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Abstract — We present a compiled implementation of AProlog that uses the abstract
memory MALI for representing the execution state.

AProlog is a logic programming language allowing a more general clause form than Stan-
dard Prolog’s (namely hereditary Harrop formulas instead of Horn formulas) and using simply
typed A-terms as a term domain instead of first order terms. The augmented clause form
causes the program (a set of clauses) and the signature (a set of constants) to be changeable in
a very disciplined way. The new term domain has a semi-decidable and infinitary unification
theory, and it introduces the need for a B-reduction operation at run-time.

MALI is an abstract memory that is suitable for storing the search-state of depth-first
search processes. Its main feature is its efficient memory management.

We have used an original AProlog-to-C translation along which predicates are transformed
into functions operating on continuations for handling failure and success in unifications, and
changes in signatures and programs.

Two keywords of this implementation are “sharing” and “folding” of representations.
Sharing amounts to recognising that some representation already exists and to reuse it. Fold-
ing amounts to recognising that two different representations represent the same thing and
to replace one by the other.

La compilation de AProlog
et son exécution avec MALI

Résumé — Nous présentons une implémentation compilée de AProlog qui utilise la mé-
moire abstraite MALI pour représenter 1’état d’exécution.

AProlog est un langage de programmation logique dont la forme des clauses est plus
générale que celle de Standard Prolog (des formules héréditaires de Harrop au lieu de formules
de Horn) et dont le domaine de termes est celui des A-termes simplement typés au lieu des
termes de premier ordre. Le nouveau langage de clauses fait que le programme (une collection
de clauses) et la signature (une collection de constantes) peuvent changer, mais pas de maniére
arbitraire. Le nouveau domaine de termes a une théorie de I'unification semi-décidable et
infinitaire, et il nécessite d’effectuer des g-réductions pendant le calcul.

MALI est une machine abstraite qui permet de représenter l’état d’un processus de
recherche en profondeur. Sa principale caractéristique est une gestion de mémoire efficace.

Nous avons utilisé un schéma original de traduction de AProlog vers C, ou les prédicats
sont transformés en des fonctions manipulant des continuations pour gérer les échecs et succes
de P'unification, et les changements de signature et de programme.

Deux mots-clés de cette implémentation sont “partage” et “superposition” de représen-
tation. Le partage consiste a reconnaitre que la représentation d’un terme existe déja et a
la réutiliser. La superposition consiste a reconnaitre que deux représentations distinctes sont
celles du méme terme, et a remplacer 'une par 'autre.

1 A previous version of this report served as lecture notes for the Logic Programming Winter School and Seminar,
Czechoslovakia, January 27-31, 1992 [68].
Comments are welcome.
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Introduction

Though one usually carefully distinguishes be-
tween logic programming and Prolog, the research
done in logic programming is often about extending
Prolog. It is seldom the case that such work leads
to a reassessment of the foundation of logic pro-
gramming. One of the important “meta-features”
of AProlog is that it leads to such a reassessment.

The basic idea behind Prolog is that a partic-
ular subset of predicate calculus, the logic of Horn
formulas, is suitable for programming: every com-
putable relation can be expressed in Horn formulas,
and their proof theory yields a convenient execution
mechanism.

The theory of Prolog insists on model-theoretic
results [45]. The main result is that models of Horn
programs are closed under set-intersection. Horn
programs have then a unique minimal model, which
is the least fixed-point of an immediate consequence
function, and can also be enumerated by a search-
procedure.

When analysing what makes a proof theory
yield a convenient execution mechanism, it appears
that richer subsets of predicate logic can also be
suitable for programming. The results that are im-
portant now are proof-theoretic. The logic of hered-
itary Harrop formulas is such a subset. In this
case, the enrichment is to allow implications and
explicit quantifications where Horn formulas only
allow conjunctions of atoms.

A pleasant feature of Prolog is that its term
language, the language of first-order terms, is rich
enough for encoding directly its formula language
and manipulating it easily. This makes meta-
programming much easier in Prolog than, say, in C.
In fact, a closer look at Prolog shows that its quan-
tifications, though implicit, are not properly rep-
resented by first-order terms. It appears that the
same term language is certainly rich enough for en-
coding and manipulating hereditary Harrop formu-
las but it is still done less properly, mainly because
of the scoping aspects of quantification. The neces-
sary enrichment is to allow abstractions in terms.

We call Standard Prolog the language of Horn
formulas plus first-order terms and AProlog the lan-
guage of hereditary Harrop formulas plus simply
typed A-terms. We use the word Prolog when we
do not insist on a particular language.

New language — new hopes

The extension of Prolog to hereditary Harrop for-
mulas and A-terms has been proposed by Miller and
Nadathur [52].

The advantages of this extension have been
advocated by Felty, Miller, Nadathur and oth-
ers [49, 53, 25, 23, 47, 24]. They range from tech-
nical (but very important) issues of symbols ma-
nipulation programming (scoping, substitutivity)
to software technology concerns (naming, modular-
ity). These advantages make the implementation
of other logics in AProlog an easier task than in
Standard Prolog.

Example 1
A typical ezample of AProlog programming is the
mmplementation of a type system. The type system,
here the theory of simple types, is a logic charac-
terised by a set of deduction rules.

The system of deduction rules for the theory of
stmple types is the following:

Tt :a—=p FFthra |
TF (t1t2):8 E
Fz:atk E:
xz. PO — -1 1.
TzrFeir aziom

t Variable z does not occur in I.

The right-hand side of b 1is a type assignment
(e.g. term z has type 7), and the left-hand side 1s
a set of type assignments that serves as a typing
context. Informally, the rules have the following
reading.

—g: applicalion (¢, ty) has lype B in typing con-
text T' if terms t; and ty have types o — (3
and « in T.

— 2 abstraction Az.E has type « — B in typing
contexi T if E has type B in a new typing con-
text made of I' augmented by the assignment
of type « to variable x (variable z must not
be already assigned a type in T because typing
contexts must establish a functional relation
between variables and types)

ariom: every lype assignment of a typing context
is true in that context.



The AProlog program that implements this logic
is the following?:

has_type (application T1 T2) Beta :-
has_type T1 (arrow Alpha Beta),
has_type T2 Alpha.
has_type (abstraction E)
(arrow Alpha Beta) :-
pi x\
(  has_type x Alpha
=> has_type (E x) Beta
).

