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Abstract
Systems made of distributed reactive processes communicating with shared
variables are described. Execution of these systems is in two phases: first vari-
ables are written, then read. Couples of these two phases define system instants,
and during one instant, all readers of a given shared variables read the same
value. One thus get deterministic systems with a kind of shared variable co-
herency.

Résumé
On considére des systémes de processus réactifs distribués communiquant
par variables partagées. L’exécution est en deux phases : une phase d’écriture
suivie d’une phase de lecture. Un couple formé de ces deux phases définit les
instants du systéme. Pendant un instant, tous les lecteurs d’une méme variable
partagée lient la méme valeur. On obtient ainsi des systémes déterministes qui
assurent une cohérence des variables partagées qui les composent.
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1 Introduction

Communicating systems which behave in an activation/reaction mode have re-
cently been considered and studied. Examples of such systems are “reactive
systems” introduced by Harel and Pnueli[8] that are supposed to maintain an
ongoing relationship with the environment. “Synchronous systems” introduced
by Berry[2,1] are reactive systems where reactions and activations are sufficiently
close to be considered as synchronous. In fact, reactive systems are called syn-
chronous when one wants to insist on response time. Several languages have
been introduced to deal with reactive[7,10] and synchronous(2,6,9] systems.

“Reactive C”[3] is a C based language which allows an activation/reaction
programming style. Several classes of systems have been considered and imple-
mented in RC[5], for example nets of reactive processes communicating through
unbounded fifo files[d].

Shared variables can be used for communication between paralle]l compo-
nents provided write and read actions are atomic. Shared variables are often
considered as the lowest level communication mechanism. During execution,
read and write actions may be interleaved in any order and this may cause non-
determinism (a writer may update a variable before a reader gets the value, or
conversely. the reader may read first). Moreover one cannot insure that several
readers of the same variable all read the same value (this can be view as a lack
of data coherency).

In this paper, one considers a class of activation/reaction systems where
components (named modules) use shared variables to communicate. Each reac-
tion of a system is made of one reaction of its modules (we say that execution
is “synchronous”), and so there exists a global notion of instant for the systems
we consider. There exists now the possibility to structure reading and writing
action interleavings during each instant. More precisely, all writers write into
variables before readers read out of them. Assuming such executions, system
behaviors are deterministic and we get data coherency: for each instant, all
readers necessarily read the same value. This is very similar to the Esterel
point of view: Esterel signals are shared variables that at each instant, cannot
be emitted (that is written) after being read.

The paper’s structure is the following: the model is introduced first and
two simple examples are given; then we discuss the implementation in RC and
finally give some sessions to show how to run systems.

2 The model

The model we consider is based on the following notions:

Reactivity. Sysftems are made of modules that are put in paralle] and that
use shared variables to communicate and synchronize. Modules and systems are



reaclive, that is they react under activation. More precisely, module are reaclive
programs and systems are executed in a synchronous way, that is one reaction
{one instant) of a system correspond to one reaction of each module in it.

Communication. Shared variables hold values that can be read and written
by modules. A coherency property is verified: during one instant, all modules
reading a variable necessarily get the same value. There can be more than one
writer for a given variable during one instant and in that case, values are com-
bined using a commutative/associative function (as in Esterel). As an example
of such function, consider the function that generates an error after the first
writing; another example is the max function over integers.

Execution. Execution is divided into fwo phases. During the first phase,
modules are free to write variables and cannot read them, and conversely, during
the second phase, modules are free to read variables but cannot write them. The
reading phase begins when all modules have terminated their writings. During
the reading phase, attempts to write into a variable are postponed to the next
instant,

System structure. Modules can be dynamically created or removed at the
beginning of each reading phase. Also, shared variables can be dynamically
created at the beginning of each reading phase. More precisely, the following
activations are possible:

1. Start the system (start command).
2. Get one system reaction (go command).

3. Add a module and maybe some variables (internal or external com-
mands).

4. Remove a module out of the system (remove command).

Several points can be discussed:

Atomicity. There is an atomicity aspect: one system reaction is made of
several reactions of modules in it, and a new reaction cannot start before the
previous one is finished. Thus, system reactions are in a sense, atiomic. We
can speak of a global system reaction made out of module micro-reactions, or
alternatively of global instants divided into several micro-instants.

Distributed termination. The end of each phase and thus the termination
of system reactions needs all modules to synchronize. A distributed termination
technique is thus used.



