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DIFFERENTIABLE

Krzysztof C. KiwiEL!

January 19, 1993

ABSTRACT

We study subgradient methods for convex optimization that use projections onto suc-
cessive approximations of level sets of the objective corresponding to estimates of the
optimal value. We show that they enjoy almost optimal efficiency estimates. We
present several variants, establish their efficiency estimates, and discuss possible im-
plementations. In particular, their projection subproblems may be solved inexactly
via relaxation methods, thus opening the way for parallel implementations. We dis-
cuss accelerations of relaxation methods based on simultaneous projections, surrogate
constraints, and conjugate and projected (conditional) subgradient techniques.

RESUME

Nous étudions les méthodes d’optimisation convexe qui utilisent la projection sur des
approximations successives d’ensembles de niveau de la fonction-colit correspondant a
des approximations de la valeur optimale. Nous montrons que ces méthodes ont une
efficacité presque optimale. Nous en présentons plusieurs variantes, établissant une
estimation de leur efficacité, et traitant d'implémentations possibles. En particulier,
le sous-probleme de projection peut étre résolu de facon inexacte par des méthodes de
relaxation, ce qui ouvre la possibilité d’implémentations paralléles.
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1 Introduction

We consider various modifications of Polyak’s [Pol69] subgradient projection algorithm (SPA)
and the recently proposed level method of [LNN91] for solving the convex program

fr=min{ f(z):2 €S} (1.1)

under the following assumptions. S is a nonempty compact convex subset of RY, f is a
convex function Lipschitz continuous on S with Lipschitz constant Ly, for each z € S we
can compute f(z) and a subgradient g;(z) € df(z) of f at x such that |g;(z)| < Ly, and
for each z € R" we can find Ps(z) = argmin{|x — y|: y € S}, its orthogonal projection on
S, where | - | denotes the Euclidean norm.

If f* 1s known, the simplest version of the SPA generates successive iterates

1 = Py(a® — G (f(2%) = f)gp(a*) lgp@¥)F) for k=1,2,..., (12)
until g;(z*) = 0, where 2! € S and #, are scalars in the set of admissible stepsizes
T = [tmin,tmax] for some fixed 0 < tpin < tmax < 2. (1.3)

It has the following efficiency estimate for any (absolute) accuracy € > 0:

k > cspa(tmin, tmax)(diam(5)Ly/€)® = min{f(a?):j=1:k} - f* <¢ (1.4)

csPA{tmins tmax) = 1/tmin(2 — thax) and  mincspa(s,-) = cspa(l,1) =1,

where diam(S) = sup, ,cslv — y| denotes the diameter of S. This estimate (see §5) seems
to be a folklore result, but it is less well known that it is optimal in a certain sense [LNN91,
NeY79]: if S is a ball and N > (diam(S)L;/€)*/4 then for any method that uses at most
(diam(S)L;/€)*/4 objective and subgradient evaluations there exists a function for which
this method does not obtain an accuracy better than €. _

We present three schemes for estimating f~ in (1.2) that extend the ideas in [KAC91,
KuF90, LNN91]. Two of them employ an overestimate D > diam(S), which replaces diam(S)
in (1.4); the third one does not involve D but is much more difficult to implement.

To enhance faster convergence. we give algorithms that use projections onto successive
approximations of level sets of f derived from several accumulated subgradient linearizations
of f or their aggregates (convex combinations) as in descent bundle methods for nondiffer-
entiable optimization (NDO); see, e.g., [Kiw85, Lem89]. Such algorithms provide freedom
to trade-off storage requirements and work per iteration for speed of convergence. More-
over, their projection subproblems can be solved efficiently even in the large-scale case by
a variety of methods, especially those that can benefit from parallel computation; see, e.g.,
[AhCB89, IDPI1, Kiw92, LoH88, Oko92, Spi87, Tse90, YaM92] and the references therein.
The ability to use inexact projections makes such algorithms very attractive in large-scale
applications. In contrast, the existing bundle methods (see, e.g., [Kiw89, ScZ92]) employ
nonstrictly convex quadratic programming (QP) subproblems, and it i1s not clear how to
solve such QP subproblems exactly via parallel computation.



It is fruitful to view subgradient methods as extensions of relaxation methods for linear
inequalities; see, e.g., [Agm54, Gof78, MoS54]. We provide a unified perspective on accel-
eration techniques for such methods, including simultaneous projections [Tod79], surrogate
cuts [BGT81, GoT82, 0ko92], dual e-subgradient techniques [Bradl, KuF90, LNN91], surro-
gate constraints [YaM92], conjugate subgradients [CFM75, KKA87, Shc92, ShU89, Sho79),
and projected (conditional) subgradients [BaG79, KiU89]. In contrast to their usual inter-
pretations, we show that such methods hinge on implicitly generated affine (or polyhedral)
models of f. Ezplicit use of such models allows various modifications and extensions that
seem more efficient. It turns out that some of these methods are simplified versions of others
that trade speed of convergence for ease of implementation. Further, our framework shows
how to modify their models to account for the constraint z € S. For instance, it suggests
the following simple modification of (1.2)

$k+1 = arg mm{ |1' - xk|2/2 : f(xk) + <gf(:13k),1: - Ik> S f‘ax € S}v (15)

which seems to be more eflicient in general.

In effect, we show that several versions of subgradient projection methods share efficiency
estimates similar to (1.4). Since this estimate cannot, in general, be improved uniformly with
respect to the dimension N by more than an absolute constant factor, all these methods are
optimal in the sense of [NeY79]. We note, however, that this estimate can be attained only
for really large N. We may also expect that for ‘most’ functions encountered in applications
the methods should be much more efficient than the worst-case estimates suggest. Indeed,
preliminary numerical experience with the level method of [LNN91] has been very encour-
aging. Yet this method is not readily implementable because it requires unbounded storage
(at least of order k(N +1) at iteration k). Thus the main aim of our work has been to derive
methods which have comparable efficiency but are more easily implementable. In order to
keep this paper reasonably short, we intend to provide numerical evidence elsewhere.

The paper is organized as follows. In §2 we introduce a general relaxation level algorithm.
Its efficiency is analyzed in §3. In §4 we extend the nested ball principle of [Dre83]. Some
useful modifications are given in §§5 and 6. Two alternative techniques for generating lower
bounds f¥, via fixed level gaps and full model minimizations are described in §7 and §8
respectively. Dual level methods are the subject of §9. In §10 we give conditions that allow
efficient implementations via general relaxation and QP methods discussed in §§11 and 12,
as well as ‘cheap’ surrogate projection methods developed in §13. Extensions of conjugate
subgradient implementations are given in §14. In §15 we argue that subgradient relaxation
should also include inequalities related to S. Finally, we have a concluding section.

We use the following notation. We denote by (-,-) and | - | respectively the usual inner
product and norm in RY. B(z,r) = {y : |y — 2| < r} denotes the ball with center z and
radius 7 > 0. For ¢ > 0, the e-subdifferential of f at z is defined by 8, f(z) = {p € R" :
fly) > flz)+{py—2)—€¢ Vye IRV}. We denote by 8f the ordinary subdifferential 8, f.
The natural logarithm with base e is denoted by In(-). We let 1: & denote 1,2,...,k. For
brevity, we let a/bc = a/(bc). The convex hull is denoted by co.

[CV]



2 The relaxation level algorithm

In this section we describe our first modification of the SPA. As in [BaS81, KAC91, LNN91],
when the optimal value f* is unknown, it may be replaced in (1.2) by a variable target (level)
value

fl’:v = k - K( \l:p_fltw) = K’flkow+(1 - K’) :p’ (21)

where 0 < k& < 1 is fixed, = minJ 1k f(z?) is an upper bound on f*, and the lower
bound ff, < f* is chosen to ensure fE. — f* as k — oo. Thus we obtain the subgradient
projection level algorithm (SPLA):

= Ps(e* — tu(f(") = fie)gs (=) Ngs(z")?) for k=1,2,...; (2.2)

if g7(z¥) = 0 then, of course, the method stops with an optimal z* in S* = Argming f. To
get some feeling about possible updates of f, it is instructive to consider first the following

ideal bisection method (cf. [MTAB81]).

Algorithm 2.1 (ideal level method for (1.1)).
Step 0. Choose 0 < k < 1,2' € S and f, < f*. Set k = 1.

Step 1. Set f¥ = f(z*), fi, by (2.1) and the optimality gap AF = ff — fif .

Step 2. Let C(f fe) ={e: f(2) £ fi,} HL(S, fe,) NS =0, go to Step 4.

Step 3. Find 25t € L(f, fE,)N S, set fit! = fk increase k by 1 and go to Step 1.
Step 4. Set zFt! = 2% ff+1 = £k increase k by 1 and go to Step 1.

s Jlow

Clearly, the method produces f, < f*, f& — f* < A and A**! < max{x, (1 - )}A*
for all k. The crucial property is that £(f, ff,) N S = @ implies ff, < f~.
To make Algorithm 2.1 implementable, we need a submethod for finding a point in
L(f, f£,) N S or detecting that L(f, f£,) NS = 0. For this kth set intersection problem, an
iteration of the successive projections method [GPR67] of the form #*+! = PS(PL(_{,],':V)(xk))

can be implemented approximately as follows. Letting f(;¥) = f(v) + (95(v),- — y) denote
the linearization of f at any y € S, with f(:;y) < f and f(y;y) = f(y) by convexity, we
have

S*={z: flz;y) < f*VyeS}nS (2.3)
and
(f’flev)_{’l 1: J <flev VyES} (24)
We may use some accumulated linearizations f’ = f(;;2?), j <k, in the kth model of f
f¥(z) = max{ fi(z):j € J*} with ke J*C {1:k} (2.5)
and let
= Ps(z* + ta[Pyju g \(2*) — 2*]), (2.6)

where we have underprojection if t; < 1 or overprojection if t;, > 1. For instance (2.6) gives

r 6) gi
(1.2) when ff, = f, J* = {k} and L(f*, f{,) is the halfspace H* = {z : f*(z) < f&,}



given by the inequality of (2.3) most violated at z*; of course, Py«(z*) = z* — (f(z¥) —

fE)gs(z*)/1gs(z¥)|%. This is just an iteration of a relaxation method for solving the inequal-
ities of (2.4), followed by a projection on S. As for (2.2), fE, may be increased to ff, when
it s discovered that these inequalities do not have a solution in S. Hence we shall exploit the
fact that certain versions of successive projections methods can detect in finite time that a
given set intersection problem is unsolvable (although they need not find a solution in finite
time when it exists). As will be seen below, the main idea of such methods is to reduce the
distance of the iterates from S*. They may be painfully slow, even in the most favorable
case of ff = f*, when only one inequality of (2.3) is consxdered at a time. To accelerate

convergence, we may use a larger J*, i.e., a tighter approximation f“ of f.
To illustrate these facts we need a xesult of Agmon [Agmb4]. Given a closed convex set
C c R" and an admissible stepsize t € T, we define the relazation operator

Reys(r) =z + t(Pe(z) — x) (2.7)
(where Po(z) = z if C = 0) that has the Fejér contraction property

ly — 2? = 42 = )z - Po(z)]?

ly — Reuf2)® <
< Iy - -77|2 - tmin(2 - tma\)dé(T) Vy € C,-T € IRN, (28)

where dc(z) = infyec |t — y|. Indeed, if y € C, P = Pc and z = 2 + t(P(x) — z) then

ly — z|® + (¢|P(z) — 2|)* = 2t (y — =, P(z) — z)
= |y -2l + (tIP(z) - 2l)* — 2 (P(z) — 7, P(z) — 7) — 2 {y — P(z), P(z) — z)
< |y—:r|2—t(2—t)|P I)_I|2Sly_$|2_tmiu(z_tmaX)lp(x)_sz

ly — =

from the projection property (y — P(z), P(x) —z) > 0 and (1.3). Note that tnin(2 — tmax)
in (2.8) can be replaced by ming.ert(2 - 1).

Figure 2.1 illustrates the Fejér property of (2.2) with H* = L(f*, f¥.). For motivation, we
now state some facts that will be proved later. Suppose we have generated some i > ds. (z*)
(starting, e.g., from 1y = D > diam(S)), so that B(z*,r )N S« # 0. If £, > f* then
S* C H*, so setting y* = Py« (z*), finding ri4; from

2

re =T — (2= te)|yt — (2.9)

and applying (2.8) twice we deduce that $* N B(z*,r) C S* N B(z**!,ryy1). Thus we
improve our localization of the solution (since Ty < 7 due to z* ¢ HF from f(zF) > fk).
On the other hand, if t4(2 — t;)d}.(a¥) > r? then ff, < f* (by contradiction), so we may
increase f{f, to flev and reset rx;; to D. To sum up, if ff, > f then progress towards
the solution is measured by the magnitude of dy«(z*), otherwise dy«(z*) may be used to
shrink ry until fff, < f* is discovered; thus dy«(z*) should be as large as possible in both
cases. Hence the algorithm may be accelerated by choosing a smaller E(fk, fE.) to produce
degje, sE )(xk) > dy«(z*). However, a large J* in (2.5) would create difficulties with storage
and work per iteration. This raises the following basic questions. Is it possible to select J*
so that f* approximates f tightly in the region of interest without J* becoming inordinately



HY ={z:(z - y* 2" - *) <0}

AR
/
|

Figure 2.1: Illustration of the Fejér property of 2**! = 2% + #,(y* — %) with y* = Pye(z)
when z**1 € S. By Pythagoras’ theorem. r}_; — Jak+t — yk2 = 22 — |y* — z*|2, where
Y gk = (= D) (yF - 2¥),s0 rdL, =k — (2~ t)|y* — 252, Clearly, B(z*,r) N H* C
B(z**Y, rppq) N HE

large? Can we reduce J* by replacing some f? with their convex combinations, i.e., by
aggregating some constraints in L(f*, fE)? Should not [,(f", fE.) be augmented with some
inequalities related to S? Instcad of finding Pﬁ(fk*flﬁv)(xk)’ can we perform several ‘simpler’
projections (possibly inexactly and in parallel) and combine their solutions? Our partial
answers to these questions will involve a combination of some quite technical properties of
relaxation methods. For instance, note that, in view of the outer projection in (2.2), 7%,
in (2.9) could be further reduced by d2(z*), where =% = 2% + t,(y* — 2*). In fact more than
two successive projections could be employved to reduce r14,. We shall need rather abstract
notation to make such concepts precise.