A sample query ts

?- has_type (abstraction x\x) (arrow i i).

Relation has_type is defined by two clauses,
which are built with the :— connective (read “if”).
The first clause encodes rule —g, and the second
one encodes rule —.

The second clause displays almost all AProlog
features: explicit untversal quantification in goals
(pi x\ reads “for all z”), intuitionistic implice-
tion in goals (=> reads “implies”), and A-terms
(E is some A-abstraction and (E x) denotes the
application of E to x). In the query, x\x reads
“lambda z z”. The universal quantification encodes
the side condition of rule —, the implication en-
codes the augmentation of the context I', and the
application encodes the stripping of the abstraction.

The operational reading of a clause like the first
one is the same as in Standard Prolog: a clause

p A0 :- q A, r A2.

answers a call to predicale p by unifying the ac-
tual arguments and A0, and then calling predicates q
and r (in this order) with arguments A1 and A2.

The operational reading of a clause like the sec-
ond one owes almost nothing to Standard Prolog: a
clause

p A0 :- pi x\( q (A1 x) => r (A2 X) ).

answers a call to predicate p by unifying the actual
arguments and AO, and then creating a new con-
stant, say ¢, adding clause (q (A1 c)) to the pro-
gram, and calling predicate r with argument (A2 ¢)
in the augmented program.

Rule axiom has no statically defined encoding.
At a given time, it i1s encoded in extension by the
clauses that are added to the program.

A constant aspect of the advantages of AProlog
is that they give a logical notation to phenomena
that, in Standard Prolog, ought to be described

2Type declarations are missing in this program. They are
given in example 1.1.1.

The syntax and semantics of \Prolog are exposed in the
body of this report. To understand this example, it is enough
to know that the case convention for identifiers is the same as
for Standard Prolog: identifiers beginning with a high-case
letter are identifiers of logical variables.
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operationally. E.g. the relation between an ab-
straction E and one of its instances T is denoted
by T = (E x). In Standard Prolog, it has to be
expressed by a duplication procedure.

New language — new imple-
mentations

All this would be very nice, if it could be im-
plemented in an efficient way. Efficiency can be
thought of in two dimensions. First dimension is
to make the complexity of the implementation non-
deceptive. That is, when a new feature is presented
as a logical alternative to an old operational one,
it should yield an equal or better complexity. For
instance, we propose a function-list notation as a
logical alternative for difference-lists [15]. The trick
is easy (it is inherited from functional program-
ming), but to make it compete with difference-lists,
one must be especially careful in implementing the
A-terms. Another example is the advocated use
of intuitionistic implication for implementing local
declarations and modularity. It should not add an
undue complexity where one is used to access sym-
bols in a constant time. Second dimension is to
make everything more efficient via a suitable anal-
ysis. This is compilation.

A prototype implementation of AProlog has
been done by Miller and Nadathur in Standard Pro-
log. It was intended for experimental use and
is very inefficient. Then, a more robust imple-
mentation has been done in Lisp (eLP, by the
Ergo Project at Carnegie-Mellon University). The
study of a compiled implementation of AProlog has
been initiated by Nadathur and Jayaraman [58, 36]
and is continuing with Nadathur, Kwon and Wil-
son [40]. We know only progress reports about it,
but no performance report. Finally, Felty and Gun-
ther (Bell Labs) are working on another implemen-
tation in ML for extending the capability of ML as
a meta-language for automatic theorem proving.

We propose another implementation in which
we apply two techniques that we have previ-
ously developed for Standard Prolog. We trans-
late AProlog programs into programs of an im-
perative language (incidentally C), and we use
MALI [8, 9, 69] as a term oriented abstract mem-
ory. A first version of our compiled implementation
of the core of AProlog is now available.

We have worked in the two dimensions of effi-
clency at the same time but cannot claim to have
exhaustively completed even the first one. For in-
stance, our implementation of intuitionistic impli-
cation is still deceptive in the above sense. It cannot
be used for local declarations without introducing
undue complexity. This is not a consequence of
some of our technical choices; it is only the current



A RUNNING EXAMPLE

state of our research progress.

A running example: represen-
tations of lists

We use as a running example the manipulation of
lists in AProlog. It starts with well-known Stan-
dard Prolog representations for list, and it is con-
tinued by a functional representation as soon as the
basics of AProlog are given.

Though this initial part of the example could be
written in Standard Prolog, we use AProlog syn-
tax in the program samples. The lexical conven-
tions are the same in Standard Prolog and AProlog.
Only construction of terms and goals is different:
AProlog uses a “Curryfied” notation. An n-ary
term, or goal, constructor is considered as a unitary
function that returns a (n-1)-ary function. The
global lay-out is the same, but it uses much less
parenthesis and commas than Standard Prolog.

Prolog lists

When lists are represented by Prolog lists,
a cons 1s represented by the binary func-
tor ’.” (noted [ | 1) and the empty list

is represented by nil (noted [1). For in-
stance, cons(1, cons(2, cons(3, nil))) is represented
by 1.2.3.nil (noted [1,2,31).

The Prolog representation of lists is used in the
classical list manipulation predicates: “append”,
“naive reverse”, “append 3 lists”, and “member”:

append [J Y VY.
append [EIX] Y [EIZ] :-
append X Y 2Z.

nrev [1 [] .
nrev [AIX] Y :-
nrev X RX,

append RX [A] Y.

append3 A B C ABC :-
append A BC ABC,
append B C BC.

E [EI.].
E ([_IL] :-
member E L.

member
member

A mode is a specification of a particular call-
ing convention. A mode expression is a lit-
eral in which terms are replaced by “+" (al-
ways ground), “-” (always a logical variable) and
“?” (do not know). Among the four predicates
above, append is the only one which can op-
erate in every mode. Predicate nrev enters a
loop after issuing a solution for modes (nrev - +).
Predicate (append3 - - - +) works nice in modes

(append3 + + + -) and (append3 - - - +), which
covers probably the intended usage. Note that the
order in which lists 4, B and C are composed in
append3 must be carefully chosen for working in
the two modes.

Note that predicate append can concatenate a
list to itself.

twice L LL :-
append L L LL.

