2) < ——
v

|z — z|.

Then, define ¢, > 0 by

(42) & = e S
W + &)

Having determined the positive constants é;, é; and p, we now prove the conclusions of the

lemma, assuming (37).
First, by (37) and (39), we have

_ 1

M, - M| <é < ——.

Then, the identity M, = M[I+ M ~'(M, — M)] and the Banach perturbation lemma imply
that M, is nonsingular (in fact positive definite) and that |M | < u, with p defined in
(40).

Next, observe that @41 = @, —2M1g? = 22 — M~1gP. Thus an easy calculation gives

€nt1 = eﬁ—LMn_IQfL
= (I- M7 H)el, — M7 (g5 — Heb)
= —17_7e—|—:_ln—jl_ie—j_g—ie.
43 I— M 'H)et + M~ (M, — MM "He?!, — M (g2 — He?,

We are going to bound the norm of the right hand side of (43) by a multiple of |eZ|. There
is no difficulty with the first two terms. For the last term we shall use the implication (41)
after having shown that |e?| < ¢;. To do this, observe that lemma 2.1 (iv) with y = z gives

M| €2 |2 < |My| |en .
¥in

Hence, using (37), |e,| < & and (42), we get

[eB] < MM o] < 1M + &) = 6
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Now, using (36) and (41), (43) gives

-7

il < (7 130 e ]+ 0 0 Yen] < vler,
where we used the second inequality of (39) and (40). Finally, by (29), || < (|e,| +
|€n+1])/2, and the last inequality becomes

7! !
(1= %) lensal < Sleal

The conclusion of the lemma follows from the definition of 7':

7’/
lenta] < ﬁ|€n| = rlen].

aad
Since 7/(2—7) < 1, Lemma 3.3 allows us to take » < 1. Then an easy consequence of this
result is: if the matrices M,, are maintained in a ball of radius é; around M and if the first
iterate 1 is taken sufficiently close to z, the sequence {z,} generated by Algorithm (qN-
AP3) converges to z linearly with rate r. As we shall see, this property of the matrices M,
is satisfied when they are updated by a large class of formulz, namely those satisfying the
bounded deterioration assumption defined below. This assumption depends on a particular
matrix norm || - || possibly different from | -|. Note that, since all norms are equivalent in
IRV*N | there exists a positive constant 5 such that

1
(44) A=<l

Bounded Deterioration Assumption (BDA). Let there exist a positive constant Cpp,
a symmetric positive definite matrix M and a neighborhood U = Q, x Qs of (z, M), with
Qs containing only nonsingular matrices, with the following property. If (z,,, M,,) is in U,
if (#p41, Mp41) is generated by Algorithm (qN-AP3) from (z,, M,) and if 2,41 is also in
Q,, then

(45) | M1 — M| < (1 + Cppo,)|| My, — M| + Cypon,
where the matrix norm || - || satisfies (44) and o, is defined by (27).

This assumption is weaker than the one usually obtainable in standard quasi-Newton
methods (see [2]) in the sense that here inequality (45) is only assumed to be satisfied when
&, and T4 are close to z. Usually no restriction of this type is supposed for (45) to be valid,
but when variational quasi-Newton updates with variable norms are involved (see Section
3.4), only the above weak form of BDA can be obtained. As far as local convergence is
concerned, however, our weaker form suffices: indeed, as shown in Lemma 3.3 (with r < 1),
once (z,, M,) is close enough to (z, M), z,41 is even closer to z than z,.
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Conditions for linear convergence are given in the next theorem. We denote by B(z, p)
the ball of radius p > 0 centered at z (in a normed space depending on the context).

THEOREM 3.4.

Suppose that (30), (31) and (36) hold and that the update of the matrices in Algorithm
(qN-AP3) satisfies (BDA) with the same matriz M as in (36). Then, for allr € |7/(2—7), 1],
there exist positive constants €1 and €3, such that

(46) |7y — 7| < e and |M;— M| < e

imply the following statements:
(i) Algorithm (qN-AP3) is well defined in the sense that, for alln > 1, M,, is positive
definite and z? and x,, lie in Q.
(i1) The sequences {M,} and {M;'} are bounded and the sequence {|M, — M|}
converges.
(iti) The sequence {z,} converges linearly to T at rate r:

(47) |zpy1 — 2| < 7lz, — 2|, Vn>1.

Proof. Take r € |7/(2 = 7),1[ # ¢ and let & > 0 and é; > 0 be given by Lemma 3.3.
Then choose ¢ > 0 such that

(48) B(M,2ne;) C Qu  and  2n%e; < é&;

here 7 is defined in (44), Qs is introduced in (BDA) and B(-, -) refers to || - ||. Next, choose
€1 > 0 such that

1
(49) B(Z,e1) CQz, €6 <é& and 2Cgpa(2ne; + 1)1— < ney,
—7r

where Q, and Cyp were introduced in (BDA).
The positive constants €; and €3 being determined, suppose that (46) holds and let us
prove by induction that for all n > 1:

(50) | M,, — M|| < 2ney,

(51) |2pe1 — 2| < 7lz, — 2.
First, by (44),
(52) | My — M|| < n|My — M| < nes.
Therefore, (50) is satisfied for n = 1. As ¢; < & and €3 < & (by (48) and n > 1), we have
|ty —z| < é and |M; — M| < é&.