Determinism. System behaviours do not depend on the way modules are
executed and nondeterminism only comes from modules themselves. In par-
ticular, assuming deterministic modules, one gets deterministic systems whose
behaviours are reproducible. In this case, we thus have deterministic parallelism.

Comparison with Esterel. As noticed before, there exists links between
shared variables and signals. At each instant, a signal S cannot be emitted
after being read, thus, there exists for S, writing and reading phases. But
as opposite to shared variables, termination of signal writing phases are not
globally synchronized: one signal can be in a reading phase although another
one is in writing phase. In Esterel the only global synchronization needed is at
the end of instant, although with shared variables, two are needed, one at the
end of each phase.

In Esterel. equivalent of writing into an already read variable is called
“causality cycle” and is detected at compile time; on the contrary, writing in a
shared variable during read phase is postponed to the next instant. The Esterel
programming style can no longer be used: for example, Estere] instantaneous
dialogs[1] are not possible with shared variables. On the other hand, system
dynamic structure changes are not expressible in Esterel that deals only with
static objects.

2.1 Examples

Two examples are considered: one is a system to compute the fibonacci se-
quence, and the other is an arbitration protocol.

Fibonacci sequence. The system considered computes the fibonacci sequen-
ce defined by: fib(0) = fib(1) = 1 and for all n > 1, fib(n) = fib(n — 1) +
fib(n - 2).

The system is made of 2 variables 4 and B and 4 modules. Combine function
associated to shared variables does not matter, as for each variable, there will
be at most one writing per instant.

Modules are the followings:

e Constil writes 1 in the two variables A and B and then vanishes.
e Plus cyclically reads A and B, and writes their sum into A.
e Shift cyclically reads & and writes it into B.

e Print cyclically prints A when it has been written.

Read/write access to A and B is pictured in figure 1

The system is deterministic and computes the fibonacci sequence 1 2 3 §
8 13 21 34 55 ... More precisely, it prints a new element (of course, without
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Figure 1: read/write access in the fibonacci example

recomputing the previous ones) every time it is activated by a go order. One
can see that system behaviour does not depend on module execution order:

e At each instant, Plus writes the sum of previous instant 4 and B values
(they are got in reading phase, so writing of their sum is postponed to
the next instant). Similarly, at each instant Shift copies A previous value
into B.

o In writing phase, Shift writes into B and Plus writes into A so the result
does not depend on the order of these actions.

e Inreading phase, Plus reads A and B, and Shift and Print reads A. Again,
the result does not depend on the order these actions are done.

Let us note A, the value of A and B, the value of B at the end of instant
n. 1t is clear that 4,, = A,,_1 + B,_; and B,_; = A, _», and thus, 4 holds the
fibonacci sequence.

Arbitration protocol. Let us consider a system in which modules have
their own arbitration numbers to determine priorities’. Variables are used
to implement some kind of “semaphore with priority”: when several mod-
ules are trying to get a semaphore, only the one with the highest arbitra-
tion number can get it and others are blocked until the winner releases the
semaphore. Arbitration numbers are integers with two new values TAKN E and
RELEASE added. The combine function is the max function with for all
n, maz(TAKE,n) = mazx(n. TAKE) = TAKFE and max(RELEASE n) =

I'This example is inspired by the IEEE Futurebus proposal.
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maz(n, RELEASE) = RELEASE®. To get a semaphore, a module writes its
arbitration number into it, and then reads the value. If it reads its own arbi-
tration number, the module wins access and it writes TAK E in the semaphore
to prevent other modules to take it. Otherwise, the module waits until it reads
RELEASE. 1t can then reenter the competition by writing its arbitration
number again.

3 Implementation

Intuitively, implementation is as follows: modules are reactive procedures; they
are suspended when trying to read in write phase and blocked until the next
instant when trying to write in read phase. At each instant all modules present
in the system are activated twice, one time during the writing phase and one time
during the reading phase. The order they are activated during these two phases
is not relevant as values written are combined with an associative/commutative
function. Modules are put in a list that changes dynamically when new modules
are added into the system, or when modules are removed from it.