From Prolog lists to difference-lists

In logic programming, the use of incomplete struc-
tures is a well-known technique. It is even a
part where the logic programming paradigm is at
its best. One example of this technique is the
difference-list (noted List-SubList where “-” is an
infix operator). A list is represented by the dif-
ference between a Prolog list and one of its sublists
(the tail of the list) that must be a logical variable®.
For instance, the empty list is represented by X-X
and cons(1, cons(2, cons(3, nil))) is represented by
[1,2,31x]-x.

Because the tail is a logical variable, two lists
can be concatenated with only one unification
which is a binding of the tail. Because the left con-
catenand is not duplicated when its tail is being
substituted by the right concatenand, a difference
list can be the left concatenand of only one list in
its life.

dappend A-ZA ZA-ZB A-IB .
dappend3 A-ZA ZA-ZB ZB-ZC A-ZIC .

Note that, unlike predicates append, predicate
dappend cannot be used for splitting a list. Nothing
in Prolog enforces the constraint that the tail is a
sublist of the list. So, unification binds ZA to some-
thing which is neither a sublist of & nor a superlist of
ZB. Verifying the constraint can only result from a
programming discipline. Another difficulty is that
testing the empty list requires a unification pro-
cedure with an occurrence-check because otherwise
Prolog is always willing to unify [...]2]-Zand X-X.
Similarly, the lack of an occurrence-check makes an
attempt to concatenate a difference-list to itself suc-
ceed and produce an infinite term.

For all these reasons, the following predicates
are bogus.

dtwice L LL :-

dappend L L LL.

common_prefix P L1 L2 :-
dappend P _ L1,
dappend P L2.

3Logically speaking, the tail could be any list. But, the
practical interest of difference-lists relies on the assumption
that it is a logical variable.



However, transformation of the representation
of lists, followed by some partial evaluation [72],
generally leads to efficient programs. Predicate
nrev can be transformed into the following pred-
icates:

drevt (] Y-Y .
drevi [AIL] Z-Y :-
drevi L 2Z-[AlY].

drev L RL :-
drevi L RL-{].

The explicit representation of the difference-list is
often omitted on the ground of the cost of manip-
ulating the ’~’ term constructor.

drevi [J Y Y .
drevl [AIL] Z Y :-
drevli L 2 [AlY].

drev L RL :-
drevi L RL [J.

Transforming difference-lists into Prolog lists
is trivial (if it is allowed to be destructive like
dappend), but the way back needs to use predicate
append.

dlist2list L-[] L.

list2dlist L AL-ZL :-
append L ZL AL.

In AProlog, there is yet another “natural” repre-
sentation for lists. It merges the logical robustness
of standard lists, and the conciseness of difference-
lists. We resume the “running example” after pre-
senting the basics of AProlog (see section 1.5), and
describe this new representation for lists.

Structure of the report

This report is made of four parts:

1. An account of AProlog syntax and semantics,
with practical insight.

2. A description of two basic technical choices:
first, to use a memory management machine
called MALI (this solves many low-level rep-
resentation problems at once: mainly, mem-
ory management and undoable substitutabil-
ity), second, to translate source programs into
an imperative programming language (inci-
dentally C).

3. The implementation with MALI of an ab-
stract machine for executing Prolog, and a
systematic exploration of AProlog features.

4. The features and performances of a AProlog
system based on the principles presented in
previous sections.

An index allows fast cross-referencing.

INTRODUCTION
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Chapter 1

AProlog

We present in this part the various features of
AProlog. First section describes the term domain
of AProlog and the associated unification prob-
lem. Second section presents the formula domain
of AProlog. Third section describes an alterna-
tive term domain that is closer to the usual first-
order domain. Last two sections contain informal
remarks on the pragmatics of AProlog, and the con-
tinuation of the “running example”.

1.1 Extension of the term
domain: simply typed
A-terms

Any extension of the computation domain of Pro-
log is required to specify what is unification for
the new terms. - The restriction of A-calculus
to Church’s simply typed A-terms [17] allows for
a usable definition of the unification of A-terms
(A-unification). Huet gives an extensive presenta-
tion of A-unification [32]. Paulson gives the main
lines of it in the context of theorem proving [62],
and Snyder and Gallier revisit it in a deduction
rule setting [71]. Nipkow extends the deduction
rule setting towards simple types with type vari-
ables [60], which is in fact the domain of AProlog.
Miller studies the correspondence between logical
quantifications (V and 3) and A-quantification [51].

One can see the extension of Prolog with simply
typed A-terms merely as the instance CLP(A) of
the CLP scheme [35].

Other possible domains in the AProlog flavour
are the typed A-calculi of Barendregt’s cube (5, 30].
Elliot and Pfenning have studied unification in
some of these calculi [21, 65].

We describe the new domain, some precisions
on the notions of variables and substitutions in the
new domain, and the unification algorithm.

1.1.1 Simply typed A-terms

We give a quick introduction to the A-calculus (see

Barendregt or Revesz for more information [6, 67]). 7

1.1.1.1 Types

Simple types, 7, are first-order terms built from a
collection of type constants (fype constructors) and
one dedicated binary type constant, — (“->” in
concrete syntax). Constant — is given an infix no-
tation and is supposed to associate to the right.

Types constructed with type constant — can be
interpreted as types of functions. We call result type
the rightmost subtype of a type. We call primitive a
type that is not constructed with type constant —.

In AProlog, the nullary constant o is reserved as
the type of truth values. In every concrete imple-
mentation of AProlog, several other type constants
are reserved (e.g. int and 1ist). Every type whose
result type is o is called a predicate type.

Example 1.1.1
The following type declarations were missing in ex-
ample 1.

xind (lambda_term, simple_type)

type.
type application

lambda_term ->

lambda_term -> lambda_term.
type abstraction

(lambda_term -> lambda_term) ->

lambda_term.
type arrow

simple_type ->

simple_type -> simple_type.
type has_type

lambda_term -> simple_type -> o.
First declaration introduces constants
lambda_term and simple_typel.

Second (resp.  fourth) declaration introduces
application (Tesp. arrow) as a (curryfied) bi-
nary function on terms of type lambda_term (Tesp.
simple_type).

