%l INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On the lempel-ziv parsing
algorithm and its digital
lree representation

Philippe JACQUET
Wojcicch SZPANKOWSKI

N° 1833
Janvier 1993

PROGRAMME 2

Calcul Symbolique,
Programmation
et Génie lociciel

apport
de recherche




ON THE LEMPEL-ZIV PARSING ALGORITHM AND ITS DIGITAL TREE

REPRESENTATION
Philippe Jacquet® Wojciech Szpankowskit
INRIA Department of Computer Science
Rocquencourt Purdue University
78153 Le Chesnay Cedex W. Lafayette, IN 47907
France U.S.A.
Abstract

Consider the parsing algorithm due to Ziv and Lempel that partitions a sequence of length n into
variable phrases (blocks) such that a new block is the shortest substring not seen in the past as a phrase.
In universal data compression schemes the following parameters are of interest: number of phrases, the
size of a phrase, the number of phrases of given size, etc. These parameters can be efficiently analyzed
through a digital search tree representation of the algorithm. In particular, using this representation and
a recent result of Kirschenhofer, Prodinger and Szpankowski, we solve the problem left open in Aldous
and Shields, namely: we show that the variance of the number of phrases becomes asymptotically
(C+6(n))n/ logs n, where §(-) is a fluctuating function with a small amplitude, and C is a constant that
have been found in Kirschenhofer et ¢l. We also present one result concerning the length of a phrase.
Finally, we formulate several open problems concerning second-order properties of the Ziv-Lempel scheme
which we envision can be solved by using appropriate tools from the digital trees arsenal. All of our
results are formulated in a probabilistic framework.

NOTE SUR L’ALGORITHME DE COMPRESSION DE LEMPEL-ZIV ET SA
REPRESENTATION EN ARBRE DIGITAL

Résumé

Nous considérons 1’algorithme de compression de Ziv et Lempel. Cet algorithme consiste & séparer
une séquence de longueurs n en blocs successifs tous différents, avec la réegle que tout nouveau bloc est
identique & un des blocs précédent ajouté d’un symbole. Nous nous intéressons aux parameétres suivants :
nombre de blocs, tailles des blocs, nombre de blocs d’une taille donnée, etc. Pour analyser ces paramétres
il est avantageux d’utiliser la représentation en arbre digital de cet algorithme. En particulier, grace
a un résultat récent de Kirschenhofer, Prodinger and Szpankowski, nous résolvons le probléme laissé
ouvert par Aldous et Shields, a savoir que la variance du nombre de blocs quand n cro”it, se comporte
asymptotiquement en (C + &(n))n/logs n, ot 6(-) est une fonction fluctuante de faible amplitude, et C
est une constante déterminée par Kirschenhofer et al. Nous présentons aussi un résultat sur la longueur
des blocs. Enfin nous formulons quelques probléemes ouverts au sujet des propriétés au second ordre de
I’algorithme de Lempel et Ziv. Tous nos résultats sont exprimés sous un modéle probabiliste.
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1. INTRODUCTION

The heart of the Ziv-Lempel compression scheme is a method of parsing a string into
blocks of different words. The precise scheme of parsing a string of length n is compli-
cated and can be found in [23] (cf. [15]). Two important features of such a parsing are:
(i) the blocks are pairwise distinct; (ii) each block that occurs in the parsing is the shortest
phrase not yet seen to the left. For example, the string 110010100010001000... is parsed into
(1)(10)(0)(101)(00)(01)(000)(100...). There is also another possibility of parsing, as already
noticed in [23], and explored by Grassberger (9] and Szpankowski [21] that allows overlapping
in the course of creating the partition. For example, for the above sequence the latter parsing
gives (1)(10)(0)(101)(00)(01)(000100...). In this paper, we only consider the former parsing
algorithm. These parsing algorithms play crucial réle in universal data compression schemes.
The interested reader is referred to 4], [15], and [23] for more details.

There is a useful tree representation of such a parsing scheme. Initially this tree, called also
the digital search tree [13], consists of a single node, the root. All phrases are stored in internal
nodes, excluding the root. When a new phrase is created, the search starts at the root and
proceeds down the tree as directed by the input symbols. For example, for the binary alphabet,
”0* in the input string means to move to the right and *1“ means to proceed to the left. The
search is completed when a branch is taken from an existing tree node to a new node that has
not been visited before. Then, the edge and the new node are added to the tree. The phrases
created in such a way are stored directly into the nodes of the tree. An example is shown
in Figure 1. In passing, we note that the second parsing algorithm discussed above leads to
another digital tree called the suffix tree (cf. [9], [21], [20]).