Let 65 denote the indicator of S (6s(z) = 0 if x € S, oo otherwise) and fs = f + és the
extended objective. Let _fk = maX;j=1:k f? denote the kth ‘best’ model of f (which we would
not like to store). Note that f& = f* + 85 is the largest convex minorant of fs compatible
with the accumulated information about f. Clearly, f*, f*, f* and f% belong to the following
set of admissible models of fs

® = {¢:RY - (—00,00] : ¢ is closed convex and ¢(z) < f~ Va € §*}. (2.10)

At iteration k, we may choose a model ¢* € ® such that ¢* > f* (to exploit the latest
subgradient information), and a stepsize tx € T. Then the iteration

l'k+1 = PS(RC((bk-f;:V).tk(xk)) (2.11)

5



is a generalization of (2.2) and (2.6), which have ¢* = f* and ¢* = f* respectively. This
notation is convenient for the implementations discussed later, in which each ¢* may be the
maximum of several accumulated linearizations f7, j < k, or their convex combinations, pos-
sibly augmented with és or its convex minorants. It will also prepare ground for extensions
which use several models from @ at each iteration for successive or parallel relaxations. (For
the first reading, one may assume ¢* = f*.) We should, of course, ensure that £(¢*, fX ) # 0
in (2.11) (detecting this may require calculating inf ¢* approximately). Since. by (2.10),

0#S"C Lo, ff) if ¢€®and ff, > [, (2.12)

L(¢*, f£.) = 0 means we may Iepeat (2.11) with £ increased to ff.. Note that this cannot
happen in the simplest method (2.2), where the test based on 7, must be employed.
We may now state the first general subgradient projection algorithm with relaxation and
target level updating. Its notation is slightly redundant, being geared towards subsequent
convergence proofs and modifications.

Algorithm 2.2.

Step O ([Initialization). Select an initial point 2! € S, a final optimality tolerance €,p > 0,
a level parameter 0 < « < 1, and stepsize parameters 0 < tgin < tmax < 2. Choose
D > diam(S) and fL, < f~. Set p1 = 0and fO = >c. Set the counters k = 1,/ = 0 and
k(0) = 0 (k({) will denote the iteration number oi the lth increase of ff ).

Step 1 (Objective evaluation). Calculate f(q") and gs(2F).
Step 2 (Level update). Set fi, = min{f(a*), fi-1}, fi, by (2.1) and the gap A* = f5 — f¥_.
Step 3 (Stopping criterion). If min{A*, |g;(z )I/D} < €opt, terminate.

Step 4 (Projections). Perform (2.11), checking if it is well-defined, as follows:
(i) Choose an admissible model ¢* € ® such that ¢* > f* and a stepsize tk eT.
i) If £{¢*%, fi£.) = 0 go to Step 5. Otherwise, set y* = Py v \(2¥), 2F = 25 +tp(y* — 2*),
lev (¢ ,fl")
okt = PS(:"'), Pe = te(2 — te)ly* — 2*|? and pk = |F+1 — K2,
iil) If px + p& + p% > D?, go to Step 5; otherwise, go to Step 6.
6T /Ps 8 g
Step 5 (Update lower bound).
( ) Choose a‘ lower bound flow [ma\{ flok\’ flc\} f ] (e g flow - ma)‘{flow f]e\})‘ Set
ll:»tl flow’ Pk+1 = 0 and Ak - fup flow
(i) If Ak < €opt, terminate; otherwise, continue.
(iii) Set z**! = z* (null step), k(I + 1) = k, and increase k and I by 1. Go to Step 2.
Step 6 (Serious step). Set fit! = fE = fE  AF = A¥ and pryy = pi + 5 + p. Increase
k by 1 and go to Step 1.

A few comments on the method are in order.
At Step 0, fL. may be obtained, e.g., from a relaxation of (1.1), or from the relations

frzmin f > f(2') - |gg(a)| diam(S) > f(a') ~ lg;(=")|D, (2.13)

since f > f' = f(a') + (gs(z"),- — ') > f(a') ~ |gs(z")|| - —z'| by the Cauchy-Schwarz
inequality. In many applications one may find a ‘simple’ set (e.g., a box or a ball) that

6



contains S; the diameter of this set may serve as D. (Choosing fl, and D when f is
strongly convex on S is discussed in [KAC91]; see also [KuF90].) In general, the algorithm
should perform better the closer fl, and D are to f* and diam(S). respectively.

Note that the f-evaluation at Step 1 is skipped if z* = 2*~! after a null step at Step 5,

., if k= k(I) + 1. The current number of f-evaluations is & — .

Step 3 is justified by the optimality estimates (2.14) and f~ > f(z*) — |g/(z*)| diam(5).

Step 4 performs the two successive relaxations of (2.11), unless an emt to Step 5 occurs
with f£ < f*. The exit from Step 4(ii) is justified by (2.12), and from Step 4(iii) by Lemma
3.3, which fo. malizes our argument concernind (2.9). Specifically, with 72 = D? — p;, Step 6
replaces (2.9) by r?,, = r? — p& — p%, whereas Steps 0 and 5 ensure ry(41 = D.

Let us split the iterations into groups Ny = {1:4(1) — 1} and K, = {k(I): k(I + 1) — 1}
if { > 1. Each group K, ends by discovering that the target level is unattainable. Then
an increase of the lower bound reduces the gap between the bounds by at least a fraction
of k < 1. The remaining level and gap decreases within each group occur only when the
objective improves, with the lower bound staying fixed. These simple properties of the
method may by derived inductively from the following observations. By construction, f¥ >

fk+1 > f > fL+l = .ﬂ‘;w Z flt.)w’ Ak - np - f]ou and Ak = flfp - flo»\’ so the gaps Ak < Ak

low
overestimate the optimality gap:

wo — f* = min{ f(a’ ):j=1k}— fr <AF < A* (2.14)

and AFY < AR < A* for all k. In fact, if k(I) < k < k(I +1) then f£, = i) (= 71 if
I = 0); therefore, the level ff, = ff_ + (1 — x)A* cannot increase:

WO > o> ki k) <j<k<kI+1) (2.15)

and AF = AFif k() < k < k(I +1). Hence fl . and A only reflect the improvement in fE,
and A* at iterations k = k(I + 1), I > 0. Then at Step 5, ff, > fi = foy — ~AF implies

Ak = l’fp - f]';w < kA*. Thus we have the useful relations
A¥ > AF > AMHD e i ke Ky and 120, (2.16)

AR < RIAY G 1> 1. (2.17)

3 Efficiency
Our aim is to show that the SPLA of (2.2) has the following efficiency estimate for any ¢ > 0:

k> cspia(tminy tmaxs ) (DLs/€)? = min{ f(z/):j=1:k} - f*<e, (3.1a)
CSPLA(tmma tma\) ) - l/tmm( - tmax)'\'2(1 - "52), (31b)

min cspLa(', ) = cspra(l, 1,1/v/2) = 4, (3.1¢c)

and to establish a modified form of this estimate for Algorithm 2.2. We assume, with no

loss of generality, that the tolerance €., = 0 and that the algorithm does not terminate, i.e.,
A% > A*F > 0 for all k.



We start by showing that each first relaxation at Step 4 provides a significant growth of
px related to Fejér contractions. Note that with H* = {z : f¥(z) < f£,} we have

de(2*) > dye(a*) = (f(z*) = fie)/lgs(«) if C C H". (3:2)
Lemma 3.1. If L(¢*, f£.) # 0 at Step 4 then pﬁ, > trmin(2 = tmax ) (RAF L2,

Proof. Use (3.2) with L(¢*, f£.) c H* (from ¢* > f*), |9s(2*)| < L; and f(z*) - fE, >
& — (f&, — sA%) = kAF (from f(z*) > k), recall Step 4 and (1.3). O

P

Lemma 3.2. Suppose y € L(¢*, f£,)NS for iterations k = ky: ky that do not ezecute Step 5
(i.e., y is a common point of all the sets involved in the successive relazations (2.11) at Step
4 for such k). Then

k2
Pratr — Pk = O (2 = ti)ly* — 2F P+ 2" = P <y — 2B P -y — 2R (3.3)
k:k]

Proof. Fix k € [k, kq). Use (2.8) with C = L(¢*, f.), t = t; and z = z¥, and next with
C=25,t=1and z =:*to get

Py = (2 — t)ly* — 2P <y — 2FP — |y — P2, (3.4a)
p =t =P <y = 2P -y — 2R (3.4b)

Add the inequalities above to get pyy1 — pi = pk + p¥ < |y — z*|2 — |y — **'|*. Adding these
inequalities for k = ky: ky yields (3.3). O

The next result validates the test for increasing f£, from Step 4(iii).
Lemma 3.3. If f¥. > f* at Step 4 then Step 5 is not entered and
Prs1 = pr + pg + o5 <y = "0 |y — M2 < diam(S)P < D? Wy e S (3.5)

Proof. Since f£, > f*, (2.12) and (2.15) imply that the assumptions of Lemma 3.2 hold
for any fixed y € S*, k; = k({) + 1 and k; = k — 1. Then, due to the rules of Steps 5 and
6, (3.3) becomes p; < |y — 412 — |y — 2*|2. Adding this inequality to (3.4) we get (3.5),
noting that pi + p% + p& < |y — 2*0+12 < D2, i.e., no null step occurs. 0

We may now estimate the rate of decrease of the gap A* within each group K.
Lemma 3.4. If k(l) <k < k(I+1) and A* > 0 then
k— k(1) < (DL kAR tmin(2 — tmax)- (3.6)

Proof. Note that A’ Z_A"' for j = 1: k because A7 never increases. By the rules of Steps 4
and 5, we have py;; < D? (otherwise k(! + 1) = k would occur, a contradiction) and

k A k .
D2 2 Pk+1 2 Z Pi Z tmin(2 - tmax) Z (K'A]/Lf)2
j=k()+1 J=k(1)+1

> tmin(2 — tmax) (KA Ly ) (k = k(1))

from Lemma 3.1. Rearranging, we get (3.6). O

S



At Step 2, let n'} = k — [l and [* = | denote the total numbers of f-evaluations and lower

bound increases, respectively. In (3.7) below we in fact relate n% to the gap A*.
Lemma 3.5. If A% > ¢ > 0 for some k, € Ky, and m > 0, then nf =k, —m and
ke <m 4+ (DL;/e)Yk*(1 = &%) tmin(2 — tmax)- ' (3.7)
If additionally A' < DLy, then m < —In(DL;/¢)/In(x) and
ke < (DL;Je)*[1/62(1 — £)tmin(2 — tmax) — 1/2¢1n(x)]. (3.8)

Proof. (i) Let K(e) = {1:k.}. Since Ak > ¢ > 0 and AF1 < Ak < AF for all k, use (2.16)
and induction to obtam Af > ¢/sm! for all k € K;N K(e) and [ = 0: m.

(ii) Let ¢ = (DL /&) tmin(2 = tmax). By (i) and Lemma 3.4, |[K;N K (€)| < 14 ck¥m=1)/¢?
for I =1:m and |Ko N K(e)] < cx?™/€®. Since 0 < x < 1, we get (3.7) from

=Y |[KiNnK(e)] <m+ > (c/e)r¥m0 <m 4 /(1 — kY.
=0

(iii) If A' < DL, and m > 0, then (2.17) vields ¢ < A < kmDL;, so m
—In(DL;/€)/In(x) in (3.7). Thus, to get (3.8), it suffices to prove that —In(t)/In(x)
—t?/2eln(k) for all 1 > 0. Indeed, t? — 2¢In(t) > 0 for all ¢ > 0 (minimize it!). O

We may now state our principal result. l\otice that, in view of (2.13), we may always
ensure that A' < DL, by taking fl, > f(2!) — |g;(2")|D, and recall (2.14).

Theorem 3.6. If A' < DL, then the following efficiency estimate holds for each € > 0:

k > CRLA(tmina ‘max, K (DLf/6 = fl‘;p - f' S Ak < €, (39&)
CRLA(tmina tmax» 1/tmin - tmax) 2(1 K ) - 1/26 ln(l{), (39b)
min crea (-, ) = crea(l,1,0.677653...) ~ 4.49950. (3.9¢)

Proof. This is an immediate consequence of Lemma 3.5. (

Let z5,. € {27}%_, be such that f(zf.) = f} (= minj=1u f(27)), for all £.

Corollary 3.7. If e¢ox = € > 0 and A' < DLI then the algoritm will terminate with
f(xk )< f*+eink =1+ ke iterations after nj =1+ n?‘ f-evaluations, where k., and

rec

nf = k¢ — m satisfy the bounds of Lemma 3.5. [J
For completeness, we include an asymptotic result.

Theorem 3.8. If the algorithm does not terminate then f¥, fk, and f, converge to f*,

and A¥ and A* converge to zero as k — co. Moreover, {zX_} converges to S*.

rec



Proof. Since A*¥ > 0 never increases, A% | 0 either by (2.17) if I — oo or by Lemma 3.5
otherwise (then m would be bounded in (3.7)). Hence the facts that A%+ < A* < A¥ and
max{|ff. — f*I,1f5, = fI,1f& — f*1} < A* for all k imply the first assertion. The second
one follows from f(z¥_.) — f*, the continuity of f and the compactness of . U

Remark 3.9. In view of the preceding results, we again emphasize the crucial role of p§ =
t(2— tk)d?:(d»*,j,’;v)(xk) in our efficiency analysis. The algorithm may be accelerated (locally)
by choosing #* and t; to enhance a large pf;. (In fact we should try to increase the less easily
manageable quantity pf, + p% instead of just pg.) Our efficiency estimates are best when
tmin = tmax = 1; also t; = 1 maximize each p{j,. However, as in other relaxation methods,
other choices of t; may be preferable in practice.