By Lemma 3.3, this implies that the next iterate x5 is well defined and that (51) holds for
n = 1.
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Now, assume for induction that (50) and (51) are satisfied for n = 1,...,m—1. By (51),
(46) and (49), the points 1, ..., 2, arein B(Z,€;) C Q, and by (50) and (48), the matrices
My, ..., M,,_1 are in B(M,2ne3) C Qps. Therefore, we can use (BDA) forn=1,...,m—1
to obtain:

|Moss — ) = |My = M| < Copon(| My — M| +1)
< 2Cpplan — 2|(|| My, — M| + 1)
< QCBDTn_1€1(27’}€2 + 1),

where we have used (46), (50) and (51). Adding up from 1 to m — 1 and using (52) and
(49), we get

— - 1
| My, — M|| < || M1 — M| + 2Cspe1(2neg + 1): < 2ne,.

This proves (50) for n = m. To get (51) for n = m, we use as before Lemma 3.3 after having
observed that |z, — 2| < ¢ (by (51) and (46)) and |M,, — M| < & (by (50) and (48)). This
completes our induction argument.

The boundedness of {M 1} is given by Lemma 3.3.

Finally, the proof of the convergence of {||M, — M]||} follows a classical scheme. The
sequence {M,,} being bounded, the sequence {||M,, — M ||} has limit points. Then, we proceed
by contradiction, supposing that there are two limit points: I; < ly. As the series > 2, 0,
converges, there is an index ng such that

> I —1
D 0w < S Cip e + )7

n=ngo

We can also choose an index ny > ng such that || M,, — M| < l; 4+ 25" Then, using (BDA)
and (50), we can write, for all n > ny

n—1
M, — || < My — M|+ Cop 3 (ai(HAL' _ M+ 1))

i:nl

< ||Myp, — M|| 4 Cp(2nex + 1) Z o;

’i:‘no
. ly—1
< My - M)+ 2
ly—1
S 12 - 3 ’
contradicting the fact that 5 is another limit point. [N

Let us point out that the “implicit” form of (qN-AP3) allows a better rate of conver-
gence than the one obtained in [14] for “standard” quasi-Newton formulee, namely r € |7, 1].
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3.3. Characterization of superlinear convergence. In this subsection we charac-
terize the g-superlinear convergence of a sequence {z,} generated by Algorithm (qN-AP3)
by comparing the effect of M,, and H on (—s,,). In [14], M in (36) is used as an intermediate
matrix in the comparison. A similar result can be obtained here but, instead of assuming
(36), we prefer to impose more regularity on H. When H is linear, both results are similar
to the well-known characterization of Dennis and Moré [6].

LeEMMA 3.5. Let H : RY — RN be positively homogeneous, continuous and injective.
Then the following properties hold:

(i) there exists a constant Cy such that |Hu| > Cylu| for all w € RY,

(i) for any two bounded sequences {u,} and {v,} in R,

Hu,—Hv,—-0 — wu,—v,—0,
(#i1) if up, — 0O then
(53) H(uy + o|un]) = Huy + of|un]) -

Proof.

(1) Let Cp := minp,—; [Hu| > 0; by continuity there exists ug of norm 1 such that
| Hug| = Cg. Then the injectivity of H implies C'y > 0; the conclusion follows from positive
homogeneity.

(¢7) Having an arbitrary cluster point w of {u, — v, }, extract a subsequence such that
Uy — U, v, — v and u, — v, — w = u — v. By continuity, Hu,, — Hu, Hv, — Hv and by
assumption, Hu = Hwv. Since H is injective, u = v, w = 0; the result follows.

(iii) If H is continuous, it is uniformly continuous on the ball B(0,2) C IRY. When
Uy, # 0, up/|u,| + o(1) € B(0,2) for large n. Hence, by uniform continuity,

" < Un_ 4 0(1)) = B 4 o(1),

J1un] J1un]

Thanks to positive homogeneity, we have proved (53). ao

THEOREM 3.6. Let {z,} be a sequence generated by the recursion formula (26) conver-
ging to a solution poinl . Suppose that (30), (31) hold and that H is conlinuous and
injective. Then

(54) T, — & gq-superlinearly <= (M, — H)(—s,) = o(|s,]|).

Proof. First, remembering that s, = —2M, 1 g?, we have, due to (34)
M, s, = —2g° = —2HeP + o(|eL]).
Hence,

(55) (M — H)(=s,) = 2!, — H(~s,) + ol |€]).
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Let us prove the “=" part. As e,41 = o(|e,|), we have

262 =€épy1 T ey =€y + 0(|€n|)

—Sp = —€py1 + € =€+ 0(|€n|)

The last estimate also implies that e, = O(|s,|). Combining these estimates with (55) and
using (53) with H = H, we get

(My, = H)(=s) = o(len]) = of]sn]).