We are not going to describe the RC language here (see [5] for a complete
description) but only cite the primitives used for implementing systems.

e Each system module is activated at each instant using the merge state-
ment. More precisely, combining merge and recursive reactive procedure
definitions allows to define a kind of dynamically n-ary merge operator to
deal with module add and remove actions.

e Suspension of modules during writing phase is obtained with the suspend
statement. On the contrary, the stop statement is used to block execution
up to the next instant. The close statement allows suspended modules to
resume and to build one instant from one writing phase and one reading
phase.

e Code distribution is obtained using reactive processes and reactive tasks.
Reactive processes (introduced by the rprocess keyword) are similar to
reactive procedures but are run as stand alone processes. Reactive tasks
(introduced by the rtask keyword) are the way to use reactive processes
as if it was a reactive procedure. Parameters are transfered through the
network when reactive tasks call reactive processes.

Several parts have to be implemented:
e An cngine that makes phase changes.

o A scheduler that makes all modules react.

2maz(TANE,RELEASE) is undefined as well as max(RELEASE, TAKE)



e A kernel that process orders.
e Various systems made of modules and shared variables.

This architecture is described on figure 2.

internal,..

shared
variable

shared
variable

Kernel

module

Engine

medule

Figure 2: global architecture

In this section, we describe all components but the kernel that will be de-
scribed in next section.

3.1 The scheduler

The scheduler executes in order elements of a list of tasks given as parameter.
This list may dynamically change when a new task is added in the system, or
when a task is removed from it. In these cases, the global variable Change is set
to 1. The code is:
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rproc SchedulerEngine(list)
TaskList list;
{
every(Change){
if (1ist){
merge
exec Head(list);
exec SchedulerEngine(Tail(list));
}
}
}

The Head reactive procedure executes the first list element. The Tail C function
returns all but the first list element. The SchedulerEngine reactive procedure
1s recursively defined and it is restarted every time (use of every statement) the
list changes (Change variable equals 1).

3.2 The engine

The engine executes the scheduler and decides of phase changes. First the
writing phase begins. The scheduler is executed, so each task present in the
system is activated. During this phase, modules trying to read are suspended,
waiting for the read phase. Then the read phase begins and modules suspended
on reading operations can resume. During this phase, modules trying to write
are stopped till the next instant.

Code for read/write operations is the following:

rproc int Read(var)
SharedVar var;
{
if (InWritePhase) suspend;
return Value(var);

}
The Value C function returns variable values.

rproc void Write(var,v)
SharedVar var;
int v;
{
if (InReadPhase) stop;
Combine(var,v);

}

The Combine C function combines previous and written values.
Code for the engine is:

o



rproc void Engine(){
close
merge
for(;;){
BeginReadPhase;
stop,;
}
merge
exec Scheduler();
for(;;){
BeginWritePhase;
stop;

3

Notice the use of the close operator to make one unique instant from the two
reading and writing phases.

3.3 Systems

System declarations cousist in sets of internal modules. For example the fi-
bonacci system is obtained by the declaration :

System((4,Print,Shift,Consti1,Plus))

Notice that the number of internal modules appears as first parameter of the
System macro.

Module are implemented as RC reactive procedures having shared variables
as parameters. They are declared using the module macro (ended by the number
of variable parameters).

Fibonacci example. Modules Const11, Plus and Shift are implemented as
the following RC reactive procedures.

module2(Consti1,A,B)
{
exec Write(A,1);
exec Write(B,1);
}
endmodule

module2(Plus,A,B)
{

rauto int vi, v2;
for(;;){



into v1 exec Read(A);
into v2 exec Read(B);
exec Write(A,vi+v2);
}
}
endmodule

Notice the use of a raut » variables to keep values from one instant to the next.

module2(Shift,A,B)
{
rauto int v;
for(;;){
into v exec Read(R);
exec Write(B,v);
}
}

endmodule

Arbitration protocol. The two Take and Release primitives are imple-
mented as the following reactive procedures.

rproc void Take(semaphore,arbitrnum)
SharedVariable semaphore;
int arbitrnum;

{
rauto int v;
for(;;){
exec Write(semaphore,arbitrnum);
into v exec Read(semaphore);
if (v == arbitrnum){
exec Write(semaphore,TAKE);
break;
Yelse{
for(;;){
into v exec Read(semaphore);
if (v == RELEASE) break;
stop;
}
}
}
}

rproc void Release(semaphore)
SharedVariable semaphore;

10



exec Write(semaphore,RELEASE);

4

Execution

We are now going to describe the last component, that is the kernel, and give
some sesstons using the fibonacci system.

4.1

The kernel

The kernel is implemented as a RC reactive process At each time it is activated,
it decodes the order received and if needed, an associated message (of type
wrapstring). Orders are the following:

START to let the system know about the internal modules.
GO to get one reaction of the system.
INTERNAL to add an internal module in the system.