4 The nested ball principle

We shall need the following reformulation of Lemma 3.3 in terms of r? = D? - pr. It
generalizes similar results of [GofS1, Tel82] obtained for classical relaxation methods.

Lemma 4.1 (The ball induction principle). If ff. > f* at Step 4 then 0 # S0
B(z*,re) C 8" N B(z*, (] — p§)"/*) € §7 N B(z** riqq). O

The following result extends one of Drezner [Dre83] (and simplifies its proof).

Lemma 4.2 (The nested ball principle). If (D — |* — 2*O+1)2 5 32 — o or (D —
|zk+t — 2k(O+1])2 5 2 p — p% at Step 4 then fii < f~.

Proof. For contradiction suppose ff > f*. Let # = 250+ = = 2k 7 = (»2 — pk)1/2 and
y € S"N B(z,D)N B(z,7) (cf. Lemma 4.1). Suppose D > 7 + |z — z|. By construction and
(3.3)-(3.38), ly—z2*<|ly—2?+ P2 =-D*<(ly—z|+ |z —z|)?+ 72 = D* with |z —z| £ 0
dueto# < D, so |y — z| > (D?* = #? — |z — 2|?)/2|z — x| > 7 contradicts y € B(z,7). Hence
D < #+4|z—z|and, since |z —z| < |z —y|+|y— 2| < #+ D, we have |D — |z — z|| < #. Next,
obtain the same inequality with z = z**! and # = (1 — p5 — p%)'/2 to get a contradiction. D
Lemma 4.2 says that for each group there is a growing ball B(z*"*1 D — r\) such that
if z¥ enters this ball then ff. < f*. Hence Lemma 4.2 may be used at Step 4(iii) to detect
fE, < f*. Following [DreS3), one may argue that the conditions of Lemma 4.2 will be
activated earlier than the usual condition r? < pf;', + pé Indeed, r; decreases from D to zero,
whereas usually |2**! — £¥0+!1| « D, e.g., if D is a generous overestimate of diam(S).

5 Simple modifications

We shall now describe some simple modifications of Algorithm 2.2.

At Step 5(ii1) one may set 1171\. T = 'l'k i.e., each group ]\’1 may start from the best
k+1 COllld be chosen

rec?
point found so far (if g;(2F ) is stored). Alternatively, as in [KAC91], =
arbitrarily in S, but then Step 1 would have to evaluate f and g; at this point, leading to a
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slight deterioration in efficiency estimates such as Lemma 3.5 and Corollary 3.7 (where we
would have nf‘ = k).

By suppressing null steps in our notation we may express the efficiency estimates in terms
of the number of f-evaluations alone (as is customary in, e.g., [NeY79]).

Theorem 5.1. Suppose Step 5(iii) sets f, = f{;“ and pr = 0 without increasing k. Then
the total number of f-evaluations always equals k, and the efficiency estimate (3.1) holds.

Proof. For ¢ ontradiction, consider the unmodified algoritm. At Step 0 set n = 1 and
3! = z'. At Step 6 set :"*! = z¥*! and A? = A* and increase n by 1. Then at Steps 2
and 6 we always have n = k — | for the current values of k, | and n, and at Step 2 n'} =n.
Suppose A > ¢ > 0 for some n, = k, — I* at Step 6. By Lemma 3.5 and (3.1b), we have
ne < cspLA (tminy tmaxs K)(D Ly /€)?. Hence, for any € > 0, (3.1a) holds with k and {z7}%_,

replaced by n and {£/}"_; respectively. It remains to identify {3"} with the sequence {z*}

generated when Step 5 does not increase k. [J

We conclude, in particular, that by letting ¢* = f* at Step 4, we obtain the simple SPLA of
(2.2) that enjoys the efficiency estimate (3.1). One must, however, be cautious in interpreting
such results, because Algoritm 2.2 could loop infinitely between Steps 2 and 3.

Corollary 5.2. Suppose €., > 0 and Step 5(iii) sets ff, = flﬁw and pr = 0 without increas-
ing k. Then the algoritm will terminate with f(xf_) < f* 4 €ope after k= 1+ keop tterations

and f-evaluations, where k., < cspLA(tm;,,,t,,mx,n)(DLf/eop(,)z with cspLa given by (3.1b).
Moreover, (3.1) holds for any € > €op-

Proof. Arguing by contradiction, use Theorem 3.8 to deduce that any loop between Steps
2 and 5 must be finite when ¢p. > 0, and then apply Theorem 5.1. 00

As in [KAC91], let us consider setting ff, = fl'fp—— k1 AF at Step 2, where £x € [Kmin, £max)
for some fixed 0 < Kmin < Kmax < 1. We only require & to produce f£, < f,ﬁ:l ifk>k()+1
(e.g., let k; € [Kk_1, Kmax] for such k). Then, as before, the level can increase only after the
lower bound increases (i.e., (2.15) holds). Clearly, we must replace £ by &max in (2.16) and
(2.17), and by Kmin in Lemmas 3.1 and 3.4. Similar replacements should be made in the

remaining efficiency results. For instance, (3.9b) becomes

éRLA (tmin, tmax, Kmin, Kfmax) = l/tmin(?' - tmax)"‘-z,;n(l - K-fnax) - 1/2"3 ln(""max)a

where again the ‘best’ xin = Amax = 0.677653. We conclude that this modification cannot

improve the preceding efficiency estimates. It may, however, be useful in practice to choose
small x4 at initial iterations in order to reduce the dependence on f,ﬁ)w until i1t 1s improved.

6 Using the known optimal value

Let us now consider the case when f* is known.

11



Theorem 6.1. If fl = f* then | =0 and the following efficiency estimate holds:

k > Chpa(tmins tmax, £)(diam(S)Ly /)2 = fE — f~ < Ak <, (6.1a)
c}‘QLA(tmim tmax; K) = l/tmin(:2 - tmax)""z, (61b)
mincy (s 8) = chra(l,1,5) = 1/5% (6.1c)

Moreover, one may use & = 1 and f£, = [, in which case (6.1) reduces to (1.4).

Proof. Use2.1), (2.12) and Lemma 3.3 to deduce that Step 5 cannot be entered (i.e., I = 0)
and ff, > f, = f= for all k. Next, invoke (3.5) in the proof of Lemma 3.4 in order to
replace D by diam(S) in Lemmas 3.4 and 3.5. Finally, observe that m and (1 — k%) may
be dropped from (3.7) to give (6.1), since m = 0 and k, < c/€? in part (ii) of the proof of
Lemma 3.5, which remains valid even if x = 1 because no summation is required. [J

We conclude that if f* is known then Step 5 and the tests of Step 4 may be omitted, so
that D is not required. Moreover, setting f¥. = f* (x = 1 in (6.1)) gives the ‘best’ efficiency
estimate (1.4). In particular, (1.4) holds for for the simplest method of (1.2) (using ok = fk
at Step 4), as well as for Polyak’s accelerated method from [Pol69] (with ¢* = f*; cf. (2.5)).

Remark 6.2. Note that, by Lemma 3.3, f& . = f~ ensures Fejér monotonicity |z* — zFt!| <
|z* — z*| for all k and z* € S*. Hence one easily checks that diam(S) and L; in (6.1) may
be replaced by D* = |2~ — .1,1| and L} = sup{|g;()| : |2* — z| £ D~} for any z* € S~
Thus one may get an efficiency estimate even for unbounded S if S* is nonempty! Also Fejér
monotonicity and Theorem 3.8 imply that {2*} converges to an optimal point (let z* be a
cluster point of {z* _}). The question whether {2*} converges for other level controls is left
open for future resear ch.

The same argument also shows that if we chose fl, > f* then either termination would
occur with f& < fil | +e€op or (6.1) would hold with f= replaced by fj,, (as if f were replaced

by max{f, fi..}).

7 Level control via frozen level gaps

In Algorithm 2.2 we have f§ — fk = xA*, i.e., the desired objective reduction is a fraction of

the current gap. An alternatlve technique consnsts in freezing the level gap Af, = fp — fE,
at kA between iterations k(I) and k(! + 1) that increase the lower bound.

Thus we modify Algorithm 2.2 as follows. Step 2 sets ff = fk — Ak with AL, = kA
Step 5 sets AKt1 = kA*, whereas Step 6 sets AFt1 = Ak |

It 1s easy to check that the re]ations that ensure (2.14) continue to hold, whereas (2.15)
follows from the fact that fi+! < while AF = k A*Oif k(1) < k < k(I + 1) and | > 0,

—_— up,
where A® = Al. Next, for k = k(! + 1) at Step 5 we have f£, > fk = fio = Ay 50
AMHD < AF = kAMD i () <k <k(l+1)and [ >0 (1.1)

and (2.17) follow by induction. Notice that the algorithm may also go to Step 5 from Step 2 if
fE, < fk.. In words: each group K ends by discovering that the target level is unattainable

12



(and possibly that the lower bound may be increased). Then the level is raised by setting the
level gap to a fraction of the ‘true’ gap (between the bounds). The remaining level reductions
within each group occur only when the objective improves, with the level gap and the lower
bound staying fixed.

The efficiency analysis for the modified algorithm is similar to that for Algorithm 2.2, so
we shall only indicate changes. Lemmas 3.2 and 3 3 remain valid. In Lemma 3.1 we may
replace kA* by AE  (using f(z¥) — f£, > ff;'p .+ AL, = Af)), so (3.6) is replaced by

k— k(1) < (DL/AE Y tmin(2 = tmax) if k() < k < k(I+1) and AE >0.  (7.2)

In part (i) of the proof of Lemma 3.5 refer to (7.1) (instead of (2.16)) to get Af, > ¢/x™ !
for all k € KN K(¢) and | = 0:m, and use this relation and (7.2) in part (ii) to get the
previous bounds. The remaining convergence results of §3 are easy to verify.

Another interesting modification is described in the following

Theorem 7.1. If we set eopt = Al = ¢ > 0 (and possibly fl, = —o0) then the modified
algoritm will terminate with up — f*<eand!l =0 at iteration k =1 + k., where
1‘ < DLI/C / mm ) - tmax)~ (73)

Proof. If Step 3 is not entered for & = 1: &, then (7.2) with Afc\ = ¢ and { = 0 implies (7.3).
Iteration k = k, + 1 terminates at Step 2, or at Step 5 with A¥ < Al =€ (cf. (7.1)). O

A result essentially equivalent to the above theorem is given in [KuF90] for the simplest case
of ¢* = f* at Step 4. A comparison with all the preceding efficiency estimates (especially
Corollary 5.2) suggests that, for a given accuracy ¢op > 0, the strategy of Theorem 7.1 yields
the best estimate. We believe, however, that in practice a ‘small’ A},, = €op, might result in a
slow ‘short-step’ method, whose behavior would be close to the worst-case estimate even for
‘well-behaved’ objectives. On the other hand, one may set A}, to an estimate of f(z!) — f*
(if any), so as to exploit any extra information at initial iterations; once a ‘reasonable’ ff , is
obtained then a switch to the original level strategy of Algorithm 2.2 may occur. (A similar

idea is used in [LNN91].)

8 Level control via full model minimization

As in [LNNOI1], the best underestimate of f* at iteration k is given by f¥. = ming f¥ with
f* = max;-;. ij Let us, therefore, consider a version of Algorithm 2.2 in which Step 2
sets ff, = fX.., Step 4(i) chooses ¢* < f*, and Steps 4(iii) and 5 are deleted because
D is no longer required for updating f£,. (Note that L£(¢*, ) # 0 at Step 4(ii) due to
flev > frl:\m 2 1nf¢k by ({) l) )
Since f¥ < max{f*, f&*1} = f51 < f, we still have fit! > fE AR < AF and (2.14)
for all k. Next,
AF < kA if fE S 7 and § <k, (8.1)

min

since then ff. > fl{p — RAT > flfp — KA by (2.1) with A% = up — fﬁlin.

13



Theorem 8.1. The following efficiency estimate holds for each ¢ > 0:

k > cunn(tmins tmaxs €)(diam(S)L;/€)? = f;'p - fr<AF <, (8.2a)

CLNN (Zminy tmaxs £) = 1/tmin (2 — tmax)K2(1 — &7), (8.2b)

mincpnn (-, ) = conn 1,1,1/\/§)=4. (8.2¢)

Proof. (i) Suppose A% > ¢ > 0 for some k.. Let us split K'(e) = {1:k.} into groups K,

= 1:m as follows. Let l.(l) =k. Fori=1,2,... set K; = {k S k(D) : A* < < A*D/k} and
E(I+1) = min{k : k € K/} — 1 until k(I + 1) = 0, and then set m = . By construction,
A* > ¢/k'Viorall k € K; = {1}(1 +1)+1:k())} and | = 1:m.

(ii) Fix 1 <1 < m and let §' € Argming f*). By (i) and (s ), 20 <k forall k € K.
Hence, since f‘ are nondec1easmg and ¢* < f*, we have ' € L(¢*, f,) at Step 4 for all
ke 1&1 Therefore, |K;| < (diam(S Lf/hAL N2/ tmin(2 — tmax) by Lemmas 3.1 and 3.2, with
by =k(I4+41)+1, k,=k(I)andy =3' € S.

(i1i) Let ¢ = (diam(S)L; /%)% timin(2 — tmay). By (i) and (ii),

k. = Z lf\'ll < Z(C/Ez)fi?(l_l) < ¢/e*(1 — k7). ad
=1 =1

Theorem 8.1 subsumes a result in [LNN91] obtained for ¢* = f* + 65 and tx = 1. Thus
it shows that the good efficiency estimate for the level method of [LNN91] comes from level
control, rather than from full projection subproblems.