There are several parameters of Ziv-Lempel algorithm that are of significant importance for
universal data compression schemes. We mention here a few: the number of phrases M,, the
number of phrases of given length, the length of the mth phrase £,,, the length of the longest
phrase, etc. We shall argue that these parameters are closely related to digital tree parameters
.such as: the number of internal nodes in the associated digital tree built from n independent
strings, the number of internal nodes at given level, the depth of the mth internal node, the
hight of the tree, the depth on insertion, and so forth.

Let us now concentrate on the number of phrases M,, that the algorithm returns from a single
stationary and ergodic sequence of length n. Ziv and Lempel (23] proved that lim,—co M,n™!
logn = 1 almost surely (a.s.) (cf. also [4], [22]). This kind of result is known as the first-
order property. However, one would like to know the limiting distribution of M,,, which will be
considered as a second-order property. For instance, such information can be used to evaluate

the performance of an optimal off-line data compression algorithm (we shall propose one). To
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Figure 1: A digital tree representation of Ziv's parsing for the string 11001010001000100...

the best of our knowledge, the only result in this endouver is due to Aldous and Shields [1]
who proved that in the Bernoulli symmetric model (i.e., symbols are generated independently
and with equal probability) M, weakly converges to the normal distribution with the mean
EM, ~ n/log,n and the variance varM, = O(n/logsn). The coefficient at n/log3 n was
not obtained in [1}, and in fact the authors of {1} indicated that determining it might be a
complicated problem.

In this paper, we use the digital tree representation and some known results for such trees
to obtain some new characteristics of the the Ziv-Lempel scheme. In our main result, we derive
the missing coefficient in the variance of M,, thus proving the problem posed by Aldous and
Shields [1]. We show that varM,, ~ (C + 6(n))n/log3 n where é(-) is a fluctuating function with
a small amplitude, and C' = 0.26000...is a constant. The coefficient C + é§(n) turned out to be
the same as the one appearing in the derivation of the variance of the internal path length of a
digital search tree, as was recently shown by by Kirschenhofer, Prodinger and Szpankowski [12]
(cf. also [11]) who also derived an explicit, although complicated, formula for C. We use the
results of Aldous and Shields [1}, and Kirschenhofer, Prodinger and Szpankowski [12] to prove
our main result which will complete the work of [1].

Finally, we use Pittel’s result [18] to establish almost sure behavior of the nth (last) phrase
length £, (€pr,,). More precisely, in the Bernoulli asymmetric model (in fact, the result is true

for a more general probabilistic model) we show that £,/log n does not converge almost surely



to any constant even if it converges in probability (pr.) to 1/entropy.

In passing, we mention that our ultimate goal is to use the digital tree representation to study
second-order properties of the Ziv-Lempel scheme for other parameters of interest. In particular,
we are working on extending the Aldous-Shields result to Bernoulli asymmetric model. In
our concluding remarks, we formnlate several new problems in this area, and formulate some

conjectures.

2. MAIN RESULTS

A digital search tree is a digital tree constructed from n (statistically independent) strings
Xi,...,X,, each of which is possibly an infinite sequence of symbols over a finite alphabet.
For simplicity of presentation, we assume that the alphabet is binary and we denote the two
symbols as "1“ and "0“. We leave the root empty, and then the first string X; is stored in
the left node or the right one depending whether the first symbol of X; is ”1“ or "0“. More
generally, every string is stored directly in a tree node, and the branching policy at level k is
based on the kth symbol of a string to store. An example of a digital search tree is shown
in Figure 1. For more details concerning digital tree the reader is referred to Knuth [13] and
Mahmoud [17].

In practice (e.g., data structures [13], (17], algorithms on strings [2], [21], data compression,
(1], [15] [21], etc.), several parameters of digital search trees are of interest, as discussed in the
Introduction. We concentrate here on the depth of the mth node, D,(m) (the length of the
path from the root to the mth node), the typical depth D, (i.e., length of the path from the
root to a randomly selected node), and the the internal path length L, (the sum of all depths of
nodes), the size (the number of nodes), the height (the longest path from the root to a node),
and so forth (cf. [6], [7], [19)).