Third declaration introduces abstraction as a
unary function from unary functions on terms of
type lambda_term, to terms of type lambda_term.

type

1The syntax for declaring at once several constants of
same kind or type is proper to our implementation of
AProlog. :



Last declaration introduces has_type as a bi-
nary function from terms of lype lambda_term and
simple_type, to lerms of type o. Since type con-
stant o is conventionally used for truth-values,
function has_type can be interpreted as a binary re-
lation.

1.1.1.2 Terms

Simply typed A-terms, A, are built from a collection
of constants (also known as term constructors), C,
a collection of A-variables, V, a collection of logical
variables or unknowns, U, using the abstraction and
the application rules.

e Sets C, V and U are disjoint subsets of A.

e If z is a A-variable and F is in A, then Az . F

(or x\ F in concrete syntax) is an abstraction
in A.
Nested abstractions Aaj....Aa,.t are written
Aay...ant, A@,.t, or Aa.t if the number of
individuals does not matter. We call ¢t and @
the body and binder of abstraction Aa.t.

Abstraction is a kind of quantification: the
A-quantification. It has strong connections
with universal quantification which are devel-
oped in the sequel. As a quantification, ab-
straction gives rise to the usual notions of free
and bound A-variables.

e If E and F are in A, then (E F) is an appli-
cation in A.

Application is supposed to associate to the
left S0 that nested ap-
plications (...((a; a2) a3)...a,) are written
(a1 az asz...ay), (ay), or (@) if the number of
individuals does not matter?.

o There is a typing function 7 from A to 7 that

verifies rules
T(Az.E) = 7(z) — 7(F)

and

Ja. (1(E) = a — B) A (T(F) = a)
<~

T(EF))=28

A constant that is given a predicate type is
called a predicate constant.

Example 1.1.2

A A-term Az .E with type @« — [ can be inlerpreted
as a function with parameter z of lype a and re-
sull E of type B. For instance, Az.x with type

2Note that a only denotes a finite sequence of something.
It requires a context (A or ()) to give the interpretation of
the sequence. For instance, @ alone is not an application,
but (@) is. We use @5, for a sequence of n somethings.
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a — a is the identity function for terms having
type a. It is noted id,. Concrete syntaz for Az.z
1s x\x.

Example 1.1.3

For every A-term f of type @« — a, we note f°
for id,, and f* for Az.(f (f*~! z)). For every
integer n, N, = Asz.(s" 2) is a A-ferm. It has type
(¢ — a) > a — a. We have

Ny = Asz.(idy 2)
N = Asz.(Az.(s(idq ))2)
Ny = Asz.(Az.(s((Az.(s(idy 2)))2))2)

In concrete syntaz:

NO = s\z\(ID z),
N1 = s\z\(x\(s (ID 1)) 2z),
N2 = 3\z\(x\(s ((x\(s (ID x))) x)) z)

1.1.1.3 Axioms

Three equivalence relations are defined on A. The
smallest congruence on the structure of terms in A
that is compatible with the three equivalence rela-
tions is called A-equivalence (noted =,).

1. a-equivalence, A\z.E =, Ay.E[y/z] (variable y
is not free in E), defines consistent renaming
of A-variables3.

2. (-equivalence, (A\z.E F) =g E[F[z] (term F
has no free variable bound in F), formalises
the application of a function to a term. Ap-
plication (Az.E F) is called a B-redez.

3. n-equivalence, Az.(E z) =, E (variable z is
not free in E), formalises extensionality of
A-defined functions?. Abstraction Az.(E z)
where variable z is not free in E is called an
n-redex.

Example 1.1.4
(ide T) =g T for every A-term T of type a,

Example 1.1.5

No =i Asz.z = As.idg
N1 =p Asz.(s 2) =5 As.s =idg_a
N2 =, Asz.(s (s 2))

The equivalence axioms may be oriented to
be considered as reduction rules. To apply
B-equivalence for suppressing a (-redex is to
B-reduce a term. To apply n-equivalence for sup-
pressing a 7-redex is to n-reduce a term. The op-
posite operation is 7-expansion.

3{A/B] denotes the function that substitutes 4 for B.
C[A/B) denotes a term similar to C, except that every free
occurrence of B is replaced by A.

It is trivial that equal functions yield equal results. Ex-
tensionality of functions states that functions yielding equal
results are equal.
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A given term may be applied different reduction
rules simply because it may contain several redexes.
One may wonder whether the reduction order is
significative or not. In fact, it is not. This system of
reduction rules (with or without n-reduction, with
or without simple types), enjoys the Church-Rosser
property:

For every two (3-equivaleni terms A
and B, there is a term N to which A
and B reduce in some number of steps.

1.1.1.4 Normal forms

A X-term with no S-redex (resp. n-redex) is called
B-normel (resp. n-normal). Every term of the sim-
ply typed A-calculus has a f-normal form. Because
of the Church-Rosser property, it is unique. More-
over, it can be computed using any arbitrary strat-
egy (unlike in the pure A-calculus). The last prop-
erty is called the strong normalisation property.

Example 1.1.6

In pure A-calculus, some terms have no normal
form: e.g. the combinator Q = (Az.(z 2))(Az.(z z))
is not in B-normal form, but it only B-reduces to -
self.

In pure A-calculus, some terms with a normal
form may have non-terminating reductions: term
((Azy.z) id Q) B-reduces to id by its first reder, and
1t B-reduces to tiself by the redez in Q.

Example 1.1.7

In ezample 1.1.5, the terms of the second column

are all B-normal, but Asz.(s z) is not n-normal.
We call n the B-normal term equivalent to N,.

These A-terms form the Church’s encoding of inte-

gers. In fact, many data-types and functions can be

encoded in simply typed A-terms.

In the following, terms are supposed to be in
long head-normal form: A\Z.(@ 1) where @ is a con-
stant, an unknown or a A-variable, and 7((@?))
is primitive. The t’s satisfy no special .conditions.
The term @ is called the head, T is called the
binder, and AT.@ 1s called the heading. Long head-
normal form is obtained by repeated application of
[-reduction to eliminate outermost 3-redexes, fol-
lowed by repeated application of n-expansion to ad-
just the number of t’s to the number of arrows in
the type of the head.

Example 1.1.8

In example 1.1.5, the terms of the second column
are all in long head-normal form. Term As.s is not
in long head-normal form because the type of s 1s
a — a. Head s ezxpects one more argument.