It is easy to verify Theorem 3.8 and Corollary 3.2 (with D = diam(S)) for the modified
method. Moreover, we may consider setting flc\, f\’l‘p — ke A* where k) € [Kminy Kmax] C
(0,1). Then (8.2) involves éLan (fmins Linaxs Kmins Fmax) = 1/tmin(2 — tmax )82, (1 — &2 ), where
again the ‘best’ Knin = Kmax = 1/\/5 To check this, replace x by Ky in (8.1) and part (i)
of the proof of Theorem 8.1, and by Ky;n in part (ii).

Although it eliminates the need for D, finding f¥, = minsmax;-;, f’ may require
too much storage and work per iteration when k is large. Let us, therefore, consider the
following partial model minimization strategy. At Step 2 find fx’;"n < ming fk (cf. (2.5))
and set f,’fun = max{f5,,, 51} (with f2, = fi.). If fE, < fk. . go to Step 5, choosing
fk. > . Clearly, the efficiency results of the preceding sections remain true. Although
this techmque does not eliminate the dependence on D in theory, we believe that when f"
are chosen ‘rich enough’ (cf. §12), it will ensure better performance in practice. Also note
that, to save work, mins f* need not be found exactly.

9 Dual level methods

We shall now show how to use dual (e-subgradient) techniques for constructing models of f
that generalize those in [KuF90, LNN91]. In the simplest case such models are aggregate lin-
earizations of f that are convex combinations of the ordinary linearizations f7. We shall later
relate them to surrogate inequalities used in relaxation methods. We start with an abstract
framework that will cover several examples motivated by the the following representation

H@) = (X Nes(a?) A 20,5 € IR 0 =1L 3 AN - Pt <€) (9)

JEI*X JEJE JjEJ*
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Definition 9.1. Let u > 0 be a fized parameter of Algorithm 2.2. At Step 4 let <I>" denote
the set of all closed proper convez functions ¢*: RN — (—oc,oo] that satisfy

§*C L5 fh) and degegs (=) 2 uRAY L, i fh, 2 S (9:2)

Lemma 9.2. Let 0 < p < 1 and py > 0 be fized parameters of Algorithm 2.2. At Step
4 let (I)f‘h“g denote the set of all functions of the form (13"(') = ¢ (z*) — e + <pk,~ N :rk>,
where ¢k:1R!? — (~20,00) is closed, proper and convez, ¢* € & if ff, > f~, p* € 9, ¢*(z*)
satisfies |p¥| < L;/u,, and € € [0,€5 ] with

max.

efnax = ék(xk) - tl:p + (1 - ltt)(flfp - fll;\) = &k(lk) - f]tv - #C'{Ak' (93)

Suppose Step 4(ii) uses such a ¢* (although it need not majorize ). If fE, > f* then
S C £(¢k,f1§v)y yk = Pc(d,k,j,‘:v)(xk) =z* - (¢k(1‘k) — €k — .ﬂiv)Pk/IPkP and

P tmin(2 = tman) 2 4200 (2) = (BH(2) = &5 = FENYIP T 2 (hegeBYLY)E,  (94)
whereas if L(¢*, fE,) =0 then fii, < f*. Moreover, &% wy C % if p=pep,.

Proof. Suppose fk > f*. Let xr €

b
yield S* C L(¢*, ff.) # 0. By (9.3), p*
k
) an

. By construction and (’) 10), ¢ ( ) o*(z) < f°
0 would 1mpl) f~26%) = o (z*) — ek > fliv +
k

—(¢"(2") = fien )P 1P 1% Since ¢"(z°) ~ fiev =

— 2" =
d |p*| < Ls/u, by the choice of p*, we have (9.4),

ymA" > f,, a contradiction. Thus y
*(z*) — ex — fE, > penAF from (9.3

which yields (9.2) if p = pp,. O

Let us consider efficiency before examples. The preceding proofs hinge on ¢* € ®F only
(cf. (2.15) and the proof of Lemma 3.3), so ¢* ¢ ® is admissible if f5, < f= (this is used
in §14). Hence Step 4 may use any ¢* € @f‘ g U ®* with y¢ = gy > 0. Then, comparing
(9.2) and (9.4) with Lemma 3.1, we see that onlJ the first terms of the constants in all the
preceding efficiency estimates and the right side of (7.3) need be divided by u?; of course,
AL, replaces kA in (9.2), (9. 3) and (9.4) for the frozen level gaps of §7.

As in §8, suppose ff, = f¥, at Step 2, Step 5 is deleted, and Step 4 chooses ¢* < f* and
#* as in Lemma 9.2. Then Theorem 8.1 holds with conn divided by p? = p?, since p, = 1
(in part (i) of its proof use (9.4) to replace x by pk).

It should be clear that, as in §5 and §3, we may use variable &¢ € [Kmin,&max] and
Bek € [fmin, 1] C (0,1] in (9.3). Then the efficiency constants are divided by (pmingtg)?®.

For choosing ¢* in Lemma 9.2, note that any o* € @ such that fr < o < f* is admissible.
Indeed, f*(z*) = f*(z*) = f(a¥) yleld €X .c > 01in (9.3), and we may always ensure |p | < Ly
because g;(z*) € 9¢*(z*) has lgs(2*)| < Ly. In view of Remark 3.9, to enlarge p} in (9.4),
we may let

p* = argmin{ |p|*/2: p € 8, 4" (z*) }. (95)

For example, if we use ¢* = f" and (9.1), then p* may by found by QP. Since there is no
need to solve (9.5) exactly, iterative QP methods (e.g., parallel relaxation-type methods) and
various heuristics may by employed to save work. Note that (9.5) minimizes the denominator
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in (9.4) with a fixed nominator. An alternative construction is described in the following
lemma (in which one may assume ¢* = f" for the first reading). It implies that we may use
convex combinations of linearizations with quite arbitrary weights without destroying the
preceding efficiency estimates. Possible advantages of such combinations are discussed later.

Lemma 9.3. Let ¢* = max;ex ¢F, where |I¥| < oo, each ¢ is as affine function of the
form g(z) = ¢¥(*) + (P x — 2 > with p§,| < Ly/pg, and 8 € & if fl, 2 f*. Suppose
H(ah) > fito, I8 C{i € I gb(a!) 2 filu}, IF = (i € I¥ : ¢l(a) = ¢5(a")} # 0, A > 0
forieI* X, =0 forie I*\I* ¥ YA =1, (pFe) = erlk Ai(ps. . ¢ (zF) — #¥(z*)) and
¢ = ¢L( )—€k+<P R 4 > If f]e\ > [* then d[,(dk 5L, )( )> Z,eiM (¢k( ) flev)#g/Lf;
whereas if p* = 0 then ff, < f~. In pamcular <p € oF e U A5 2 He KK (F( ) = fE)
for some j € I¥, e.g., if A; > u, and ok (z*) >

Proof. Suppose fk, > f*, 2 € S and j € I*. By construction, &"( Ky — € — flev =
Z,ezk/\(é( )= fie) 2 erlk A (a ') - flc\) > 0. Hence with ¢k($‘) = ¢*(e*) -
ex, p* = 0 would give f* > Y. 1 Nidf(z) = ¢F(z) = ¢*(a*) > fi,, a contradiction.
Thus dgge gx y(2%) = (¢°(2%) = fi)/IP] 2> Tiem Mi(84(2*) — fie,)/ 19", where [p*| <
Lici ’\ili’g,l < L;/p,. Recall Lemma 9.2 and (2.1) to complete the proof. [

Supposing fit. = 7, let us now compare the dual approach based on (9.4) (and possibly
(9.5)) using y* = = Ppigr g (x 7¥) with a primal one that employs ¢* directly to find

7 = Pegge e () = argmin{ 2 — sHY/2 : 3(2) < 7 ) (9.6)
Lemma 9.4. We have |y —§*> < |y —- K2 — |g* — 2*)? and |y — y*|? < |y — 2*[2 = |y* — =F|?
for all y € L(¢*, f£,), where |y* — 2¥|2 < |§* = 2*|? = |* — y*|2. Moreover,

sup{ (¢*(z") — e = fie.)/Ipl : € € [0,6"(«*) = £i,), p € 8* ()} = 1" - <", (97)
with the supremum attained at some &, and p* if ¢ is polyhedral or inf o < fE..

Proof. The first assertion follows from (2.8) and ¢* < ¢*. Hence, recalling (9.4), |§% — z¥]
majorizes the left side of (9.7). To establish equality, suppose initially that o i 1s polyhedral
or inf ¢¢ < fE.. Then, by the Kuhn- Tucl\el conditions for (9.6), there exist Pt € 9k(§*)
and a multiplier A > 0 such that §* — z* = —Ap*. Clearly, ¢*(5* ) = fk, and A > 0
because 2% ¢ £(¢%, f8,) D L(3, fh.) (¢* < ). Letting & = 3(5%) + (3, — *) and
& = ¢F(zF) — ¢*(a*) = f(zF) = £k, + A|p*|?, we get (9.7). In the general case, replace f£, in
(9.6) by t > f¥ | so that the Slater condition holds, define §j(t), p(t) and é(t) as above and
let £ 1 fE, with 3(t) — g*. O

In view of Remark 3.9, the first bound of Lemma 9.4 is, in general, better than the second

one. On the other hand, (9.7) says that the dual approach can, in principle, be as good as
the primal one if (9.5) is used with a carefully chosen ¢;. Thus such bounds seem to favor the

16



primal approach. However, they are local and the dual one may employ inexact QP solvers,
so it may be easier to implement.

Choosing (ex, p*) = (&, p*) to solve (9.7) gives an ‘optimal  dual method that does not
need g, > 0in (9.3)1f d;k > fk and (})k € ®. It 1s. however. more difficult to implement than
the equivalent primal method that may solve (9.6) via QP when oF is polyvhedral.

We may add that [LNN91] employs 6% = f*. 1, = 1. f£_ = f. and constant «, g, € (0,1)
and p, = 1, whereas [KuF90] proceeds as in Theorem 6.1 with g, = 1 and ¢* = f without
specifying any models of f (but g, = 1 may severely restrict the choice of p*; cf. (9.3)).

10 Conditions on generalized relaxations

The following generalized version of Step 4 will allow various implementations.

Step 4’ (Generalized relazations).

: : - N k S : K
(i) Find ¥ € R and pe > 0 such that pf; > fmin(2 — tax)d (%) and

2
COfefis)
ly— P <ly—a"P—ph VyesS if A2 f (10.1)

if ff. < f= then :* and'pg are arbitrary (even p& = oc is admissible). If py + p5 > D?
or it is discovered by another test that ff < f~, go to Step 3.
(ii) Find 2% € S and p& > 0 such that |y — 2**')2 < |y — 2#2 — pk forall y € S. If
pr + X + p& > D?. go to Step 5: otherwise. go to Step 6.
Naturally, the dual methods of §9 replace f* by ¢f in Step 47(i), whereas if f, = ;’;\in
as in §S then S~ in (10.1) should be replaced by {y € S [*(y) < fE.}. Tt is easy to verify
all the preceding efficiency results for such modifications. (Ilint: let y € §* in Lemma 3.2,

with S replaced by £(f*, f£.) in §S.)

11 Using general relaxation methods

We now show how to implement Step 4’ via general relaxation methods for linear inequalities;
see, e.g., [AhCS89, Kiw92] and the references therein.

Suppose ¢* is polyhedral, so that £(e*, f£.) has the form {z : (¢},2z) < b;,i € I}. Let
C; = {x: {(a',z) < b}, 1€ I. Given a starting point &' ¢ M;c;C;, many relaxation methods
attempt to find a point in N;C; via the iteration

=3 MRc (3", n=12,..., (11.1)
=y

where the weights 5\:‘ >0,1€ 1, satisfly 3, 5\? =1,and 0 <1, <2. By (2.8),
ly — R, i (EM)* S ly = 8" = ta(2 = 10)dé, (2") Wy e Cy

multiply this by ;\:‘, sum over ¢ and use J_; /\:‘ =1 and the convexity of |- |2 to get

v = 3 M Re i (EF Sy — 3P =12 = 1) 3N (") Wy e NG
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In other words, letting p, = ,(2 — £,) ;\:‘dé'(i'"), we have the Fejér estimates |y — 2|2 —
ly—&"|* < 321 65 Yy € NiCi. Therefore, if we start from ' = Pc(fk'fll:v)(l'k) and terminate
for anyn > 1, then z* = #" and p} = dZ(fk,f,'gv)(IkH' ;';11 p; will satisfy the requirements of
Step 4’ (in particular we may stop if/)k+p§> > D? for such pf;) Moreover, pg may be increased
by using more refined Fejér estimates to replace p; with some larger quantities [Kiw92]. In
fact [Kiw92] shows that other relaxation methods have much better Fejér estimates; hence
they could provide more efficient implementations of Step 47(i).

similar ideas may be used for implementing Step 4°(i1) via finite iterative methods that
o ot necessarily compute ! as the projection of =* onto 3; see [KuF90] for details.

“: is worth observing that many relaxation methods are highly amenable to parallel com-
pu: .ion; see [AhC89, Kiw92]. Since we do not require exact projections, various heuristics
may limit the work spent on relaxations.