EXTERNAL to add an external module in the system. This feature will be
described later

REMOVE to remove a module known by its “pid” (process identifier). This
“pid” has been returned by the kernel when the module has been added
in the systenn.

The kernel is implemented by the following reactive process:

rprocess int Kernel(order,msg)
int order; wrapstring msg;

{

int pid;
for(;;){

rswitch(order){

case START:
CreatelnternalModules();
break;

case GO:
exec Engine();
break;

case INTERNAL:
DecodeIntern(msg);
pid = AddInternalTask(InternProgram,Arglist);
break;



case EXTERNAL:
DecodeExtern(msg);
pid =
AddExternalTask(ExternProgram,ExternMachine,ArgList);
break;
case REMOVE:
RemoveTask(msg);
break;
}
stop pid;

Commands use the Kernel reactive process as a reactive lusk For example,
code for the internal command is:

char Host[128];

rtask int Kernel(order,msg)
int order; wrapstring msg;
{rprocess named "Kernel" on Host;}

main(argc,argv)
int argc;
char *argv(];
{
int pid;
if (arge!=2){
printf("usage: %s command\n'",argv(0]);
exit(1);
}
gethostname(Host,128);
into pid react Kernel (INTERNAL,argv[1]);
printf("pid:%d\n",pid);
exit (0);

4.2 Execution of the Fibonacci system

Here is a session using the fibonacci system: First, the fibonacci command is
run and the start command is executed to start the systemi. Then the four
internal modules are added in (the kernel returns their pid), and finally the
system is activated four times.

12
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cma$ fibonaccik

cma$ start

cma$ internal "Print,A"
pid: 0

cma$ internal "Consti1l,A,B"
pid:1

cma$ internal "Plus,A,B"
pid:2

cma$ internal "Shift,A,B"
pid:3

cma$ go

1 cma$ go

2 cma$ go

3 cma$ go

5 cma$

Notice that shared variables are declared as soon as their names appear for the
first time In internal commands
The go n command is equivalent to running go n times. Thus, one have:

cma$ go 5
8 13 21 34 55 cma$ go 5
89 144 233 377 610 cma$

The system does not work anymore when a module is removed (here we
remove Shift whose pid is 3):

cma$ remove 3
cma$ go 5
610 610 610 610 610 cma$

All becomes correct as previously when the missing component is put in the
system (notice that a new pid is returned):

cma$ internal "Shift,A,B"
pid:4

cma$ go 5

610 987 1597 2584 4181 cma$

A new internal Print module sharing & can be added:
cma$ internal "Print,A"
pid:5
cma$ go 5
6765 6765 10946 10946 17711 17711 28657 28657 46368 46368 cma$

13



Distribution. Modules instead of being internal, can be external, that is
running as stand alone processes (may be on diflerent machines). In this
case, shared variables that are parameters of external modules are transmitted
through the network. The important point is that the only thing to change to
define an external module instead of an internal one, is to use the autonomous
macro instead of the module macro. For example, the following code defines
Shift as an external module {(notice that autonomous, as module, is ended by
the number of shared variable parameters).

autonomous2(Shift,A,B)

{
rauto int v;
for(;;){
into v exec Read(4);
exec Write(B,v);
}
}
endautonomous

This code can be compiled and run as it is.

In the following session, the fibonacci system is defined with Shift and
Print as external modules running on the “shiva” machine and with Const11
and Plus as internal modules.

cma$ fibonacci&

cma$ start

cma$ external '"shiva,Shift,A,B"
pid:0

cma$ external "shiva,Print, A"
pid:1

cma$ internal "Constiil,A,B"
pid:2

cma$ internal "Plus,A,B"
pid:3

cma$ Print&

(4] 3647

cma$ Shift&

(5] 3648

cma$ go 10

1 2358 13 21 34 55 89 cma$

Of course, the external modules may be run on distinct machines.

14
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5 Conclusion

We have considered a class of parallel and distributed systems where communi-
cation is through shared variables.

One main characteristic of these systems is the existence of a notion of a
global instant shared by all system components. During one instant, all readers
of a shared variable always get the same value, that is the combination of all
values written in it during the instant. One thus get a model in which data
coherency and determinism are preserved.

The othier main characteristic is that systems can dynamically change by
adding or removing components.

The model has been implemented using Reactive C. In this implementation,
system components can be freely distributed on distinct machines communicat-
ing through a network.
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