Consider now the “<=" part. From (55),

(56) H(=sp) + ol|sn]) = H(2€}) + o(|€f]).
Taking norms and applying Lemma 3.5 (7), we get
Chlsn| < [H(=sn) < [H(26e})] + o(|€f]) + o([sl) -
Using the boundedness of H we conclude
(57) |sn] = O(leR])-
On the other hand, after division of (56) by |€L|:

ollen])  ollsn]) _ H(2e) H(—5,)

|en] el len] |en]

Thanks to (57), the left-hand side tends to 0. We are in a position to apply Lemma 3.5 (%)
with u, = 2e2/|ef| and v, = —s,/|eE|. Thus

2ef + s, 2enq1
|en] |en]

— 0,

which can be written e,11 = o(|el|) = o(|ent1 + €n]) = o(|ent1|) + o(|en]). This implies
ent+1 = 0(|ey|) and the g-superlinear convergence of {z,}. oo

With this result, the relation corresponding to the classical characterization of [6] can
be recovered. Note, incidentally, that the above proof still works for nonsmooth equations
(instead of minimization) where g is not a gradient. When assuming more regularity on f,
we can also establish a very useful characterization:

CoRroLLARY 3.7. Let {z,} be a sequence generated by Algorithm (qN-AP3) converging
to a solution point z. Suppose that (30)-(32) hold and that H is invertible. Then

(58) T, — & gq-superlinearly <=  (My11 — M,)s, = o(|sy|).

Proof. Due to the quasi-Newton equation (25), the second statement in (58) is equivalent
to yn — Mps, = o(|s,|). Apply (32) with ¢ = @p41, y = @50 we have y, = Hs, + o(|s,]);
since (32) also implies the linearity of H, the conclusion follows from Theorem 3.6. ag
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3.4. Superlinear convergence of variational quasi-Newton algorithms. In this
subsection, we go more concretely into the specification of the matrices M, for Algorithm
(qN-AP3). We propose an update scheme and show (Lemma 3.8) that it satisfies (BDA)
in Section 3.2. Then, the linear convergence follows from Theorem 3.4 (Theorem 3.9). We
also show (Theorem 3.10) that the scheme can provide the g-superlinear convergence of the
generated sequences.

The analysis relies on a Hilbert matrix norm | - |, (e.g., a weighted Frobenius norm);
typically |- |, depends on &, and z,41. With o, defined in (27), the norm |-|,, is said locally
comparable to a fixed norm || - || if

Jope > 0, 3Ce > 0, Yo, < ore, VM € RV*N | we have

59
(59) M1, = 1] < Cc 131]] .

Our approach follows that of [12]. Let K be a closed convex set of symmetric matrices
intersecting the set {M € RY*N . Ms, = Yn}, when o, is small. By a variational quasi-
Newton formula, we mean a method associating to the current matrix M,, the (symmetric)
update M, 41 := qN(M,,, yn, 5,.), unique solution of

: 2. _
(60) m]\}[n{LM - M| MeK, Ms, = yn}

We state here a “technical hypothesis” expressing that a fixed matrix M is close enough
to the feasible set of (60):

IM € RY*N symmetric positive definite, Joppy > 0, ICrex > 0,
(61) Vo, < orpx, 3M, € RN*N such that
*Mn € ICa AA{nSn = Yn, |ﬂ2[n - */Wln < Crex Op.

Before giving the convergence theorems, let us check that (BDA) is satisfied for the
scheme above.

LEmMA 3.8. Suppose that Algorithm (qN-AP3) updates the matrices M, according to
the scheme (60) and that conditions (59) and (61) are satisfied. Then Assumption (BDA)
holds with M given by (61).

Proof. Let

1

3CLc )

o := min(oLc, Orpx,

Since M, 41 is the orthogonal projection of M,, onto a closed convex set containing ZLALL, we
have

(62) |Mn - Mn+1|i + |Mn+1 - Mnli < |Mn - Mnli
In particular,

(63) |Myy1 — Myln < | M, — My,
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Let us show that (BDA) holds with Cgp := 3max(Cyc, Crpx) and M given by (61),
when o,, < 6. We have, using (63) and (61),
|Mypy1 — M|, < |Mypq — My, + | M, — M|,
|1{Wn - */wnln + CTEXUn
|M,, — M|, + 2Crpx0,.

IA N ]

Then, using (59), we get
_ 1+ Creoy, _ 2C
HMH—Mﬂg«—JLJWm—MM( m<)%

1—-Cicoy, 1—-Cicoy,
Since 0, < 0 < 1/(3CLc):

1+ Creop 2Crex
—— <14 3CLc0o, d ——— < 3Crgx-
1—Coo, = + LcO an 1 Croo, = TEX

Hence
wan+1 - fWH < (1 + 3CLCUn)HfVIn - MH + 3Crpx 0y,

which is just a bounded deterioration property of the type (BDA). ag

Then, we can show linear convergence under the assumptions of Theorem 3.9 and
superlinear convergence when (32) holds (Theorem 3.10).