These parameters can be analyzed in various probabilistic frameworks. The simplest is the
Bernoulli model in which one assumes that every string is an independent sequence of i.i.d.
random variables (symbols) taken over a finite set (i.e., the alphabet). If every symbol occurs
with the same probability, then such a model is called symmetric, otherwise it is asymmetric.
The most general model assumes that a string is a realization of a stationary and ergodic
sequence. Several first-order property results (i.e., convergence in probability and/or almost
surely convergence) are known for the stationary ergodic model (cf. [18], [23]), however, the
second order property (i.e., limiting distributions) are known only for the Bernoulli model (cf.
(1], (16, [22)).

In the data compression scheme by Ziv and Lempel [23] a single string of length n is given.

It is parsed into phrases as described above, and the parsing can be performed efficiently by



building the associated digital search tree. Note that such a digital tree has M, nodes. In fact,
we can alternatively study the properties of the parsing algorithm by analyzing the digital tree
built over M,, indcpendent strings, and then take the advantages of many already known results
for digital search trees (cf. [12}, [13), [17], [19], etc.).

Let us first concentrate on the nunber of phrases M,,. There is a basic relationship between
M,, and the length of the internal path in the associated digital search tree. Note that the event
{M,, > m} is equivalent to the event that the internal path length in such a tree built from m

strings is smaller equal than the length of the underlying sequence, that is, n. In other words,
Lma-1r <n< Ly, (1)

or

Pr{M, > m}=Pr{L,, <n}. (2)

We use these relationships to characterize M,,.

We now review some results concerning the internal path length L., of a digital search tree
built from m independent strings within the symmetric Bernoulli model. We start with a result
of Kirschenhofer, Prodinger and Szpankowski [12] concerning the variance of the internal path
length L,, (cf. also [11]).

Theorem 1. (i) (Konheim and Newman [14), Knuth [13])) The average EL,, = py of the

internal path length in a digital search tree in the Bernoulli symmetric model becomes

EL,, = mlogam+m((y—1)/log2+ 0.5 - a + 6;(logy m)) + log, m
+ 0.5(2y - 1)/log2 + 2.5 — «r + 65(logy m) + O(logm/m) , 3)

where v = 0.57721... is the Euler constant and @ = 3,5, 1/(2" — 1) = 1.60669... , and
61(z) and b3(x) are continous periodic functions of periof 1, mean 0 and very small amplitude
(< 107%). More precisely,

1 Z I‘ (_1 _ 2k7r‘l> ezk,’r‘-x :
log 2 herr log2

bi(x) =

where T'(z) is the gamma function.

(ii) (Kirschenhofer, Prodinger and Szpankowski [12]) The variance varL,, = o2 of L, is

asymptotically equal to

varL,, = m(C + é(log, m)) + O(log? m/m) (4)



where

, 28 39 2¢ w2 2 2w'(3)
C= ¥ttt
2 ) (=1)¥*'(k - 5)
L hoed (k+ 1k(k~1)(2% - 1)
L(1-2""tY/2 -1 (=1)kH
+ b —
L?;l “( 1-2-r ;:—;k(k—l)(2’+k—1)

with L =log2, f = 3 45, k2% /(2% - 1)?, und b,,, = (—1)’2'(r;l). The fluctuating function

§(z) is continous with period 1, mean zero and amplitude smaller than 1078, Finally, w(z)

satisfies
s ,§ (e(; fjéif) - 6(;5?))
with Q; = Qoo /Q(27%) where Q(1) = [Tiss (1 = 1/2), Qoo = Q(1), and
=1 e (2 e - e

< oF (i)

Numerical evalyation reveals that C = 0.26600. .. (with five significant digits after the decimal
point). B
The second result we review is due to Aldous and Shields [1] who - after some slight

modifications - proved the following finding concerning the limiting distribution of L,,.

Theorem 2. (Aldous and Shields [1]) In the symmetric Bernoulli model
Lm — M
——= = N(0,1) as m — 00 (5)
m
where N(0,1) is standard normal distribution, and p,, and o2, are given in Theorem 1. W
Using these two facts, we shall establish in this paper a precise characterization of the

variance of the number of phrases M,, in the Ziv-Lempel parsing algorithm. Our main results

can be formulated as follows.



Theorem 3. The mean and variance of the number of phrases M,, in the Ziv-Lempel schemes

become
EM, ~ - (6)
log, n
varM, ~ (C+ 8(n)) n:; . (7
logan

as n — 0o, where C and §(x) are given in Theorem 1.