12 QP-based implementations

We shall now discuss possible implementations of our methods that employ subgradient

selection and aggregation. These two techniques have proved to be highly useful in imple-

mentations of other NDO bundle methods; see, e.g., [Kiw85, Kiw89, Kiw90] for details.
First, we describe subgradient selection. If ofF = fk and L(¢*, ff.) # 0 then

y* =argmin{|z — 252 : fl(x) < fE..je T¥) (12.1)

- Denote the Lagrange multipliers of (12.1) by ,\f,j € J*. Let J* = {j € Jk: /\f > 0}. By the
Kuhn-Tucker (K-T) conditions. if we select J*¥ C J* such that Jtc J¥, then J¥ may replace
J*¥ in (12.1) without changing its solution. This suggests that only the linearizations f7,
7 € JF, that have contributed to y* should be retained for the next iteration. Moreover, many
QP methods will automatically produce [J¥| < .. Hence we may choose J&*1 = JEU{k+1}
such that [J¥*1] < N + 1. Storing the subgradients ¢ = g,(z’) for the representation
="+ <gj,- - $k>, we do not need 27 to update f7(2**+!) = fI(z*) + <gj,:tk+1 - zk>
for j € J*. Thus the required storage is of order (N + 1)? (plus the QP workspace).

Since subgradient selection may require excessive storage for large N, we now turn to
subgradient aggregation, in which aggregate linearizations are produced recursively by taking
convex combinations of the *ordinary’ linearizations. Suppose ¢* = max{f*,*~!} for some
affine Y*~1 € co{f’}}Z] of the form ¢f=1() = p*~1(a*) + <g§,'1,- - ."ck> (¢° = f'). Let us
add to (12.1) the constraint ¥*~'(x) < ff, with Lagrange multiplier A%. Equivalently, in
terms of d* = y* — 2%, af = f5, — £ (a%), 7 € J*, and oy, = ff, — ©*7(2¥), we must find

d* = argmin{ |d|*/2 : <gj,d> <af,jeJk, <g"j,'1,d> <aj}. (12.2)

Letting Af = Yk /\j'f + /\t},, we define ‘normalized’ multipliers :\;' = )\f//\f, j € Jk, ;\5 =
Ak /A¥ that form a convex combination. Then, by the K-T conditions, d¥ = —/\i‘gi,‘,, where
9y = Yjer Mgl + A5gh™! € 365 (y*). (Incidentally, A¥ > 0 because y* # z* due to f(z*) >

fE..) Defining the next aggregate linearization v*(-) = ¢*(y*) + <g,’j,,- - yk>, we observe that
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PF = Tiex AEf7 4+ bkt € co{f7}5_; and y* = Pc(wk'fltv)(xk). In effect, ¥* embodies all
the past subgradient information that determined y* (equivalently, this amounts to replacing
the constraints of (12.2) by their convex combination with normalized multipliers). With
such motivation, the next iteration may use ¢¥*! = max{f*+1,%*} with J**! containing
k + 1 and, e.g., all but one elements of J* to ensure bounded storage.

An alternative selective aggregation consists in aggregating just two linearizations. Specif-
ically, if we pick 7, € J* with A, /\;‘ > 0, replace f7 by (M¥f' + /\ﬁff)/(/\f‘ + /\;‘) and drop ¢
from J*, then the solution of (12.1) is unchanged and the new f/ € & (f’ < £%). In other
words, we may replace f’ by the aggregate of f* and f’ and destroy f* to make room for the
next f**1. (Here aggregation only limits the loss of information necessary to ensure bounded
storage. In other bundle methods [Kiw85], it is crucial for convergence.)

Remark 12.1. The simplest case of aggregating just two linearizations, i.e., J* = {k} in
(12.2), may be handled analytically. Suppose ¢* and gfz,_l are independent (the other case
involves projecting on one halfspace only). Then one of the following three cases may arise:
A = —af/|g*|? and A = 0 (if of <g"'.gf,','l> < aklgh?); M =0 and M = —a¥ /]g5E12; or

o =

. g . . . — . . - — 9 o - 2 v
Moo= (¢ i) el = 1987 Fad) /(g Ples™ 1P = (g5 0™ ) ), (12.3a)
. g . . : : L . ~1\2
Ny o= (505" ) ok = 19" 1Pab) (g PlosT P = (5 957 ). (12.3b)

In particular, if af, = 0 then either d* = —afg"/|¢g*|? if <g",g§,_l> >0, or
—- M =g = (") sl and (dfgi )y =0 i (gF,g57) <0, (124)

where gs}'l = —d*YMV Ak > 1L so that —d¥/AF = g% — <gk,d“‘1>dk‘l/ldk‘ll2 and
<d",dk"> =0if <g"',dk"1> > (). Hence subgradient aggregation is related to the conjugate
subgradient techniques of [CFM75, ShUS9]; see §14.

Let us now describe subgradient selection for the dual methods of §9. Let /\f, ] € Jk
denote a solution to (9.5) using (9.1) for éF = f*. As in the primal case, if J* = {j € J* :
/\;C > 0} C J* C J* then J¥ may replace J¥in (9.1) without changing p*, and we may select
J¥Y = J5 U {k +1}. Again, many QP methods will ensure [J"I < N + 1, and the required
storage is of order (N + 2)2.

Aggregation is natural in the dual methods, since they ploduce an aggregate linearization

oF (from @*) that determines y*. gpemﬁcal]v employing of = max{ f" 5¥=11 in (9.5) to find
¢’° we may choose ¢**! = max{f**!, ¢*} with J¥*1 containing k+1 and all but one elements
of J* to ensure bounded storage.

The following (primal) pairwise projections strategy generalizes one in [KKAS87]. Having
several f7, j € J*, let ¢* = max{f*, fi} for j € J* chosen to maximize the resulting |y* — z*|
when {k,j} replaces J* in (12.1). For example, use the formula (cf. (12.3)):

18 = [(1g*]at)? — 2{g" o) ook + (I91af)?)/(g* P1g' — (g*.g°))) i X,k > 0.
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Such j may be included in J¥*1. Alternatively, if f*(y*) > fr., we may replace f* by the
‘aggregate linearization of f* and fJ. pick j such that fi(y*) > f£. and recompute y*. Of
course, more than two constraints can be used at a time, and projections may continue
until y* becomes almost feasible in (12.1). Moreover, if N > |J*|, then maintaining a
matrix of inner products between ¢’, j € J*, allows us to compute pairwise projections
without additional expensive inner products; cf. (12.3). One may use Lemma 9.4 to show
that pairwise projections are essentially equivalent to the surrogate method S2 of [{Oko92]
applied to the inequalities f7(x) < ff., j € J*, starting from 2*. (The remaining surrogate
methods of [Uko92] are obtained by using triples of inequalities and successive aggregation.)

Remark 12:2. It is worth observing that Step 4 may perform several relarations using
the accumulated linearizations. Specifically, at Step 4(iii), instead of going to Step 6, we
may return to Step 4(i) to choose any ¢* € ® for the next relaxation with p; replaced by
px + p5 + p% and 2* by 2% (the replacement being justified by §10); any number of such
returns can occur, and all but the final one may skip the projection on S by setting z*+! = z*,
For example, suppose J* is so large that we do not want to solve (12.1). Then, until y*
becomes almost feasible in (12.1), each execution of Step 4 may use ¢* = max{f7, ¢*7'},
where j € Argmax;¢ f7(2*) and ¢*7! is the current aggregate linearization, i.e., it may
solve (12.2) with J* replaced by {j}. Alternatively, {j} may be replaced by some larger set
for which the solution of (12.2) is *cheap’; cf. §13. The dual methods can be used iteratively
in the same way. In other words, we may attempt to accelerate our algorithm by performing
extra iterations on models of f to exploit more fully the accumulated information about f,
and hence to reduce the number of f-evaluations at the cost of more work per iteration.

13 Relaxation with surrogate inequalities

This section introduces ‘cheap’ QP-based implementations by extending the framework of
deep surrogate cuts of relaxation methods for linear inequalities [BGTS81, GoT82, Tod79].

We need additional notation. For any set A C IRY, lin A denotes its linear span and
coneAd={a:a=y ", Mia', at € A, ) > 0,n < oo} denotes its convex conical hull. We let
A= ={z:(z,y) <0Vy € A} and A* = — A~ denote its negative and positive polar cones
respectively. For a matrix A € R™", a;; and a' denote its 7jth element and zth column
respectively. Given a set Z C {1:n}, Ar denotes the matrix with columns a', i € I. Matrix
inequalities hold componentwisely. A is called a Stieltjes matrix if a;; = aj;; < 0 Vi # 3,
1,7 =l:n,and A7! > 0.

Given A € RM*™ and b € R™, consider the system of linear inequalities (a*,z) < b;,
¢ = 1:m, having a (possibly empty) solution set P = {2 : ATz < b}. Suppose a' # 0
for i = 1:m. Then each inequality defines a closed halfspace H; = {z : (a',z) < b;}, and
P =Ni%; H; is a convex polyhedron.

Remark 13.1. We are mainly interested in the case where P = [l(fk, f£.), but to compare
the preceding convergence results with those for relaxation methods [GofS1, Tel82] one may
observe the following. If P # @ then P = Argmin f, where f = maxi—;.m({(a',") — b))+
has a subgradient g;(z) = a' if (¢',2) — b; = f(z) > 0, g;(z) = 0 if f(z) = 0, satisfying
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lg7(z)] < L; := maXi=1.m |a']. In this case we may let ff = f~ = 0 in Algorithm 2.2 and
proceed as if S were RV, replacing diam(S) in (1.4) by |2~ — 2| for any 2z~ € P; cf. §6.
Then the SPA of (1.2) describes the mazrimal residual version of the relaxation method; the
mazimal distance version corresponds to dividing each a’ and &; by |a'| initially.

In classical versions of relaxation and ellipsoid methods for finding a point in P, given a
current point & ¢ P, one finds the next point T by projecting # on the halfspace H; that is
furthest from Z, since for faster convergence one wishes to maximize |z — #|. By combining
inequalities ¢ 1e can sometimes obtain halfspaces that are further from z.

If A € R}, a® = AX and by = b7\ then the surrogate inequality <a‘\,x> < by is valid
(ATz < b= AT ATz < ATb). The deepest surrogate inequality that maximizes the distance
(<a’\,:i> —by)+/]a| from 7 to Hy = {a: <a'\,.7;> < by} corresponds to

A€ Argmax{5TA/|AN: A >0}, (13.1)

where § := AT —b £ 0 (7 ¢ P). Clearly, if P # 0 then Hj is the unique halfspace containing
P that is furthest from %, and H; = {a: <(7, T - :F> > |d|2}. where d = Pp(%) — % (since for
any halfspace H 3 Pp(2), dy(%) < dp(¥) unless Py(3) = Pp(&)). Of course, d solves the

QP problem .
d = argmin{|d|¥2: ATd < -&}. (13.2)

By duality, we may equivalently find its (possibly nonunique) Lagrange multiplier vector
A€ Argmin{ [AN¥2—-3TA: x>0}, (13.3)

Indeed, by the K-T conditions, d and A satisfy (13.2)-(13.3) iff d = —A4X, 4Td < -5, A > 0
and AT(ATd + ) = 0. Hence §TA = |d? and (a",4) — |d|* = AT ATz — 3TAN + oY = bs,
o) <a ,z> < by off <d,:c — :r> > |d)?, and Py (@) = Pp(2). (We may add that the optxmal
values in (13.1) and (13.3) are infinite iff P = 0. Since the objective of (13.1) is positively
homogeneous, the deepest cut can also be found by solving min{|4AA| : $TA = 1,1 > 0},
max{3TA : |[AM = 1,A > 0} or min{JAN/3TX : &; A = 1,4 > 0}. We note that (13.1)
is a special case of (9.7), whereas the restricted variant (9.3) does not seem to have been
considered explicitly in the context of linear inequalities.)

Of course, finding the deepest surrogate inequality via (13.1)-(13.3) may be too expensive,
ezcept when A is orthonormal, in which case d = —AJX and A = § by (13.3). In the general
case, we may project on a surrogate P={z:QTz< ¢} of P, where QTz < c is a surrogate
of ATz < b (so that P C P) and Q is orthonormal. As in [BGT81, GoT82, Tod79], it is
convenient to work with a subset of inequalitics, indexed by I C {1: m} say, tha.t satisfy the
obtuse angles condition (a',a’) < 0 Vi # j, i, € T. Taking T = {1:m} first for simplicity,
we now show how to construct suitable surrogates via orthogonalization (see Figure 13.1).

Lemma 13.2. Let A = {a'}™,, C = cone 4, m = rank A and G = ATA. If (a',a’) <
0 Vz#y, 1,7 = l:m, then:

(i) C contains an orthonormal system Q = {q'}, such that linC =1in @ and A = QR,

where Q € RV*™ is orthonormal and R € R™*™ is upper triangular, with ri > 0
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a- N
0- D=d+Q ={d:QTd< —0}={z:QTz<c} -3
cone A
. A" D=d+ A ={d:ATd< -5} =P-%
¢’ e
L] o d = Pp(0) = Pp(0) = Pp(z) —
cone O [ 4!
1

Figure 13.1: Illustration of orthogonal surrogates.

and 7i; <0 fori=1:m, 3 =1+ 1:m. Q and R can be found via the Gram-Schmidt
orthogonalization: set my = 0, and for j = 1:m set ¢ = o’ =32, (a?,¢") ¢*, r5; = |@,
ri; ={a,¢'") fori=1:m;, ri; =0 fori>m;, 1 #j, ¢ =¢/|¢°] and mjy; =m; +1
if @ #0, myyy =m; otherwise. (The final My = 1)

(i) CtNIinC C QtNIinQ@ = Q*NconeQ = cone @ C C.

(i) If rank A = m then R™' >0 and G™! > 0, i.e.. G is a Stjeltics matriz.

(iv) If rank A = m then R is the uniquc Cholcsky factor of G having a positive diagonal,
Q=AR " and P C {z: QTz < ¢}. where c = R™Tb. In particular, each inequality
(¢?,2) < ¢; is a surrogate of the system (¢',a) < ¢;, 1 = 1:5~ 1, (a’,z) < b;, and
hence a surrogate of the (possibly stronger) system (a',2) < b;, i = 1:7.