THEOREM 3.9. Suppose that (30), (31) and (36) hold. Suppose also that Algorithm (qN-
AP3) updates the matrices M,, according to the scheme (60) and that conditions (59) and
(61) hold, the latter with the same matriz M as in (36). Then, if (z1, My) is close enough
to (z, M), Algorithm (qN-AP3) is well defined and generates a sequence {x,} converging
q-linearly to T and a sequence of symmetric positive definite matrices {M,} such that

(64) (Myy1 — M,) — 0.

Proof. According to Lemma 3.8, (BDA) is satisfied with the same matrix M as in (36).
Then, Theorem 3.4 gives the first part of the result (the linear convergence of the sequence
{z,}), as well as

(65) M, — M| — .

It remains to prove (64).
Due to the linear convergence of {z,} to #, we can suppose that o, < min(oyc,Orex)
for all n > 1. As in the proof of Lemma 3.8, we have the inequality

(66) |Mn - fwn+1|i + |Mn+1 - A;Inli < |fwn - A;Inlzu

and we proceed to show that both |M,q — M,|, and |M, — M,|, tend to §. From (59),
(65) implies

(67) M, — M|, - ¢ and |M,4 — M|, — 6.
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Using (61), we get

|M,, — My, — |M, — M|,| <|M, — M|, — 0,

(M1 — M|y — |Mpyy — M|,| < | M, — M|, — 0.

From this and (67), we deduce
M, — M|, — 6 and |M,4q — M|, — 6.
Then, (66) implies
|Myy1 — My, — 0
and by (59),
| M1 — M,|| — 0.

ao

TueorREM 3.10. Suppose that (30)-(32) hold and that H is posilive definile. Suppose
also that Algorithm (qN-AP3) updates the matrices M, according to the scheme (60) and
that conditions (59) and (61) hold, the latter with M = H. Then, if (z1, M1) is close enough

o (z,H), Algorithm (qN-AP3) is well defined and generates a sequence {z,} converging
g-superlinearly to z.

Proof. Assumption (32) implies that H is linear, hence (36) holds with M = H; we can
apply then Theorem 3.9, which gives the g-linear convergence of the sequence {z,} and
(M, 41 — M,,) — 0. Now the g-superlinear convergence of {z,} follows from Corollary 3.7.

oo

3.5. Application to some quasi-Newton methods. We now apply the theory of
the previous subsection to some particular quasi-Newton update formulae. The main issue
is to check condition (61), and it is here that assumption (33) comes into play.

We first show that (61) holds for general quasi-Newton methods, provided f is suffi-
ciently smooth. As in the previous subsection, K is a general closed convex set of symmetric
matrices.

ProrosiTION 3.11. Suppose that [ is twice Fréchet differentiable in a neighborhood N
of &, with a Lipschilz conlinuous Hessian. If V*f(z) € K for all z € N and (59) holds,
then (61) is satisfied for M = V2 f(z).

Proof. Let oy > 0 be given by (59) and take o € |0, o1¢] such that B(z,0) C N. When
o, < 0, the segment [z,,2,11] is in NV, so that we can define

X 1
M, = / V2 f(an + 75,)dT.
0
Clearly, M, € K and M,s,, = y,,. Furthermore, with M = Vif(z),

. i} 1 . L
|M, — M| < / |V2f(z, + 75,) — M|dT < 7H0n,
0
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where Ly is a Lipschitz constant of the map N 3  +— V?f(z). Combine this, (44) and (59)
to obtain

- _ - — - _ L
My, — M|, < (14 Creopn)|| M, — M|| < (1 + Creon)| M, — M| < n(1+ C’LCULC)—H Op-

2
We recognize (61). oo
We consider now the prox-versions of the PSB and DFP algorithms. Let K be the set of
symmetric matrices and take the Frobenius norm |- |z for |- |, and || - ||. Then the solution

of (60) is given by the PSB update formula (see [7]): M, 41 = PSB(M,,, yn, $5), where

(y— Ms)sT +s(y— Ms)T  (y— Ms,s)
[ st

PSB(M,y,s):= M +

Recall that (u,v) and u'v denote the same operation. We note here that more general
scalar products can also be used, as described for example in [11] and in the appendix of
[10]. Reproducing the present theory in this framework is then an easy exercise.

For this method, we have

PROPOSITION 3.12. Suppose that (30)-(33) hold and that H is positive definite. Assume
that Algorithm (qN-AP3) uses the PSB formula: M,11 = PSB(M,, yn, sn). If (z1, My) is
close enough to (z, H), then the algorithm is well defined and x,, — T q-superlinearly.

Proof. Take

M, = PSB(H, yn, $,)
and define 6, := y, — Hs,,. Then

6nT néT 6n n
Sn—I_S n < ) 8 >5n53-

M, — H =

[sal2 [sal?

Taking ¢ = 2, and y = x,41 in (33), we obtain 6, = O(|s,||0,|). Recall also that |uv™| =
|u| |v|. Therefore

|*Mn - E| = O(|onl).

On the other hand, since M, € K and M,s, = y,, condition (61) holds with |- |, = |- |r
and M = H. We can now apply Theorem 3.10 to terminate the proof. ad
Consider now the DFP formula ([7]):
(y—Ms)y" +yly—Ms)'  (y—Ms,s) o

DFP(M,y,s):=M + ) - " s>2 Yy .