A term is called flerible if its head is an un-
known, rigid otherwise. A rigid path is a path

through the syntactic tree of a term that never en-
counter a flexible term. Other paths are flezible
paths.

Example 1.1.9
Assuming that U 1s an unknown and t is constant,
(U t) is a flexible term and (¢t (U t)) is not.

In term (t (U t)), there is a rigid path to the
leftmost t and a flexible path to the other one.

1.1.2 Generic polymorphism

In AProlog, term constructors are given type
schemes, which are first-order types with type
variables for introducing generic polymorphism
(d la ML [55]) in the language. Type instances can
be obtained by substituting types for type variables
in type schemes. Type renaming can be obtained by
substituting new type variables for type variables
in type schemes. Nipkow describes a A-unification
procedure for this kind of types [60].

Polymorphism comes from the use of type vari-
ables. Every occurrence of a term constructor has
a type which is an instance of its type scheme. Ev-
ery instance is independent from the others, hence
the polymorphism. Every occurrence of the same
variable (same identifier, same scope) has the same
type.

Example 1.1.10
Follow the necessary® type declarations for predicate
append:

kind list

type -> type.
type (1

(list A).
type ’.’°

A -> (list A) -> (list A).
type append
(list A) -> (list A) -> (list A) -> o.

First line declares type constructor list and as-
signs arity 1 to 1t. In AProlog, only strictly “flat”
arities are allowed. So, only the number of arrows
matters.

Nezt two lines declare constants [1 and *.°.
Type variables in the declaration of constant *.°
mean that the types of all ils occurrences
in the program clauses must be instances of
A -> (list A) -> (list A).

Last line declares polymorphic predicate con-
stant append.

Example 1.1.11
Follow the type declarations for pairs:

5Type constructor 1ist and term constructors [] and ’.?
are usually predefined. So, these declarations are provided
by the system.
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kind pair_type

type -> type -> type.
type pair

A -> B -> (pair_type A B).

1.1.3 Substitution and unknowns

In Huet’s paper, unification is not embedded in the
execution scheme of a logic programming language.
So, substitutions are defined to operate on free
A-variables of the terms they are applied to. Sub-
stitutions are restricted to replace free A-variables
of some types by terms of the same types. How-
ever, in AProlog there can be no free A-variable in
unification problems hence no substitution in the
above sense.

In AProlog®, substitutions are applied to clauses
and goals, and they operate on their free variables
only. Variables that are free in unification problems
are logical variables. They are in fact implicitly uni-
versally quantified at the clause level. A-variables
are all bound in explicit abstractions, whereas log-
ical variables are all bound in outermost implicit
universal quantifications.

It appears that logical variables and A-variables
deserve very different implementations. Logical
variables pertain to the Prolog technology, whereas
A-variables pertain to the A-calculus technology. In
unification problems, A-variables behave like uni-
versally quantified terms; we say they are essen-
tially universally quantified. Symmetrically, logical
variables behave like existentially quantified terms;
we say they are essenlially ezistentially quantified’.

Now that unknowns and A-variables are distin-
guished, the absence of free occurrences of one kind
or the other must also be distinguished. We call
closed a term in which no A-variable occurs free,
and ground a term in which no unknown occurs
free.

A very important pragmatic property of substi-
tutions on A-terms is that substitutions may make
subterms of a flexible term disappear. This prop-
erty causes any attempt to make a decision based
on the occurrence of some subterm (e.g. occurrence-
check) dependent of the substitutions to come. In
other words, such decision-making can only be con-
servative when flexible terms are involved.

81In Prolog also, in fact.

"In the following, “unknowns”, “logical variables” and
“essentially existential variables” are strictly synonymous.
The only differences are on connotations: “essentially exis-
tential variable” recalls the proof theory of quantification,
“logical variable” recalls the connection with Standard Pro-
log variables, and “unknown” recalls the intuition (and al-
lows shorter expressions). :

We adopt the convention that identifiers of essentially ex-
istential variables begin with a capital letter. This is a nat-
ural extension to the Standard Prolog lexical convention. It
is not enforced by the syntax: explicitly quantified variables
may have any identifier.
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Example 1.1,12
Term (U 1 2) has sublerms 1 and 2 and term
(U 12)[Azy.z/U] has 1 as only subterm.

1.1.4 JA-unification

A A-unification problem is characterised by a pair
of A-terms with equal types. If the types are not
equal, the problem is ill-typed. To unify two simply
typed A-terms ¢; and ¢, is to find a substitution o
such that ot; =44, ot2.

A variant A-unification problem can be defined
without n-equivalence. The corresponding unifica-
tion procedure is only more complicated than with
n-equivalence. Moreover, n-equivalence is natural
in the context of AProlog: it makes A-abstraction
and V-quantification dual concepts on terms and
formulas. This is generalised in the notion of es-
sentially universal variable, and it is studied more
deeply in sections 1.4 and 3.2.6.

With or without 7-equivalence, the problem is
semi-decidable and infinitary. If there are solutions,
they can be found, but if not, the search may di-
verge. There may be several most general solutions,
sometime infinitely many, however they can always
be enumerated.

Example 1.1.13
Terms (F 1) and 1, where F € U, are unified by
both oy = [idine/ F) and 02 = [Az.1/F). But neither

oy nor gy is more general than the other.

Example 1.1.14

Terms Av.(F v) and Av.v, where F € U and 7(F) =
int — int, are unified by 0y = (idine/F). This ez-
ample shows the role of X-variables. X-variable v
takes the place of 1 tn ezample 1.1.18, but it (its
name) cannot be captured by a substitution. Hence,
there is no solution such as o3 = [Az.v/F].

Example 1.1.15

Terms Az.(N idy 2) and id,, where N € U, are
unified by every [1/N], where © is the Church’s en-
coding of integer 1.

1.1.4.1 Search procedure

Huet’s algorithm is a search procedure in a tree in
which every node is a unification problem and ev-
ery arc is labelled by an elementary substitution.
Terminal nodes are success nodes (an empty unifi-
cation problem) or failure nodes (a trivially unsolv-
able unification problem).