Proof. () IfQ,; = {¢'}i, CC; = cone{a Z) thend’ € C; vields (a,¢*) < 0fori = 1:m;,
so §’ € cone( {a’} U Q;) C C,H and Q41 C Cj+1. The rest follows by induction.

(ii)a € Q*NIinQ < a=3", (a.q¢") ¢ with (a,¢') > 0fori =1:7h <= a € cone Q,
since a = 1.1, Mig' iff \; = (a,¢") for i = 1:7h. Clearly, Q C cone@Q C C and C* C Q.

(iii) If /o = m then r;; > 0for 7 = 1:m,so Rand § = RTR are nonsingular. Since r;; <0
fori < j,if Ru =v > 0 then u > 0 from u; = (v, — 2 yeis1Tiju;) /i, ¢ =m,..., 1. Hence
R'>0and g'=RI'RT >0

(iv) The uniqueness of R is well-known. Use (Q7,c) = R~T(AT,b) and (¢, ¢;) = [(a’, b;)—
iz ri(gh,e))/rin 7 = 1,...,m, with R°T > 0 and r;; < 0 by (i) and (iii), to get the desired
conclusion, noting that ATz < b= R-TATr = QTz < R Tb=c. O

The next result helps in selecting subsets of inequalities for which the projections are
‘easy’. For any T C {1:m}, let Ar = {a'}ier, Pr = {r ATz < b1}, Dr = {d: ATd < -37}
and gII = 4TAI If 731 # 0 let ({ (1) = P‘DZ(O) so that (I(I) sz( ) z from §I = A%i—bz.

Lemma 13.3. Suppose I C {l:m}, (a',@’) <O0Vi#j,1,j €T, and §7 > 0. Then:
(i) If vank Ay = || then d;7y = — Az, where Ay = Gi7é7 > 0, and

J(I) = arg min{ |d|¥/2: A%d = —3r}. (13.4)
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Moreowver, forI {i:\i>0} andeachj €I, X;>0if 5;,>0,if 5,=X =0 then
@i L Az, and X =0if 5, =0 and &) L An ;.

(i1) If rank A7 = |I| je{l:m}\Z, AT’ <0, J =T U {j} and either 5, >0, or §; =0
and 31 > 0, thenrank Ay = |J| <= Dy #0 < Ps #0.

(iii) rank A7 = |Z| <= ATd < 0 for some d.

(iv) If 57 >0 and Py # 0 then rank Ay = |T| and Ay = Grrér > 0.

(v) If G = RTR is nonsingular, where R € RT™I 45 upper triangular, Q = A7R™!
and 0 = R~ Tsz, then d(T) ~Qo and A\r = R0 in (1). Moreover, if ri; > 0 for
i=1:1Z| and D = {d: QTd < —a} then D D D, di1) = P3(0) and QTd\1) = —

Proof. (i) Replace {1:m} by T in Lemma 13.2 to get Gr7 > 0. Hence A = Gr1ér > 0 and

letting d= —AI/\I we have AId = —&r, 50 (13.4) holds with d = d(I by the K-T conditions.

Since G77 > 0 is positive definite, it has a posmve diagonal, so /\ > 01ifs sJ > 0. Next, suppose

§=0andlet J =T\ {j}. X, =0then 0= —3; = (a/,d) = — T,z i (¢.a') with }; > 0

and (a’,a') < 0 imply «’ L A;. Conversly, if o’ _L Az then after sy mmetric permutations
-1

we have Gr7 = [ g‘g‘j |a?]2 ] and G5} = [ g‘g‘j |aj(;‘2 }, so A; = §;/|d’|* = 0.

(i) If rank Ay = || then —A7G7%37 € D7. If rank A7 = |T| then o’ € lin A7. Since
@’ € (cone A7)~, Lemma 13.2(ii) applied to A7 yields —a’ € cone Az, i.e., there exists Az > 0
such that —a’ = Ar)r. Thus if AT7d < ~&7 for some d then (a’,d) = —A\FATd > M3 >0
from § > 0, so Dy = 0 because /\;57 > 0> —5;if §; >0, whereas A§§I >0=-35;if§;=0
and 37 > 0, with Az # 0 due to «’ # 0.

(ii1) First choose &7 > 0 and d= ~ ArG7f 31, then 37 = —.4;&, use (11) and induction.

(iv) Combine (i) and (iii).

(v) Clearly, d(1) = —Azds = —QR(RTR)™'3; = —Qo. Suppose ry; > 0 for i = 1:|Z].
Apply Lemma 13.‘)(iii iv) to Ar and ¢ = R"Tbs to get D7 C D from o = R-T(4Tz — by) =
QTi—c, witho = R"Tér > 0since R™! > 0 and §r 2 0. Hence, replacing (Az, QI) by (Q,0)
in (i), we have P;(0) = —Q(QTQ) o = —Qo = d(z) and QTd =-0.0

Lemmas 13.2-13.3 extend some results of [Tod79] in a way that is useful for algorithmic
developments. For example, consider the following extension of the simultaneous projections
method of [Tod79] for solving a possibly inconsistent system ATa2 < b.

Procedure 13.4 (for finding a point in P = {2z : 472 < b}).

Step 0 ([Initialization). Select &' € R"Y, a feasibility tolerance €, > 0 and D < oo such
that dp(2!) < D if P # 0. Choose I° C {1:m} such that rank Ajo = |I° and (a',a’) <0
Vi#j,1,7€1%eg, I°=0. Set p, =0 and n = 1.

Step 1 (Constraint evaluation). Calculate s™ = ATZ"™ — b and i, such that st o= max; s?
Step 2 (Stopping criterion). If s} < €., terminate.

Step 3 (Selection). Set I"™! = {i € I"™' : (a'",a') < 0,sF > 0} and /" = 1u i) If
desired, repeat‘. the following for some ¢ € {I:m} \ I™: if AT.a' < 0 and either s* > 0, or
sP=0 and Afsa' # 0 and either s}, > 0 or rank Anyiy = |]"| + 1, then augment I* with i.
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Step 4 (Relazation). Print “P = @7 and terminate if rank A;» < |I"|. Otherwise set
§" = Pp,.(i") = i" — A;aA} with Afa = Gpjnsta. Choose a stepsize i, € T and set
F = 0 4 (7 — 20) and Py = fn + (2 = 1,) [f — "2

Step 5 (Infeasibility detection). If poy1 > D? or (D — |#"*! — #!|)? > D? — pny1, print
“P = {” and terminate.

Step 6. Increase n by 1 and go to Step 1.

If P # 0, we may identify Procedure 13.4 with a version of Algorithm 2.2 that minimizes
f = maxi—y1.({a',-) = b))y using ff, = f* = 0; cf. §6 and Remark 13.1. In particular
P C P C {z: (a™,z) < b} corresponds to ¢* € &%, and Step 4 may be validated
by applying Lemma 13.3 inductively at Step 3 to get rank A;n = {I*| if P # 0. Hence if
P # 0 then Procedure 13.4 shares the convergence properties of Algorithm 2.2 from §6, as
well as those of classical relaxation methods [Agm54, GofS1, MoS54, TelS2, Tod79], such as
linear rate of convergence and pos<ib1e finite termination. The infeasibility test of Step 5 is
Justlﬁed similarly as for A]gonthm 2.2; cf. §4. Note that Step 3 may include in I™ several :
with s* =0, eg., 2 € I 1 if t,_y =1 and 8tacy = 0 from 2™ = g™~'. It is natural to choose
I™ as large as possible, although one need not insist on maximality. Of course, in practice
detecting rank A < |1 will require tolerances tuned to the factorization of Ajn.

Remark 13.5. By using the Gram matrix G = A7 4 one may avoid expensive scalar prod-

ucts in updating s” without forming z"; cf {Tod?g] Specifically, let s! = ATz! — b,
=0¢€ R™, s = (1 = {,)sh, e’l‘.fl = sfn —tng,n,n)\,n and v = " +t A™ with
’\12‘ =0 and I? = {1:m} \ I" for all n, so tha.t t=% - A and vt =T, £;M for all n.

Remark 13.6. If we compute the Cholesky factorization AT, 4;n = RTR then A" can be
found by solving the two systems RTo = s%, and R\}. = o; cf. Lemma 13.3(v). To save
work, R and ¢ may be updated when /™ changes. However, as with normal equations for
least-squares problems, one may need to employ iterative refinement to improve accuracy in
the presence of rounding errors. Alternatively, one may use any stable method for computing
the ‘skinny’ @) R-factorization Aj» = QR, where Q is orthonormal, so that AT.A;» = RTR.
The classical Gram-Schmidt process may fail due to rounding errors, but remthogonahzatlon
can ensure higher accuracy. Moreover, by Lemma 13.3, d* = §" — " satisfies

d* = argmin{ |d[}/2: AT.d = —s. }, (13.5)

and this equality QP problem can be solved via many well-known methods. All these aspects
are treated in depth in, e.g., [Bj690, FleS7, GMW91, GVLS9].

Remark 13.7. Suppose Step 3 of Procedure 13.4 chooses I = I~ U {i,} with Sfaer =0
(recall that s7aoy =0if £,y =1 and &" = ]"") Let 7o = |I"| and let e™ denote column
of the / x 7 identity matrix, so that s7. = s? e™. Then, using RTo = st» and RAT. = o asin
Remark 13.6, we have o = s e ™/ T and only the system RA}. = s e ™/rss must be solved.
This system may be used even if 87.-y # 0. Specifically, decreasing 31n to 87, with §7,_, =0
and 3} = s? corresponds to sctting §* = Ppn(i™), where P = {z : AT,z < bjn +31" 57a}
satisfles P;» C P* C {z : (ai",x) < b;,}, so the efficiency results remain true. This
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simplification is used in [Ceg92] when {*~! < 1. It may, however, result in slower convergence,
since P" can be much bigger than Pjn. (The method of [Ceg92] scales the constraints of
(13.5) before computing R, but d" is not affected.)

Remark 13.8. Using d® = — A2 A% and RA}. = st €™/, as above, for the Q R-factoriza-
tion Ajn = QR we have dr = —58% q™/T s, where we may take 1,5 = |g] and ¢™ = g¢/|q] for
g=a" -7 (@™, ¢") ¢' as in Lemma 13.2. Thus only Q could be updated by computing
some elements of R = QT Aj». However, using @ instead of R would require more storage
and work if 1.2 < N, and could be less accurate without reorthogonalization.

We may add that the idea of using the obtuse angle property to identify cheap projections
has wider implications. (A cheap projection requires only the solution of one or two linear
systems in contrast to combinatorial QP.) For instance, it may be employed to accelerate
general projection methods for convex feasibility problems; see [Kiw92].

Let us now show how to employv Procedure 13.4 as a subroutine for implementing Step
4’ of Algorithm 2.2; cf. §§10 and 11. Suppose Procedure 13.4 is called to find a point
in P = L(f*, f£.), starting from i! = z* (with €0 = 0). Then it may be exited at any
iteration 7 > 1 also at Step 6. Specifically, in view of §4, we may take D = r; = (D? — pi)'/?,
and Step 5 may use the additional test (D — |z —z*+1)2 > 2 _ 5 1 Upon termination
at Step j say, set =¥ = " pf = piif j =2, p5 = 00 if j = 4 or 5, and 2% = ™" and
pf;, = pas1 if J = 6. Then z* and pfj, satisfy (10.1) (cf. §4). The easiest way to ensure that
p5 > tmin(2 — tmax)dzuk,mv)(r") consists in taking ¢7; € Argmax;s}/|a’| at Step 1, since
then [§! — &' = dp,(2") 2 dgp g y(2*). (In fact the usual choice yields |§' — &' >
(f(z¥) = f&,)/ max;cx |g|, and this suffices; cf. Lemma 3.1.) Thus, if desired, only one
iteration of Procedure 13.4 may be exccuted, but more iterations will yield better z* and pf,
for Algorithm 2.2. Note that if Step 6 always erits then we may set n = k and " = z* at
k+1 — 3541 at Steps 4 or 5, or z* = ¥*! and y* = 7* at Step 6.

Step 0, terminating with **! = &

Remark 13.9. Asin §12, the final A* may be used for subgradient selection or aggregation.
Note that selective aggregation corresponds to dropping from A;» one column aggregated
into another, thus retaining the crucial property (a',a’) < 0Vi # j in the new I” (in contrast
to total aggregation that replaccs one column by a convex combination of all columns). Of
course, the final I® may become the initial /° on the next call to Procedure 13.4, and the
final matrix factorization should be used in a hot start, e.g., if only f, has changed. We
may add that most matrix factorizations can be updated to reflect selective aggregation.