This formula is well defined when (y,s) # 0 and gives a symmetric positive definite matrix
when M is itself symmetric positive definite and (y,s) > 0. The updated matrix can be

characterized as the solution of a variational problem. For this, let us introduce the weighted
Frobenius norm associated to a symmetric positive definite matrix W:

M — |M|wp = W 2MW=2) 5,
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Then, when (y,,s,) is positive, DFP(M,,, y,,, s, ) is the solution of problem (60) in which
K is the set of symmetric matrices and | - |,, is the norm | - |y, 5 where W, is any matrix
satisfying W,s, = y, (see [7]). As we shall see in the proof of the next proposition, an
appropriate choice of the matrix W,, will allow us to satisfy (59) and (61).

PROPOSITION 3.13. Suppose that (30)-(33) hold and that H is positive definite. Assume
that Algorithm (qN-AP3) uses the DFP formula: M, 41 = DFP(M.,, yn, sn). If (z1,My) is
close enough to (z,H), then the algorithm is well defined and x,, — T q-superlinearly.

Proof. Because H is positive definite, it is easy to see that when 0, := |2, —Z|+|¢, 1 —Z|
is sufficiently small, we have

(68) <yn75n> > a|5n|2 and |yn| < L|Sn|7

for some positive constants o and L. From now on, we suppose that o, is sufficiently small
to have (68).
The matrix

M, = DFP(H,y,,s,)

is positive definite and verifies M8, = Y. Then M, 41 is solution of (60) with |-|,, := ||Mn o
Defining 6, := v, — Hs,, we have

ﬂ;[ B H _ 6nyg —I_ynég _ <6n73n> y yT'
<yn78n> <yn75n>2 "

By (33), 6, = O(|sy| |oy|). Therefore, using (68),
(69) |41, — ] = Of]o]).
It follows that an—1/2 is bounded for o,, small enough, then
| M, — H|, = | MM, — H)M;"?|p = O(|M, - HJ).

Since M, is symmetric and M,s, = y,, condition (61) holds with M = H.
Let us now prove condition (59) with [|- || = | -|g z. Observe that

1/2 1/2
|M|wr = (tr(W_l/QMW‘lMW—l/Q)) 2 _ (tI’(lV[W_l)Q) =
Then, for M € RV*N with || M| = 1,

| M7 — || M])?

.- = < tr (MM —te(MH 1),
M M M M~1)? MH™1)?

| M|, + [|M]

because | M|, + ||M]| > 1. Now, A € R¥*Y i tr A is linear. Therefore, for some constant
C1 >0,

], = 3| < G - (L,
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Using the relation |B? — A%| = |B(B — A) + (B — A)A| < (JA| + | B|)| B — A], we get

(9], = 1] < Calal (10t Bt -

Because the norms | - | and || - || are equivalent and A — A~! is infinitely differentiable on
the set of nonsingular matrices, one has for g, sufficiently small

M, HMH\ = O(|o)),

where we used (69). Now condition (59) holds by homogeneity in M.
The conclusion of the theorem follows from Theorem 3.10. oo

4. A BFGS-Proximal Method. In this section, we study the particularization of
the algorithmic pattern (AP3), in which the proximal point z? is computed exactly and
the BFGS formula is used to update the matrices M,,. In this case, satisfactory global and
g-superlinear convergence results can be obtained, in the sense that, given any initial pair
(z1, My), with M; symmetric and positive definite, the generated sequence {z,} converges
superlinearly to a solution of problem (1). The precise results are given in Theorems 4.2
and 4.8 below.

To obtain these convergence results, f is always supposed differentiable (and therefore
finite everywhere). Then we will again use the notation g(z) for the gradient of f at z, as
well as g, = ¢g(2,,) and g£ = g(zP).

For given vectors s and y in RY, the BFGS update of an N x N symmetric matrix M
is the matrix

Mss™ M + yy "’
<A4378> <y78>

see [7] for instance). Observe that the trace of the matrix M, = BFGS Jw,y,s is given
+ g

(70) BFGS(M,y,s):=M —

| M2 Jyl?
<A1578> <y75>‘

When M is positive definite, the BFGS formula is well defined if (y,s) # 0. However, the
stronger condition

(71) tr My =tr M —

(y,s) >0

is generally required since this is a necessary and sufficient condition to have the updated
matrix positive definite.
The algorithm considered in this section is stated as follows:

¢ BFGS-proximal algorithm (BFGS-AP3):

STEP 0: Choose an initial point 2; € R" and an initial symmetric positive definite matrix
M;. Take m in ]0,1[. Set n = 1.
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STEP 1: Given &, and M,,, compute z? := pps, (z,,) and set s2 =zl — z,,.

STEP 2: Compute the next iterate by:
Tpy1 = Ty + Lysh.
The stepsize ¢, > 1 is chosen to satisfy the general descent condition (18) and

(72) <yn78’fb> > 07

where s, = 41 — 2, and y, = gn4+1 — ¢gn. We also suppose that ¢, = 2 is taken
when the line-search conditions (18) and (72) allow it.