The invariant-of the tree is that the composi-
tions of the elementary substitution labelling an arc
from node A to node B with the solutions to B are
solutions to A. The composition of all the elemen-
tary substitutions on the path from the root to a
success node is a solution to the root unification
problem.
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SIMPL: (A x A) — (2AXA) U Failure)
SIMPL(< t,t2>) = L L
assume t! = A\0.(@ e} ) and t? = A7.(@; €2,)
in if @1 cuU
then {< t!,t? >}
else if @, c Y
then {< t2,t! >}
else if @, # ((A\7.@,) ©) comparison modulo a-conversion
then Failure
else Ug(1 p,] SIMPL(< Mu.¢f, AV} >)

Figure 1.1: Procedure SIMPL

MATCH: (A x A) — (U — A)
MATCH(< A\z.(F 5),A5.(@1,) >)

choose
when @€ C

then [\,.(@ E,)/F] imitation rule
when@eC U Vandr(si)=7 —...Tm = 7((F 55)),i € [1p)]

then [\%;.(ui Epn)/F) projection rule

Every Ej in E_q or E,, stands for (Hy up), where H; is a new unknown with the appropriate type.

Figure 1.2: Procedure MATCH

< (X Azyz t e),t>

[Azyz.(z (Hizyz)(Hazy2))/ X [Azyz.y/ X

< (HiAzyz t e),t > success faal success

[Azyz.(z (H) zyz) (H} oy 2))/Hil {(Azyz.y/H1]

/

[Azyz.z/H,] {Azyz.t/H,]

success faal success

Figure 1.3: Example of a unification tree
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Unification problems in the search-tree are sup-
posed to be in simplified form (a set of pairs of long
head-normal form terms which are not both rigid).
Simplified form is obtained by a recursive descent
in the structure of the two terms. Trivial failure is
detected during simplification when heads of both
terms are rigid and different from each other. All
this is done by a procedure called SIMPL that takes
a well-typed problem and returns a set of simplified
problems or fails. It works like the first-order unifi-
cation procedure on rigid-rigid pairs, but it has to
remember the abstraction context.

The pseudo-code in figure 1.1 shows the simi-
larity with a first-order unification procedure. The
differences can be found in the handling of ab-
stractions in the recursive call, in the compan-
son of heads @; and @,, and in the handling of
flexible-rigid pairs. The more complex comparison
(@, # ((A\y,.@2) u,)) copes with constant heads
and with A-variable heads. In the last case, it is
their positions in their bindings that count, not
their names. With a first-order unification proce-
dure, the occurrence of a flexible-rigid pair triggers
a substitution. In the same situation, procedure
SIMPL simply returns the problem. Remember
that procedure SIMPL does not solve a unification
problem; it only simplifies it.

The expansion of a non-terminal node uses a
procedure called MATCH (see figure 1.2) which
takes one flexible-rigid pair, < AT.(F 5,),t >, and
returns substitutions for unknown F according to
two rules, tmitation and projection. The precondi-
tions of the two rules are not exclusive and the pro-
jection rule may have several instances, hence the
non-determinism. At most p+ I substitutions can
be produced by the two rules. For every substitu-
tion, a child node (in Huet’s search-tree) is created
by applying the substitution to the parent node and
simplifying the result.

Imitation and projection aim at making the
heads of the two terms equal it two different ways.
The imitation way is to carry the rigid head into
the flexible head. The projection way is to suppose
that the rigid head occurs in one argument of the
flexible term and to search it (projection). In both
cases, all the details (the A%,. and the E;’s) are
about well-typing of the whole thing.

Example 1.1.16
Lete; and es be (X Azy.z t e) andt, with X €U,
z,y €V, and t,e €, and
their types be T(z) =7(y)=71(t)=1(e) =7 and
r(X)={(y—=v—7v)—v—71—7 where Y€T
is a type constant.

The matching tree for computing the unifiers
of e, and ey is given in figure 1.3. All substitutions
are produced by projections excepl for two imita-
tions tn the rightmost edges. Nole that the devel-
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opment of the leftmost branch does not terminate.
This shows that the search procedure is subject to
strategical choices.

In our implementation of AProlog, the search
procedure traverses the tree in a depth-first way.
As for Standard Prolog, efficiency is at the cost of
the loss of completeness.

Example 1.1.17

The untfication problem in ezample 1.1.13 is al-
ready in simplified form. Projection rule produces
substitution ¢y = [idine/F] and imitation rule pro-
duces substitution oy = [Az.1/F]. In both cases, the
unification problem reduces to < 1,1 > which sim-
plifies to an empty set, the success node.

Example 1.1.18

The unification problem in example 1.1.14 s al-
ready in simplified form. Projection is as for exam-
ple 1.1.13 but tmitation s no more possible because
condition @ € C is not satisfied (here @ = v and
veV)

Example 1.1.19

The untfication problem in ezample 1.1.15 is al-
ready tn simplified form. Again, imitation is not
possible because the rigid head is a A-variable.
There are two possible projections.

1. Projection on the second argument yields sub-
stitulion 0,¢ro = [Asz.2/N]. It substitutes 0
to N. The unification problem reduces to
< 1d,,id, > which simplifies to an empty
set.

2. Projection on the first argument yields sub-
stitution o4ycc = [Asz.(s (N1 s 2))/N]. It re-
duces to < Af.(N, idq f),id, >. This is the
original unification problem apart from the
name of the logical variable. It can either be
solved by a substitution such as 0,er0, o be
reduced 1o ¢ new, but similar, problem by a
substitution such has o4ycc.

Hence, the Church’s encoding of every integer is
eventually produced. Note that a bad strategy (pro-
jecting first on the first argument) makes the pro-
cedure try to search the integers starting from the
end! Note that a bad strategy for a problem may be
good for another.

This search procedure calls for some remarks.

e A pair < X, t> (X does not occur in t)
has a most general unifier: [t/X]. A first-
order unification procedure produces the so-
lution in one step. The higher-order unifica-
tion procedure constructs the solution piece-
meal. There are as much steps as there are
term constructors in t. So, instead of letting
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procedure MATCH solve these problems ex-
pensively, SIMPL calls a procedure, named
TRIV, that handles cheaply as many as pos-
sible similar cases.