Remark 13.10. The following modification is useful when P = C(fk,f{;v). Unless ff, = f*
is employed, it suffices to discover that f¥ < f=, since then fif! = ff can be used without

low
impairing the preceding efficiency results. To this end, Step 3 may choose any I™ such that
in € I", s7 > 0 and (a',a’) < 0 Vi # j, ¢,5 € I". Indeed, suppose ff, > f*. By (2.12),
f¥(z*) < f~ for any == € S and, since f* = max;csx f7 and (d',-) — b; = fi(-) — fk, for
suitable ¢ and j, we have (a',z%) — b; < f*(z") — f£, < 0 < s? = (a',Z") — b; Vi € I", so
AT.(z" ~ ") < 0 and rank Aj» = |I"| by Lemma 13.3(iii). Therefore, if rank A;» < |I7] is

revealed by any factorization then ff, < f* and Algorithm 2.2 may set fit! = ff .
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Extending [Shc92], we now describe an orthogonal surrogate projection (OSP) version
of Procedure 13.4 that sets §* = Pp (") for Pn = {z : (¢/,z) < ¢;,7 € J"}, where
each inequality is a surrogate of ATx < b (so that P C P,), the system Q. = {¢’ '}iein
is orthonormal and J™ C {l:n}. Here AT |
surrogates (¢’,z) < ¢;, j € J™1, at Step 3 in constructing the new surrogate {¢",r) < ¢,
via orthogonalization as in Lemma 13.2. Specifically, at Step 0 set J° = . At Step 3 set
Jrl = {j e Jr (i, ¢7) <0} and J* = J*1 U {n}. At Step 4 set

qn-; ain — Z <ai",qj> ({j =0 and qn — (;n/lqnl if qn # 0, (136&)

J'ejn—l

< bjaor 1s replaced by the accumulated

print “P =07 and terminate if §* = 0; otherwise set ¢%,_, = (1 — ¢,_ 1)0J"_1 ,

(en0%) = [(bis2) = 30 (@™ ¢’) (e5,07)1/17), (13.6b)

J’ejn—l

dn = —Qjn0}, and §" = " + d", and choose i, < 1. Here Qjn = [Qju-1,¢"], where @ ja_,
is the N x |j"‘1| orthonormal matrix corresponding to @ ;n_,.
To validate this modification, suppose P # 0. Q j.- is orthonormal, 7%, , = gn_,i" —
c‘,,,_1 > 0 and QT 2 < Cjaoy 1s @ surrogate of ATz < b, so that P C P, = i™ + D,, where
={d: Q%._ 1d < =07,y (@ d) < =t} Also st > 0 and QF,_,a™ < 0 by construc-
tlon. Hence, replacing Dr by D, # 0 in Lemma 13.3, we deduce that rank|[Q j._,,a™] =
= |J"], so §* # 0 and by construction [Q j.—i.a™] = QjuR, where @ j. is orthonormal,

r;; =landrjs = (a*,¢?) <0,j = Lith—1, rpm = [¢7], and the remaining r;; = 0. Then by
(13.6), (¢",z) < ¢y Is a surrogate of QJ,, & < Cjnrs (@', a) < by, (and hence of ATz < b)
with of = (¢",2") — ¢, > 0, and R~ T[( - ,)T.s?"]T = UJ,, Therefore, since dn = ——Qj,,a"},,,
we deduce from Lemma 13.3(v) applied to D, that QJ,,d" = =07,

Do CDni={d:Qhd< ~0o%} and d" = Pp,(3") = Pj (3"). (13.7)
Thus " = Pp,(i") = Pp_(2"), where P, C {z : (a*,z) < b;,} and P, =i+ D,. Using
Q.:;:n(i" = —0’3", = a" 4 Zn(zn and {n <1 gives 03:1 = Q§r:in+l —Cjn = 0"7;,, +£nQ§an =

(1-1t.)e% > 0. Also Q.z < ¢jn is a surrogate of ATz < b. Hence one may use induction
to show that this OSP version shares the convergence properties of the original one.

Note that if {,_, = 1 then oj,, ,=0and d* = —07¢" = -s? ¢"/|q"| as in Remark 13.8.
Thus g™ is the projection of 2™ on the ‘orthogonalized’ surrogate (¢",z) < ¢,. Also the
preceding validation would go through if, to save work, we increased ¢, by 0%,_, # 0, i.e.,
enlarged P, to get o%,_, = 0 and =~ s? ¢*/1q"| as in Remark 13.7.

Step 3 could construct more than one suuogate Specifically, if s® > 0 and Qj,, a* < 0 for
some ¢ then Step 3 could append to QT z < ¢jn another surrogate de11ved from (a',z) < b;
and Q z < ¢ja as in (13.6), and this may be repeated for other violated constraints. Again,
Lemma 13.3 validates this extension.

To improve accuracy, iterative refinement of the form §* « g”+an(cJ-,,—Q§,,3]") or d* «
d" + Qjn(0%. — f,,d") may be used at some iterations, and ¢" should be reorthogonalized

with respect to @ j.-.; see, e.g., [Bjo90, DGKS76].
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When the OSP procedure is called repeatedly with P = £(f*, f£ ), we may generate a
vector &jn > 0 recursively via & = (1 — ;¢ ja1 (¢, ¢?) &)/1¢"|- Then, by induction on the
surrogate construction (13.6), there exist v; > 0 such that

n

(g% ca) =Y vl b)) and & = v > v, =1/|7" > 0, (13.8)
=1

3=1

so dividing by &, yields ((¢",-) = ca) /& € co{(a',-) = b;}7, € co{f'}JeJk — fk.. and hence
co{(q ¢i)/&jein € co{(a',b:)}i,. Thus, when flev changes to f}*! on the next call then

(f f]c\)cj" sllould be added to c;» and o3,. If :z"‘“ ;ﬁ i" (e.g., due to ! = Pgs(3")),
then o7, = Q ' —c¢j» must be recomputed f01 2! = ¥ Alternatively, using Q I—Cjn =
T k41

jn(® — ") + 0 jn, we may update OGn = OGn + QT (z Z™) (then cjn is not required).

Next, dropping j with o} < 0 from J™, if any, a hot start can proceed as if J° were J™.
Note that Remark 13.10 holds for the OSP version with A~ replaced by [@ja-:.a'"] (since
AT"E‘ < b —-—} QJn-—la CJ" 1 < O < UJn—l QJn—]‘T CJ”—] b.\ (13b))

Remark 13.11. By the preceding argument, the surrogate linearizations
FPO=(e ))&+ fiy = —2™) +01)/8 + fit, jE T (13.9)

satisfy f7 € co{f?},esx C ®. Hence they may be used as any other linearizations of f. For
instance, no additional storage is required if, at Step 6, f7 replaces the f? corresponding to
(a'™,-) = bi,. Also A} = ¢;o} are Lagrange multipliers for {7, € Jr. since d" = Py, (27)
with D, = {d: q’/cj, d) < —-0}/¢.J) € J"}, whereas o7 are Lagrange multipliers for
dr = 5, (27) in (13.7). Thus A%, can be used for sclective aggregation as in Remark 13.9,
and normalization of the agglegated column ensures orthonormality of the new @ ja.

Remark 13.12. Consider the simplest case where Step 6 always exits, so that we may let
n =k and " = z*. Suppose P = L(3* flc‘) with ¢ = max{f*,v*"1} as for (12.2), where
#*~1 is the previous aggregate satisfying ¢*~1(z") = f¥ , so that a hot start occurs from
J = {n—1} using ¢" ' = ¢571, ¢*' = Y17, coer = 1/|¢* " and o7_; = 0. Assume
<gk,g§,_l> < 0. By simple calculation, either infeasibility is detected at Steps 4 or 3, or Step
6 terminates with d* = —(f(z*) = f£.)¢"/|§"|?, where ¢" = ¢* — <g'°,gfj,'l>g,f,‘l/lg,f,','1 2

1 = 1M = (g, 657 ) V1gh 1P (use & = —onq, of = /16| and s, = f(a*) = fE.).
Also, since o™_, = 0, the aggregate v* of f* and *~! coincides with fn. Note that for
<g",gs,‘1> > 0 we would get " = g* (as if ¢* = f*), and that if we had ¥*1(2") > f,
then the same formulae would hold if we set ¢?_, = 0. It is not suprising that the same

d* and ¢* would be produced via the original version of Procedure 13.4 restarted from
Apnor - =bpaor = *71 = fE . (Use of = 0in (12.3)-(12.4) to get A = (f(z*) — fE.)/13*
and d* = —)\kg" = d”.) We add that ¢*(2**1) > fE+1if ¢, <1 (cf. Lemma 14.1(v)).

We may add that the method of [ShcT9, She92] corresponds to a version of Algorithm 2.
that attempts to solve the inequality f(z) < 0. It sets ff, = ff. = 0 and finds zF*! = 5v2
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via one iteration of a simplified OSP version of Procedure 13.4 that starts with ! = z* and
f¥(z) € 0 appended to the accumulated surrogates, and exits at Step 6, unless infeasibility
is detected earlier, in which case it terminates. First, it sets ¢, = 1 for all n, whereas our
OSP version allows smaller stepsizes that may be useful at initial iterations. Second, it
expresses d* as d* = —|a"|?¢"/ (&",¢"), where @" = s* a™/|a™|?, so d" = —s! ¢"/|§"] from
(a**,§") = |¢g™|* by orthogonality. (In fact it replaces a'» by @" in calculating ¢”, but this does
not affect @ j..) Third. it does not compute cj. and ¢jn, thus preventing iterative refinement
and hot starts that would be necessary for handling the additional constraint z € S (except
when S is a flat [Shc87]). Fourth, both methods should cope with the instability of the
Gram-Schmidt process. Periodic resets to J® = {n} recommended in [Shc87, Shc92] slow
down convergence. It seems better to employ iterative refinement and reorthogonalization
in computing ¢". To sum up, our method appears competitive with that of [Shc92]. Finally,
note that such methods project on sets P, that may or may not be larger than P~ with
I" = {i;};cjn- Thus it is not clear whether our OSP version could compete with, e.g.,
a Cholesky-based implementation of Procedure 13.4. We note that encouraging numerical
results were obtained in [Ceg92] by a method that combines greatly simplified versions of
Algorithm 2.2 and Procedure 13.4 for solving a consistent inequality f(z) < 0.

14 Conjugate subgradient techniques

In this section we use the dual framework of §9 for extending some conjugate subgradient
(CS) techniques; see, e.g., [Bra91, CFM75, KiA90, Sak87, SKR87, ShU89, Sho79].
First, we identify surrogate linearizations of f that may be generated via CS methods.

Lemma 14.1. Let 0 < p < 1. Suppose iteration k — 1 provzdcs an affine model ¥*~! of
fs of the form w*=1(-) = w*=1(a*) + (g1, - ﬁ) with p*=1(a*) > fk. such that w*-1 € &
if fE. > fr. Let v = %=1 4 fE — ¢*~1(a*) denote a shifted version of ¥*~! such that
Pr1(2%) = fE.. The corresponding current models of fs are given by P = max{ f¥,y*1}
and ¢ = max{f*,¥*"1}. Next, let ¢* = f(z*) + <§;, - .’L‘k> = f*+ B <g$_’,~ — :1:"> be
the current CS model of fs, where §§ = g* + Brg;™" for B > 0 such that |g&| < |g*|/p,
and let ¢* = (f* + Bp*1)/(1 + Br) denote another CS-like model of fs that is a convez
combination of f* and z/)" 1. Finally, let By = arg mings lg* +ﬂg¢, Y. If £k, > f* then:
(i) v* 1951 € @, %, ¢* € B and ¢, 4" € ®* (cf. (9.2)). In particular,

v

deqe g () = [F(2*) = fE, + Bl (=*) = R)1/155]

dC(Js*,/l';v)(zk) [
> dyg g y(a¥) = () = FENNI3S) 2 undY Ly

and dC(é“,f,';V)(xk) > dc(d’)k,flk )(xk) 2 dpgge gk, )(ark).

i) Be = (9%, —957), /o572 Moreover, I351% = 16" — (g*,057") /Io5'12 of Be = B
and (g*,957') < 0, 55| < |g*| if Bi < 2Bk, and |35] < 21g*| if Bi = lg*1/1g57).

(i) Br < 2Bk = degge gx y(2%) 2 dogpuge 1 (25); By < 2B = dogu gu 1(3%) > dggp g ().

[
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(iv) If {g*,g5") < 0 and By = By then Pygu v \(2%) = Prigu, ,lty)( z*).

(v) o*(z*1) > fk'Tftk<1 (177(1@( K> fk i eg., 85 = ¢, o5 ¢F or ¢F at Step 4.
Conversly, if ¢k—¢> of, &* or o and L(¢*, f£,) =0 then fE. <

Proof. (i) Let z= € S*. Since w‘ k) + <g , $k> =¢*!(27) < f* and f"'(:r‘) <f

we have <g$ , Tt — 1 > < fr- ( ¥) < 0 and (5“(1:") ¥ ) + 5k< Vet —2:"> <
fro Next, dpge o \(3%) = (f( *) = fie) 1351 Z HAk/(IJ /1) 2 #hAk/Lfa while ¢*(z) =
a”s ) + <go,x — 2*) with ¢*(z*) — fii, = [f‘ fle‘ + Bu(@* T (2*) = f£)/(1 + Bi) and

= (" + Brgy™")/(1 + Bx) vield d ciér (@ [f — fiee + 3l f(a ) fe /3], so the
conclusion follows from w*~! 5 il fh < q')“ < ok and HF < .

(ii) Solve mingyo |g* + Bgs~1[%, and use |§*] < | Je ﬂklgk‘l|.

(1i1) Invoke (i) with |§ ¥| < |g*| and (lc(jk 1, ) 2%y = (f(z )— fl';f\.)/lgk].

(iv) Use 5> = lg** - <g LghT > /lg57'f? and o¥ = 0 in (12.3)-(12.4) to get A\f =
(flz ) fEN/151% and d* = —Afgh = C(é*,f,ﬁv)(a'k) — z* with J¥ = {k} in (12.2).

(v) Using (2.8), 21 = Ps(z%). 2% € Sand t, < 1, we get |2*+! —zF| < ] "—z‘| = 1 ]y* -
z*] < Jy* — 2*]. But y* = Pc(ék_flﬁv)(ark) with ¢%(z¥) > fit . so fE, = d)"( M) < o*(zH). O

Lemma 14.1 suggests the following C'S implementation of Algorithm 2.2. Let 0 < p <1
and o' = fl. At iteration k& > 2, let ¢¥*7! = ¢*71 and ¢* = ¢* with 3¢ > 0 such that
195 < \g*1/p if *1 (%) > ff,, and B = 0 (d)k = f*) otherwise. Then by induction, as in
§9, we see that only the first terms of the constants in all the preceding efficiency estimates
and the right side of (7.3) need be divided by u?, with g = 1 if 8 < 28i Vk; of course, AL,
replaces nA" in Lemma 14.1 for the frozen level gaps of §7.