STeP 3: Update M,, by the BFGS formula:
M, +1 = BFGS(M,,, y, 5p)-

Increase n by 1 and loop to Step 1. a

In Step 2, the additional condition (72) is only required to guarantee the well posedness
of the BFGS formula and the positive definiteness of the generated matrices. Note also that
from Section 3 it is important to take ¢, = 2 whenever possible for the sake of superlinear
convergence. Step 2 is actually a line-search generating trial stepsizes ¢ > 1 until (18) and
(72) are simultaneously satisfied.

REMARK 4.1. Feasibility of this line-search is easy to establish. First of all, the requi-
rement ¢ > 1 is not classical but z?, obtained for ¢ = 1, satisfies the descent test (18) with
a strict inequality. Then, by convexity of f, the stepsizes that satisfy (18) form a closed
interval, say Zy, containing 1 in its interior. As for (72), remark that the function

0<tr (g(an+1tsL) — gn,sL) =:d(1)

is nonnegative and nondecreasing and cannot be identically zero when f is bounded below
in the direction s2. This implies that the stepsizes satisfying (72) form an open interval
Iy =]t*, 4 o00[, with finite t*. We have to show that Z; and Z, intersect. There are 2 cases:

1. If t* < 1, 73 N Z3 contains some neighborhood of 1.
2. If 1 < ¢* < 400, the key is to observe that f(z, 4 ts?) has the constant slope
(gh,sP) = — (M, sP,sP) at any t € [0,1%] (recall (11)). Hence

(Mys5,, s7) = f(2n) = f(23,) 2 6.

Then, since t* > 1 > m, we can write
flan +19s2) = f(an) — 1° (Mysh,sP) < f(an) — mby,.

Thus, there is ¢ > 0 such that any stepsize in [t*,1% + ¢] satisfies (18) and (72).
Exploiting these properties, the line-search can then be implemented by a simple bra-
cketing algorithm as in [17]. Start from ¢ = 2 and, at the current trial stepsize ¢t > 1,
(¢) perform the descent test; if it is not satisfied, ¢ is too large, compute a smaller ¢;
(¢2) if satisfied, test “d(t) > 07; if yes, we are done; otherwise ¢ is too small, compute
a larger t.
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4.1. Global convergence. Our global convergence result is a simple consequence of
Theorem 2.3.

THEOREM 4.2. Assume that the convex function f has a nonemply bounded set of mi-
nima and that its gradient mapping is locally Lipschitz continuous. Let {x,} be the sequence
generated by Algorithm (BFGS-AP3). Then, all the accumulation points of {z,} and {22}
minimize f.

Proof. In view of Theorem 2.3, we only have to prove (23). Let L be a Lipschitz constant
for g on the set {z : f(z) < f(z1)} which, as already seen in the proof of Theorem 2.3, is
compact. Applying for example [25] or Theorem X.4.2.2 of [13], we obtain

L(Yns$n) > lynl®,
and the trace relation (71) gives
tr Mpp1 <trM, + L <trM;+nlL <(n+1)C,

where C' := max(tr My, L).
As the largest eigenvalue is less than the trace, we get

1 1 1
Amin(M 1) = > P
(M) Amax(M,) — tr M, = nC
Therefore, the convergence condition (23) holds and the result follows. o0

4.2. The r-linear convergence. To prove superlinear convergence, it is known that
a technically useful property is the r-linear convergence. This last property, interesting per
se, can be established for (BFGS-AP3) under rather mild assumptions on f. We start with
a result of general interest in convex analysis.

LEMMA 4.3. Assume that the convex function [ is differentiable. With & minimizing
f, let >0 and =z € RN satisfy

(73) f(z) > f(2) + ale — 2%
Then
(74) f(z) < f(2) + (1/a)lg(2)]

Proof. Write the subgradient inequality at 2 and obtain with the Cauchy-Schwarz in-
equality

f(@) < f(2) + [g(2)] |2 - 2],
so that with (73) and the nonnegativity of f(z) — f(z),

F@) = f(2) < lg(@)|\/[f(z) - f(@))/a.

The result follows. od
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The next lemma is part of the theory of BFGS updates and can be stated independently
of the present framework. We denote by 8, the angle between M, s, and s,:

cos B, 1= (M, 50) = (M5, 57)
" Mysy||sal | M, sh||sh|’

and by [-] the roundup operator: [z| = ¢, when i — 1 < z <7 and ¢ € IN.

LEmMA 4.4. Let {M,} be generated by the BFGS formula using pairs of vectors (y,, s,)
satisfying
(75) (U 5n) > 0nlal® and (o, 5a) > aolyal?
for all n > 1, where a; > 0 and ay > 0 are independent of n. Then for any r €0, 1[, there
exist posilive constanls v1 and 4, such that

(76) cosb; > 7,
(77) Misil
|51

for at least [rn] indices j in {1,...,n}.

Condition (76) on cosf; was proved by [25], when the BEGS update is used for uncons-
trained problems with the Wolfe line-search. Byrd and Nocedal [3] showed that this result
is true independently of any line-search: it can be stated, as above, only in terms of the
updated matrices M,, and the vectors y,, and s,. We found condition (77) also in [3].