Proof. The proof of Theorem 3 directly follows from Theorems 1 and 2, and the following
general renewal recurrence that was kindly pointed to us by D. Aldous (we refer to Billingsley
(3] for the proof, while lere we give a short summary of this result). In terms of our notation,
let us consider depths D, (k) of kth nodes where k = 1,...,n. Note that L, = 3" ¢_; Dp(k).
By (1) and (2), we can define M,, as

M, = max{m: L,, = Z D,.(k) <n} . (8)
k=1

The above equation is called the renewal equation (cf. Billingsley 3], Chap. 17). We note that
D,,.(k) may be dependent random variables, and we only need that they are positive, which
holds in our case. Theorem 17.3 of Billingsley (3] proves (with some trivial modifications) that
if

Bl W o,) ©)
where p,, and o,, are as in Theorem 1, then the following holds too
M, —n/(yn/n) _ M, —n/log,n

ou(in/m)™2 (€ + 8(1ogy n))n/ logd n

— N(0,1). (10)

Our results (6) and (7) follow directly from the above by the standard uniform integrability

argument. @

Remark 1. Actually, we believe the following stronger results are true: EM, = n/log,n +
1/2+4 0(1/log? n), and varM,, = (C + 6(n))n/ logs n + O(/n). Also, it can be showed that the
kth moment of M,, behaves asymptotically as (n/logy n)*. These results can be obtained from
(2) by direct computations. In particular,
EM,’f’H =(k+1) Z m"Pr{M,, >m}=(k+1) Z mkPr{Lm <n},
m>0 m>0

and appling Theorem 2 to the right-hand side of the above one obtains the above estimates. O

Finally, we present one surprising result concerning the almost sure behavior of the length

of the last full phrase £y, _; = &, in the Ziv-Lempel parsing scheme. We use Pittel’s result (18]

to prove the following finding.



- Theorem 4. Consider the asymmetric Bernoulli model with pyy and pay denoting the small-

est and the largest probability of a symbol occurrence. Then,

-1 , Z -
lim inf = (a.s.) lim sup —— = 1
n—co logn  log pmin n—oco logn  log pinax

Proof. We write
iM,—1 — erM,-1 .logMn

) (11)

and now we deal only with the first factor of the right-hand side. Note that €3, _; is equivalent

logn ~ logM, logn
to the depth of insertion D,(n) of (M, — 1)st phrase into the associated digital search tree,
that is, €pr,—1 = Dp,—1( My, — 1). But, Pittel proved in [18] the following

lim inf Du(n) _ _ 1 (a.s.) i Dufm) _ _ -1 ,
n—oo logmn 10g piin n—oo lOgn 10g Pmax

hence this, together with Ziv-Lempel result concerning the (a.s) behavior of M,, and (11), proves
the theorem. ®

Remark 2. Theorem 4 can be generalized to the so called mizing model (i.e., when the
underlying sequence is stationary satisfying some mixing condition) since Pittel’s result is true

for such a model. O

3. OPEN PROBLEMS AND CONCLUDING REMARKS

Our digital search tree representation can be used in many other ways to establish second-
order properties of data compression schemes, hence also Ziv-Lempel parsing algorithms. In
this concluding remarks we discuss three open problems of second-order properties within the
asymmetric Bernoulli model (in fact, extensions to Markovian model seem to be possible).
Below, we assume binary alphabet with p and ¢ being the probability of "1“ and "0“ occurrence,
respectively. We formulate also some conjectures.

In sequel we discuss: (a) the limiting distribution of M,, or equivalently the limiting distri-
bution of the internal path length L, in a digital search tree; (b) the average number of phrases
of size I, or equivalently the limiting distribution of the depth in a digital search tree; (c) the
limiting distribution of the number phrases of size {, or equivalently the limiting distribution of

the number of nodes at level [ in a digital search tree.
A. LIMITING DISTRIBUTION FOR THE NUMBER OF PHRASES

Due to our relationship (2) and Billingsley’s theorem concerning the renewal equation (cf.
(8)-(10)), the limiting distribution of M,, will be known if one estimates the limiting distribution
of the internal path length L, in a digital tree built from fixed, say n, independent strings.



It is easy to establish a functional equation for the generating function of L. Let L,(u) =

Eulr~. Then, as in {12] we have Ly(u) =1 and for n > 1

T 7
Lun(w) ="y ( k‘) P L) Lo (1) - (12)
k=0
Define now the exponential generating function L(z,u) = €7* Y 22 Ly(u)2"/n!. Then, (12)

translates into .
%2 = L(pzu,u)L(qzu,u) (13)
with L(2,0) = 1.
The above differential-functional equation must be solved asymptotically to obtain the lim-
iting distribution of L,,. Using a method similar to the one suggested in Jacquet and Régnier

(10], we conclude that the following conjecture is very plausible.