Note that by construction, d* = —(f(2*)— f{£,)35/|751* and if &*! # 0 then d*~Y/|d*"!| =
—g5=1/1g5=1 5o if B = 3y and < AR 1> > 0 then g5 = ¢* — <gk,d""l>dk"l/|clk‘1|2 and
<dk,d" 1> = 0. These CS relations correspond to those of the methods in [Bra9l, CFMTS5,
KiA90, ShUS9, Sho79], which set ff. = f~ and t;, < 1. Incidentally, when ¢, < 1 and f}#! <

lev
fE, then ¢*(a*+1) > fkJH by Lemma 14.1(v), so such methods can skip computing %*~ 1(.1:")
(= f7); this is the main reason for choosing t; < 1. Usually 3; < 20 is advocated; with the
choice of 8 = |g*|/|g~" | from [ShUSY), the direction d* simply bisects the angle between —g*
and d*~1, and, in this sense, is an average direction. Since |y —y*|? < ]y—xklz—dzwk 1k )(:z:k)
Ylev
ify € 57, y* = Py, (@ 'k) and ff. > f*, Lemma 14.1(iii) augments the usual angle-

based motivation for using o* instead of f*, while Lemma 14. 1(iv) complements results in
[KiA90]. In particular, the CS implementation with 8 = Bx corresponds to the simplest
OSP implementation of Remark 13. 17 with z[;" ! replaced by ¥*~! to zero its on_y, and
gd, = ¢" obtained by orthogonalizing ¢* and g J

Lemma 14.1 says that we may easily improve classical CS techniques by taking ¢* = ¢*,
q~5" or ¢>" instead of ¢* = cS" to increase dC(¢k‘jll:v)( 2*); cf. Remark 3.9. In particular, ¢’°
a convex combination of f* and ¥*~', and other such combinations could be developed as
in §9. It seems, however, that ¢* = max{f*,¢*=1} is preferable anyway. First, Lemmas
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9.4 and 14.1 show that ¢* is best in terms of efficiency estimates. Second, the resulting
choice of ¥*~1 = ¢¥~1 and @¢¥ = max{f*, &*~1} corresponds to the aggregate subgradient
implementation of §12, which, in contrast to the other CS choices, does not require ¢; <
1 and does not need to resort to the poorest model ¢* = f* when ¢*~'(z*) < fk, or
<gk,g5'l> > 0. Third, it involves little additional work (cf. (12.3)). Last, but not least, it

is simpler conceptually. Incidentally, the choices of ¢* = ¢* and ¢F = ¥ may be compared
in dual terms by noting that (8, = arg maxﬁzo(f(ark) — fEO " + Bgfj)'ll and (/\’;,)\fb) €
Arg max{[Ax/ f(2¥)= fie,) F A (BT @)= fle )/ g +A0gy ™M 2 A 2 0,00 > 0. Ak +2y = 1,
where the second maximum (= dﬁ(ék,f.fv)(xk)) can be much greater. - o
An obvious extension of the CS techniques is to take 6* = max{f*, #*} or max{f*, ¢*}
to increase dC(ék'jlk )(:rk). Further, more than one CS steps can be made as in Remark 12.2.

15 Constraint modelling

Since Algorithm 2.2 minimizes f on S, ¢* should be chosen to model the extended objective
fs = f+6s and not just f alone. Failure to do so may result in severe deficiencies, as shown
in the following simple example.

Example 15.1. Let N =2, § =[0.1] x [0,1] and f(z) = ex; + 2. where 0 < € < 1 is
a small parameter. Then S* = {(0,0)}, f~ = 0. diam(S) = V2 and L; = /1 + €2 Let
! = (1,0) and tin = timax = 1. The following facts are easy to verify by induction. The
SPA (1.2) generates 2* = ({1 + €2)!7%,0) and f(2*) = €(1 + €2)!~* Vk, i.e., its convergence is
linear but very slow for small €. The situation is even slightly worse for the SPLA (2.2) with
fL., = f*, which yields =¥ = ([1 — x€?]/(1 + €%)¥~1,0) Vk. In contrast, Algorithm 2.2 with
fl,=f* D>+2and ¢* = f¥ + 65 gives 2% = ((1 — x)*~1,0) Vk, i.e., it is much faster for
typical «, independently of €. In fact for x = 1 (cf. Theorem 6.1) it terminates with z% € S*,
being equivalent to the iteration (1.5).

Remark 3.9 and Example 15.1 suggest that the following modification of (2.2)
¥ = argmin{ |z — 2*[%2: f(=*) + <gf(ask),1' - 1‘> < fr,T€eSY) (15.1)

should be more efficient in practice. Supposing S is a box of the form [2!°%, 2P], let z(v) =
arg min, g {|x—2*|¥/24v <g", :v>} Vv > 0. Then 2**! = 2(D), where # > 0 solves the equation
h(v) = f(z*) + <gk,a‘(z/) - :::k) - ff, = 0. Since z;(¢v) = max{min[z!**,z¥ — vg¥], "},
¢ = 1: N, and h is nonincreasing and piecewise linear, ¥ is easy to compute.

Of course, projecting on S is easy only if S is simple enough, e.g., a Cartesian product of
boxes, simplices, balls, ellipsoids, cylinders, etc. Additional linear constraints may complicate
the projections; e.g., for ¢* = f"' + b5 we must find

y* = argmin{ |z — 2*¥2: fl(a) < fi., 7 e Itz e 5. (15.2)

Fortunately, accurate projections are not really necessary. For instance, (15.2) can be im-
plemented approximately by projecting cyclically on L(f¥, f.) and S as in Remark 12.2,
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possibly with inexact projections on L(f*, fi£.) being performed via the methods of §§12, 13
and 14. Also if S is polyhedral then (15.2) is just (12.1) augmented with the inequalities of
S, so it can be solved approximately by several steps of these methods.

It is crucial to observe that even if S is not polvhedral, it may still be linearized via
inequalities generated in the course of calculations. First, such inequalities may be recovered
geometrically by noting that S C H* := {z : <zk“ —zk z — xk> < 0} from z* = Ps(z*F1).
Hence we may replace S in (13.2) by S¥ = ﬁ]-eJ;Hj with J§ C {2:k}. Second, similar
inequalities may be generated analytically if S = {z : F(z) < 0} say, where F : RY - Ris
convex, and we can find its linearization F( z) = F(z)+ (gr(z),- — z) with gr(z) € OF(z)
for any z. Then we may use H* = {r : F(z;2*) < 0} as above. In other words, we may
accumulate H? for the model §5« of &5 in t,he same way as we use f7 in the model f* of f,so
that f + és is approximated by ¢* = f" + 8k, with 85, < 65 from S C S*. To save storage,
some of the inequalities defining S* may be aggregated as in §12. )

The following observation is useful for the dual models of §9. If we take qﬁk f*+ 85 for
a polyhedral $ = {z : (a',z) < b;,7 = 1:1m} say, then a(kd% ) = {agfk )+ On6s(zF)
€+ ¢ < e, €, ¢" >0} with

855 —{Zz/a Z:};(b,-—<a",:ck>)§e.quO,i:l:m},
=1 1=]

so p* = arg min{|p|?/2 : p € 8, ¢*(2*)} of (9.5) can again be found via QP using (9.1). Next,
letting I* = {i : <a‘,1rk> b;} and &% = {.T : {d',a) < b7 € I*}. consider the simpler
model ¢* = f* + 65. Clearly, ¢ < fs, ¢(a*) = f(a*) and 0, ¢*(z*) = ¢* + Obg(a*) for
any ¢ > 0, i.e., p* does not depend on ¢,. Hence by Lemma 9.4, ¢, = 0 gives the ‘optimal’
dual method with d* = y* — z* = —(f(z*) — fE "/ 1P"|? = C(é’*'fn'iv)(xk) — zF if p* £ 0;
otherwise fff, < f* by Lemma 9.2. (Thus it is not suprising that this dual method behaves
like the primal one in Example 15.1.) Additional insight may be gained as follows. The
cones C = cone{a'};¢;x and C~ = {x : {¢',2) < 0,7 € I*} provide the classical orthogonal
decomposition

9= Pc(g)+ Pc-(9), Pelg) L Pe-(g9), VYge R,

since Po-(g) = argmin{|z—¢g|¥2 : AT,z < 0} has multipliers Ajx € Argmin{| A A —g|¥Y2:
Ap > 0} satisfying Po(g) = ApApe and AL AT, Po-(g) = 0 by the K-T conditions, so for
9= _gk7
—pt= — Prg(er) (=) = Pryzry(—9%), (15.3)

where Ns(z¥) = 06s(x ) C and ’Tb( ¥} = C~ are the normal and tangent cones to S at z*
respectively. Hence —p* and d* are feasible directions for S at z*. Thus if ¢, is sufficiently
small then z¥ = z* 4+ t;,d* € S, so that one may take z**! = ¥, sklppmg its projection on
S. This motivates a similar technique in [KiUS9] (with f£ = f*), but small stepsizes may
yield slow convergence.

Of course, if S is not polvhedral, then the preceding construction may employ its accu-
mulated approximation S¥. A simple but useful example is given in the following
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Lemma 15.2. Suppose H* = {z : <a T—-x > < 0} s a nontrivial outer approzimation to
S at z*; e.g., a¥ = 2471 — 2% £ 0. Let 4% = argmin, 5o |g* + va*|, choose 0 < v < 29, and
let g% = ¢* + yia*. Then fE() = f*() + % <ak,~ - a‘k> = f(2*) + <g§,- - r“> is a valid
linearization of fs, i.e., f& € %, satisfying fS(z") < [~ Vz" € S*, and dC(féJ.'ZV)(xk) >
dCU"Jl:v)( r*), with strict inequality if 0 < vy < 24;. In particular, if <gk,a“'> < 0 and

e =3k = — (g*.a*)/|a*? then g = g* — (g*,a*) a¥/|a*[? = — Pyu(—g").

Proof. Clearly, f5(2*) = f(z*) and f¥(z) > fi(z) Vz € S C H*, so fs(:c') < frifz* e S
As for the rest, solve min,>o lg¥ + va*|?* and use dc(fk fE) (z%) = (f(z*) — ££,)/19%]. O

In view of Lemma 15.2, we may replace g* by ¢& € dfs(x¥), a conditional subgradient of
f on S. In general, f£ is a worse model of fs than f* + &, but it may be easier to handle.
We now extend the average direction sirategy (ADS) of [ShUS9J.

Lemma 15.3. Suppose t <1 and ¢* = o € (bﬁ, where J)k = f(z*)+ <_(7g - xk> is the CS
model of Lemma 14.1. Let * = ¢*(z*+1) + <g,’j,,- - xk“>, where gf = g5 + (k= z*+1)
for some 7 2 0. Then zj)kv(:r,"“) > ff. and zj) € ®if fE. > f*. Moreover, if v = ¥x :=
5512/ (&% (2*)— fE )t then d* = —gk [yi, where dF = %' —z* is the actual direction of motion
which includes the effect of the projection opcration. In particular, if d* # 0 and ¥* is used
to define the next ¢*+' = F+' with 3y = lg*+1 /g5t then Gi*! = gh+! — |g¥+1]d¥/|d*|,
.e., the move y**1 = o*¥1 — (f(a*+1) — fiF1)gh+Y/ |55+ |2 occurs along the average direction
of —gk* and d*.

Proof. If ff. > f* and z= € S~ then (2 ""’1) + <J"; z° — :z.““> = J)k(x') < fT by (9.2)
and <:" — gkt ot — gt > < 0 because z**! = Pg(z*) and z* € §, so ¥*(z*) < f*, while
z/)k(x'i“) = g')’( k1) > f¥, by Lemma 14.1(v). Next, suppose 7 = Jx. Then 2¥ — z* =
—ti(@F(2*) — fi5,)35/|G51? yields —gh /v = 2% — 2% — (z"' — 2%*1) = d*. The rest follows by
construction.

Lemma 15.3 suggests the following A DS version of the CS implementation from §14. Let
0 < u < 1. At iteration k, let ¢! = fl if k =1, otherwise use ¥*~! to find ¢* = ¢* with
Br > 0 such that |§5] < |¢* |/;1 if F-1(2%) > £, and Br = 0 otherwise; in both cases choose
Y = 0 to construct ¥* as in Lemma 15.3. In other words, instead of using ¥*~! = ¢*~1,
the ADS version modifies ¥*~! to include the effect of the projection operation. Clearly, the
ADS version shares the efficiency estimates of the CS one’s. On the other hand, the ADS
version of a similar method in [ShUS89] (with v, = %,) performed better than the standard
CS version of [CFM75] (corresponding to 8 = f; in Lemma 14.1). (By the way, the ADS
version was not validated theoretically in [ShUSQ] ) We note, however, that the arguments
of §14 that favor ¢t = max{f*,¥* 1} versus #* hold also for this modlﬁed form of ¥*~1.



16 Conclusions

We have provided efficiency estimates for several new variants of subgradient relaxation
methods for convex minimization. First, our theoretical framework extends and unifies the
approaches of [KAC91, KuF90, LNN91] in the three schemes for underestimating the optimal
value. Our fourth scheme with partial model minimization from §8 seems to be particularly
promissing. Second, we have generalized the dual methods of [KuF90, LNN91], compar-
ing them with primal ones and extending various acceleration techniques for subgradient
methods, such as surrogate constraints, deepest surrogate cuts. simultaneous projections,
orthogonal surrogate projections, conjugate subgradients and projected (conditional) sub-
gradients. Finally, we have proposed to use subgradient aggregation and parallel projection
methods for implementing our methods in the large-scale case.

Of course, some of our ideas have been inspired by other popular approaches [AHKS87,
BaS81, HWCT74, KKAST7. SeS86, ShMSS, ShUS9], and may in turn be used to modify the
methods given in these papers. For example, the concept of relying on subgradient aggrega-
tion to provide some ‘conjugacy’ (cf. §§12, 14 and 15) would enable the method of [ShU89]
to use ‘deeper cuts’, thus enhancing faster convergence. We hope. therefore, that this paper
will contribute to the development of other subgradient methods.
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