We recall that the differentiable function f is said strongly convez on a domain D ¢ RY,
if it satisfies the equivalent properties for some a > 0 (see [13] Theorem VI.6.1.2):

fly) > flz)+ (9(z),y—z) + %|y — x|2, for all z,y € D,

(9(y) — g(2),y—z) > aly — z|>, forall z,y € D.

THEOREM 4.5. Assume that {z,} converges to a minimum point z, in the neighborhood
of which f is strongly convex and has a Lipschitz continuous gradient mapping. Then the
convergence of {x,} is r-linear; this implies in particular that Y, ~q |z, — Z| < 0.

Proof. Since this is an asymptotic statement, we limit our attention to large enough
n in all the proof below. The Lipschitz property of ¢ ensures the second condition in (75)
(see again [25]). The first one, as well as the growth condition (73), are ensured by strong
convexity (i.e., strong monotonicity of the gradient mapping). Then our proof is based on
an over-estimation of f(z,)— f(Z) and begins by over-estimating f*(z,) — f(Z).

Inequality (17) gives (M, s?,sP) /2 < 6, = f(xy,) — fP(x,), so that

n’ n

(78) JPan) = J(2) < f(an) = [(2) = 5 (Mnsy, s7) -

nTn

1
2

RR n°1851



To obtain an over-estimation of fP(z,)— f(z), we under-estimate (M, s, sP), first in terms
of |g2|? and next in terms of fP(z,)— f(), using (74).
We start from
(M, st, sty = |M,st||st| cosb,, foralln>1.

n’' n

Fixing r in ]0, 1[, we denote by N the set of indices j in {1,...,n} for which (76) and
(77) hold. Using successively (76), (77) and (74), and remembering from Lemma 2.1 that
g = —M, sP  we write for all j € N

(M55, 5) 2 M5 > M5 = Tl > () - S(@),

38555

where C1 = ay1/72. Adding (C1/2) <Mjs§, s§> to the extreme sides and using (15) give

(1+ Cl) (M;sh, %) > Oy (f7(x;) = [(&)), forall j € NP,

so that, as wished,

<M]s], ) > Ca (f7(w;) = [(7)), forall j € N,

where Cy = C1/(2 4+ C7). Combining this with (78) gives

1
14+ Cy

)~ 1@ < (15 ) e = J@), Torall j € N7

Now, using the line-search condition (18), we have for j € N

(L—m) (f(z;) = f(2)) + m ([*(z;) - [(2))

(1- 22 ) (e - @)

J(zj41) — f(2)

<
<
Remark that we can write 1 — mCq/(1 4 Cy) =: 71/7 for some 7 in ]0, 1[. Furthermore, as
|NJ| > rn (Lemma 4.4) and f(z;41) — f(Z) < f(z;) — f(Z) for all j, we have

[@nsn) — 1(@) < TN(f(a) = f(2)) < 7 (F(o1) - (3)), Torall n> 1.

Finally (73) allows us to deduce

< [Lmd S [ ) I e

|z, —
a

This implies that lim sup,,__ |z, —2|'/" < \/7 < 1, characterizing the r-linear convergence
of z,, to z. Finiteness of >, <4 |z, — Z| follows. oo
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4.3. Acceptability of the ideal stepsize. An important point for fast convergence
is whether the stepsize ¢,, = 2 is accepted asymptotically by the line-search conditions (18)
and (72). For this, and in particular for the descent condition (18), the candidate
(79) ot =2, + 240

n

must be “superlinearly closer” to the minimum point z than x,. This is the last condition
involved in the next result.

THEOREM 4.6. Assume that T is a minimum point of f al which (30) and (31) hold,
and such that the directional-derivative operator H of g satisfies the following property:

(80) da > 0 such that (Hz,2) > a|z|* for all z € RV,
If
(81) |2 — 2| = o(|z, — ),

then the point z} of (79) is accepted by the line-search of Algorithm (BFGS-AP3) for n
large enough.
Proof. ¥From (34), we have for z arbitrary in the neighborhood of z:

(82) 9(z) = H(z —2) + o(|z — 2]),
so that in particular,
(95, sh) = (Hep, sp) + o(len]|sp]).

For n large enough, we write (82) with z = z 4+ 7(z,, — ); we multiply by z, — z and we
integrate from 7 =0 to 7 = 1:

J(@n) = [(@) 5 (Hewse) + ol leal?).

The same operation with z? instead of z,, gives

—_

f(ah) = f(2) + 5 (Heb, eb) + o([eh]?).

[\

These three relations give an estimate of §, = f(z,) — f(a) + % (g, s2):
1, 1, ,
0, = 2 (Hep,en) — 3 (Hel,en) + o(len|?),

where we have used (81): s and e? have the order of magnitude of e,. In the second term,
use the relation

€n = 268 — (5 — &) = 261 + of[ex)
to obtain

6, = l(Hemen> — <f[ep ery + 0(|en|2).