Note that TRIV does much more than finding
cheaply a solution that SIMPL and MATCH
could find expensively. If TRIV is equipped
with an occurrence-check, then it detects fail-
ure that SIMPL plus MATCH cannot detect.
For instance, MATCH with SIMPL loops on
problem < V,(f V) >, whereas TRIV may
detect an occurrence-check failure. Remem-
ber however, that occurrence-checking cannot
be complete because of flexible applications.

o A flexible-flexible pair is not solved but de-
layed as a constraint. The constraint is tested
for satisfiability as soon as the pair becomes
more rigid.

So, what is really computed by the procedure
is a pre-unifier. The flexible-flexible pairs
that remain unsolved in a success leaf are al-
ways solvable®. It would be a bad idea to try
to solve them because they have too many
minimal solutions, which are not completely
determined by the terms of the problem.

Example 1.1.20

The unification problem in example 1.1.14 can
be solved by procedure TRIV. Term Mv.(F v) is
n-equivalent to unknown F. So, the problem is
trivial, and the single solution, found by procedure
MATCH in example 1.1.18, 1s computed directly by
procedure TRIV.

Types are essential because

1. types make the unification problem well de-
fined,

2. in a non-typed A-calculus, some terms have
no normal form,

3. in a non-typed A-calculus, some terms with
a normal form may have non-terminating re-
ductions, and

4. types are used in the projection operation of
MATCH.

1.2 Extension of the clause
form: hereditary Harrop
formulas

To avoid the word “logic” in “logic programming”
being only a catchword, one needs to define pre-

81t is so only if every type is inhabited. When it is not
the case, the solvability of flexible-flexible pairs is undecid-

able [51].

cisely what is the relation between logic program-
ming and logic®. Miller proposes to define a logic
programming language as a fragment of a predi-
cate logic that enjoys a uniform sequent proof prop-
erty [54).

1.2.1 What is in a logic program-
ming language?

A logic programming language is defined by its
legal programs (clauses) and queries (goals), D
and G. This defines by induction the legal sequents
(P F Q, where P €D and Q € G) and the legal
deduction rules and axioms.

A sequent proof of a theorem in a given frag-
ment is a tree whose leaves are legal axioms, and
whose nodes are instances of legal deduction rules.
Furthermore, the conclusion of a child node must
be a premise of its parent node. The conclusion of
the root node is the theorem.

A sequent proof is uniform if every consequent
in it is a singleton, and every non-atomic conse-
quent 1n it is in the conclusion of an instance of
a right-introduction rule. Finally, a fragment of
a predicate logic enjoys the uniform sequent proof
property if all its theorems have uniform proofs.

The purpose of this definition is to restrict
proofs to those that

give a procedural reading lo the conse-
quents.

In this way, connectives can be considered as con-
trol constructs, and deduction rules can be consid-
ered as computation rules. An immediate output
of the uniform proof property is that the logic of
logic programming is intuitionistic.

Defining the formula domain after some proof-
theoretic property such as uniformness can be used
in other logics than predicate calculus. For in-
stance, Hodas and Miller define another logic pro-
gramming language as a fragment of linear logic [26,
29].

1.2.2 Standard Prolog

A well known logic programming language is
Standard Prolog (see figure 1.4).  The lan-
guages of its defining fragment are definite clauses
(ap C ay A...Aay,) for D and non-empty conjunc-
tions of atoms (a; A...Aa,) for G. The union
of both constitutes Horn clauses. The only right-
introduction rule is AR.

We call head the ag part of a clause, and body
the ay A ... Aa, part. We call predicate a maximal
set of clauses whose heads are built with the same
symbol.

%In this section, we assume the elementary knowledge of
sequent calculus vocabulary.
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Logical syntax:
D 2= A|ACG|VeD|DAD
G 1= A|GAG
A = Atomic formulas
Approximate concrete syntax (universal quantifications are implicit):
D = A|A:-G .|DD
G == A|G, G
Deduction rules:
P F A P, F A A
PPAP, F A PPAP, F A L
P+ G P+ Gy A
PF GiAG, R
Vi/bDe[tI/DjE}l’ }—}_ AA \ 77 t 1s an arbitrary term.
P+ G 5
ACGeP PF A L
AcPPFA axiom
Figure 1.4: The Horn formulas fragment (Standard Prolog)
Logical syntax:
D == A|ACG|Y2D|DAD
G = A|GAG|GVG|DDG|VY¥zG |36
A = Atomic formulas
Approximate concrete syntax (universal quantifications in D are implicit):
D = A|A:-G .|DD
G u= A|G ,G|G;G|D =>G|pix\ G|sigmax\ G
New deduction rules:
PF G; P+ Gy v
PF G VG, PFG VG, 'R
PAD F G 5
PFD D_G R
P _Glc/z] Vg cis a symbol that appears free neither in P nor in G.

};3 }_}_ G::é 3r tis an arbitrary term.

Figure 1.5: The hereditary Harrop formulas fragment (AProlog)
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axiom

P A(app [1 [2] [2]) + (app [I

2] [£23)

Pt (app 00 [2] [2])
PAQC(app [ [21 [22)) F Q

Vi, clause Cy

L
v, clause Cs

Pt Q

Figure 1.6: A uniform sequent proof in Standard Prolog

P A (typeci) F (type ((Az.z) c) 1)

axiom

P F ((type ci) D (type ((Az.z) ¢)

1))

JR

P + Vz ((typez i) D (type ((Az.z) z) 1))

Vr

PA(QC (Vz.((type 1) D (type ((Az.2) 2)i)))) F @

oL
V:z, clause C,

PFQ

Figure 1.7: A uniform sequent proof in AProlog

As we have noticed above, any logic program-
ming language is a fragment of an intuitionistic
predicate calculus. But in the case of Horn clauses,
uniform proofs are also complete for the classical
calculus.

Example 1.2.1

Let P be

C,:Vz.(app [1 z z)

C, : Vezyz.((app lelz] y [el2]) C (app z y 7)),
let Q be (app [1] [2] [1,2]),

figure 1.6 shows a uniform sequent proof of P - Q.

Rule labelled ¥} is a shortcut for four appli-
cations of rule Vr in which universally quantified
variables e, z, y, and z are replaced by 1, [J, [21,
and [2].

The proof is made in the sirict sefting of the
system of deduction rules for Horn formulas. An
application of rule Vr seems to need some “magic”
1o select a term compatible with the remaining of the
proof, when the rule only says to select an arbitrary
term. It is a nice result of theorem proving theory
that selection can be delayed and that unification
can be used insiead of equalily in the ariom rule.
So, no magic is required.