Conjecture 1. The internal path length L, in a digital tree is normally distributed. More

precisely:
Ln - ELn

VvarL,

where EL, ~ (n/h)logn and varL, = O(nlogn) where h is the entropy of the alphabet. B

— N(0,1) (14)

Note that this conjecture would automatically imply (by the renewal theory argument) that
(M, — EM,)/+/var M, is also asymptotically normally distributed with EM,, ~ nh/logn and
varM, = O(n/log?n). The constant hidden in O(-) of the variance seems to be difficult to

estimate.
B. THE AVERAGE NUMBER OF PHRASES oF GIVEN SIZE.

Let M, (l) denote the number of phrases of size ! in the Ziv-Lempel parsing algorithm.
A quick look at Figure 1 suggests that this quantity is equivalent to the number of nodes
at level | (where the root is at level zero) in a digital tree built from M, nodes. We are
interested in EMy(l) for any ! and large n. Conditioning on M, (which limiting distri-
bution should be known from the solution to Conjecture 1), we can reduce the problem
to the evaluation of the average number of nodes at level ! in a digital tree built from a
fixed number, say n, of strings. For such a model we shall evaluate the generating function
B, (u) = 129 E{#number of nodes at level /}u'.

This problem is closely related to the evaluation of the limiting distribution of the typical
depth D, (i.e., the depth of a randomly selected node) in the associated digital tree. If D, (u) =
EuPn denotes the generating function of D,, then D,(u) = B,(u)/n (cf. [21]). The limiting

distribution of Dy, is only known for the symmetric Bernoulli model (cf. Louchard [16]).



The generating function B, (u) satisfies the following recurrence equation: Bg(u) = 0,
Bi(u) =1, and for n > 2

n

Bj(u)=u Z (:) pkq"“k(Bk(u) + Bp_i(u)) . (15)

1=0

Using the general solution proposed in Szpankowski {21] we can solve (15) to find that

Bu(u)=n- 3 (-1)* (:)Qk(u) (16)

k=2

where

k_l » .

Qu(u) = JI(1 - wp’ —ug’) .
=2
The solution (16) has the form of an alternating sum, and can be treated either by the

Rice method or the Mellin-like method (cf. [6], [21]) to obtain the limiting distribution of
D,.. The symmetric and asymmetric models lead to two different limiting distributions. The
symmetric one was discussed in Louchard [16]. For the asymmetric model we propose the

following solution.

Conjecture 2. The depth of a node in the asymmetric Bernoulli model is asymptotically

normal. More precisely:
D, — ED,

VvarD,
where ED,, = h™'logn + O(1) and varD,, = (hy — h?)/h3logn + O(1) (cf. [21]). m

— N(0,1) (17)

The average number of phrases EM,(l) can be now estimated from Coﬁjecture 1 and Con-
jecture 2. More precisely, we need a local version of the limiting distribution as in Conjecture
2, but this doable.

C. LIMITING DISTRIBUTION OF THE NUMBER OF PHRASES OF GIVEN SIZE

Finally, we discuss one problem that leads to similar differential-functional equations as
above, but for which we do not know at this time any solution.

Let, as before, M,(l) denote the number of phrases of size ! in the Ziv-Lempel algorithm.
We are now interested in the limiting distribution of M, (I). As argued above, this problem will
be solved, provided we prove Conjecture 1, if we obtain the limiting distribution of the number
of nodes at level ! in a digital tree built from fixed, say n, strings. We denote the latter quantity
as H.. |

Let H!(u) = EuHn be the probability generating function of H!. Note that it satisfies the
- following recurrence

n n o _ _
Hvl;+1(“) = Z (k)l'k‘] kH}; l(u)H,I._lk(“) ’

=0

10



with HJ(u) = 1.
The above recurrence translates into the following differential-functional equation for the
exponential generating function H'(z,u) = e™* 02, Hi(u)z"/n!

Q% = H'" Y (pu,w)H' " (qu, u) (18)
with H°(z,0) = 1.

The differential-functional equation (18) is of similar type as the equation (13), but with
one more degree of freedom, namely . We believe that the same technique as the one used to
solve (13) should work — with proper‘changes - in this case. At this moment of time, however,

we refrain from making any conjecture.
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