2 n’-n
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In summary, we have the following estimate for the right-hand side in (18):

f(n) = mé, = f<f>+“Tm@emem+m<Hez';,ez>+o<|en|2>
> f(@) + =

m
a|€n|2 +0(|€n|2)7

because m € ]0,1[. On the other hand, (82) can again be used to obtain the estimate (we

set ef 1= af — )

Jag) = (@) + S (Hey ) + o(lex ') = [(2) + of[en]).

Because (1 — m)a/2 > 0, we conclude that our g-superlinear assumption ensures that (18)
is eventually satisfied.

It remains to take care of (72). From (82), setting s := a2} — z,, = —e,, + o(|en|), we
write

(g(z),si) = (He s7) + olleq | sf]) = ollenl”),

(9(xn)s57) = (Hen, 57) + oflen|®) = = (Hen, en) + of|ex]*).
We therefore obtain
(9(z) = g(zn), s7) = (Hen, en) + o(len]?) > afen|” + of|enl?),
and this again is eventually positive. ag

4.4. The ¢-superlinear convergence. Let us give one more general result from the
theory of BFGS updates (see [3]).

Lemwma 4.7. If {M,} is generated by the BFGS formula using pairs of vectors (yn, s,)
such that

. — Ms,
(Yn,Sn) >0 forall n>1 and Zu<

’
'rLZl |STL|

where M is a fixed symmeltric positive definite matriz, then

(83) (M,, — M)s,, = o(|sn])-

We have now all the necessary material to give our superlinear convergence result.

THEOREM 4.8. Assume that the sequence {z,} generated by Algorithm (BFGS-AP3)
converges lo an oplimal point z, and that (30), (33) hold. Assume also that H is positive
definite. Then, the convergence of x,, to T is q-superlinear.

Proof. First of all, we establish the necessary local properties of the gradient mapping.
Take z and y in the neighborhood of z and apply (34):

g(2) —g(y) = H(z —y) + o]z — yl).
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This implies the Lipschitz continuity of ¢ near z. Multiply this last relation by z — y:
because H is positive definite, g is (locally) strongly monotone, i.e., f is (locally) strongly
convex. Thus, starting with Theorem 4.5 (all the assumptions required are satisfied): {z,,}
converges r-superlinearly to z.

Now, since (33) holds, we have

[9n = H|

< Llenss - 2]+ |2 - 2]).
EM

Therefore, by the r-linear convergence of {z,},

Z |3/n HSnl < 4oo.

n>1 |Sn|

This and Lemma 4.7 give (M,, — H)s, = o(|s,]).

Finally, the latter estimate and Theorem 3.6 imply that z, + 2s2 — Z = o(]e,|). Then
Theorem 4.6 shows that the stepsize ¢, = 2 is accepted by the line-search. Hence e,41 =
o(|e,,|) and the convergence is g-superlinear. oo

Let us conclude this section by a consequence of Theorems 4.2 and 4.8: if g is locally
Lipschitzian, and if f has a minimum point z satisfying the assumptions of Theorem 4.8,
then Algorithm (BFGS-AP3) is globally and ¢-superlinearly convergent.

5. Conclusion. The essential content of this paper is a theoretical investigation of
algorithms for nonsmooth optimization combining quasi-Newton techniques with Moreau-
Yosida regularizations. When doing so, we have privileged approaches lending themselves
to implementations via bundle methods.

Ideally, this should be achieved by the algorithmic pattern AP2; see [18] for imple-
mentable proposals. However, the local properties of this algorithm turn out to be rather
hard to analyze; as for AP1, studied by [20], some technicalities are needed when turning
to implementation aspects. We have therefore adopted here AP3, which appears as a good
compromise between theoretical simplicity and practical significance.

As stated in Sections 3 and 4, AP3 is quite comparable to a standard quasi-Newton
algorithm. By analogy with differential equations, AP3 could be viewed as a trapezoidal
integration scheme: two successive iterates are computed using the derivatives g and H
at their mid-point 2P. As a by-product, the tools of the present work could therefore be
applied to standard quasi-Newton algorithms (i.e., explicit integration schemes). Keeping
this in mind, our local theory of §3 is then fairly comparable to that of [14]. In particular,
it should be pointed out that the relevant smoothness assumptions are basically the same.
Our role in this matter has been to extract from [14] the key properties of f, to be satisfied
at the solution point z only. In other words, we used the conclusions of Theorems 3.1 and
3.2, instead of their premises.

On the other hand, such a local study with weakened assumptions is related to the
resolution of nonsmooth equations, studied in [23], [27], [16], [26], [24], among others. There
exist Newton formulee which converge superlinearly under fairly general assumptions (semi-
smoothness of g). Indeed, a Newton scheme uses directly the Hessian V2 f(xz,,), which gives
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by definition reliable second-order information at x,; the role of semi-smoothness is then to
ensure that this information remains valid all the way to convergence. By contrast, we need
here apparently restrictive assumptions such as (3.8); in a quasi-Newton context, however,
they seem rather minimal. For the quasi-Newton equation (3.1) to be any good, the values
g(z,,) and g(z,4+1) must reflect the values g(z) at neighboring z’s; this is precisely the role

of (3.8).
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