Axioms and rules ¥y and Dy are never imple-
mented as such; they are wrapped in the reso-
lution rule [70]. The universal quantifications at
the clause level (which are implicit in the concrete
syntax) introduce logical variables, also called un-
knowns. Rule ¥V, is implemented by the “renaming
of unknowns”.

As a matter of fact, rules like VY, in which an ar-
bitrary term must be chosen, are often implemented
as the introduction of a new unknown. The choice
of the term is done lazily, guided by unification.

Axioms and rule Dy enforce that the A’s in the an-
tecedent and the consequent of the conclusion are
the same by unifying them. A unifying substitu-
tion must be applied to the G in the premise. To
prefer the most general unifier can be seen as being
as lazy as possible.

The implementation of rule A is responsible
for the completeness of the proof search. In al-
most every implementation of Standard Prolog, an
unbounded depth-first search with backtracking is
chosen. It loses completeness, but it is easy to im-
plement.

1.2.3 AProlog

The clause language D of AProlog (see figure 1.5)
is the language of hereditary Harrop formulas. The
clause language and the goal language G are defined
by mutual recursion. AProlog has all the deduction
rules of Standard Prolog plus deduction rules for
the new connectives. Again, rule 3g in which a
term is to be chosen is implemented by introducing
a new unknown.

Notions of head and body of clauses, and of
predicate extend naturally to hereditary Harrop
formulas.

Example 1.2.2
Let P be
C : Vtitsaf.(type (app t t2) F)
C ((typet; a — B) A {typets a)
C; : VYeaf.(type (abs ¢) a — )
C (Vz.((type z.a) D (type (e z) 0))),
let @ be (type (abs Az.z) 1 — 1),
figure 1.7 shows a uniform sequent proof of P + Q.
Rule labelled V3 is a shortcut for three appli-
cations of rule Vi in which universally quantified
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variables e, o, and [ are replaced by Az.z, i, and i.
Note that rule ariom s required to prove
c =, {(Az.z) ).

Rules Vg and Dg are the most interesting be-
cause they cause a departure from the implementa-
tion of Standard Prolog.

Rule Dg augments the antecedent (i.e. the pro-
gram) of the child sequent. Its procedural seman-
tics is

To prove D O G with program P,
prove G with program P A D.

Rule Vi augments the set of constants (i.e. the
signature) available for constructing clauses and
goals. Note that the lazy way in which rules V;
and 3 are usually implemented causes a prob-
lem with rule Vg. Since all terms are not ground
when rule Vg is used, to ensure that the new con-
stant ¢ does not appear in either G or P, one must
constrain already existing unknowns to never be
substituted by terms containing the new constant.
l.e.incontext ...Vz...3U .. .Vy... universal vari-
able z can be captured by unknown U, but y can-
not. A-variables are essentially universal, they are
always bound in the rightmost part of the context.
So, they cannot be captured by unknown.

“Already existing” should be understood in the
goal-directed proof time. l.e. an unknown already
exists in a node if it appears in a node closer to the
root.

The term domain of AProlog is made of simply
typed A-terms. A-unification is to be used every
time equality of atomic formulas must be enforced
(i.e. rule D and axiom). An atomic formula is
obtained by applying a constant with result type o
to enough closed A-terms so that the type of the
formula is o.

Note that only closed term can be used for
building an atomic formula. We call object terms
those that are allowed to serve as arguments to
atomic formulas or as binding values to unknowns.
They are the terms on which predication can ap-
plies. We show in section 1.4.1 that they are all
closed terms.

1.3 A mild extension of the
term domain: L)

Miller presents a fragment of the simply typed.

A-calculus that allows for a simple (decidable and
unitary) unification [46].

The fragment Ly can be considered as a substi-
tute for AProlog, or as defining the circumstances
under which unification in AProlog can be imple-
mented more efficiently. Among other things, L,
is the kind of pattern that procedure TRIV may
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recognise for improving unification. We also be-
lieve that it gives a good insight on the pragmatics
of flexible terms.

We give in the following an informal proof that
unification in L is unitary and decidable, and some
insight on the use of L.

1.3.1 The domain of L,

The fragment, which is called!® L, is defined such
that unification modulo rules o, 8 and 7 is equiva-
lent to unification modulo rules «, By and 5, where
rule B is the following: ((Az.E)z) =g, E. So, a
procedure solving a unification problem in L (if
one exists) can be used instead of Huet’s algorithm
every time a problem is in L.

An mmportant property of By-reduction is that
it amounts to renaming A-variables.

Example 1.3.1
Term Ay.((Az.E) y) Bo-reduces to Ay E[y/z] via an

a-converston.

As defined by Miller, L, has the same formula
language as AProlog. This means that it takes into
account, among other things, the universal quan-
tifications in goals. We think that it is worth pre-
senting Ly in a simpler language for pedagogical
purpose. Furthermore, one must always remember
that universal quantifications and A-quantifications
are essentially similar. We show in section 3.2.6
how to encode one into the other. So, we first
present L) as a fragment of the language CLP(A),
and then we complete the definition in section 1.3.3.

The fragment of the term language can be char-
acterised by a syntactic restriction on flexible ap-
plications:

In every flexible application of a
B-normal L) term, all the arguments
must be distinct A-variables.

The term being in S-normal form, there are no more
p-redexes. However, flexible applications are po-
tential redexes that can be “activated” during uni-
fication when the flexible heads get substituted. If
the syntactic restriction is satisfied, then the new
B-redexes are By-redexes.

Example 1.3.2

Terms Az.(+ ¢ z) and Azy. (U z y) are in Ly (the
first term has no flexible subterm, the second one
has one flezible subterm and it satisfies the restric-
tion).

Example 1.3.3
Terms Azy (U 1 z y), Azy.(U z y z), and

10We use the name Ly for both the term domain and the
logic programming language built over it.
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Azy(U = V y) are not in Ly. The first term
is flezible and contains subterm 1, which is not a
A-variable, the second one is flexible and contains
several occurrences of the same A-variable, and the
third term is flezible with an unknown as argument.

Miller shows that this restricted language is
powerful enough for coding APrologin L by a local
translation [50].

1.3.2 The intuition of L,

The intuition of a flexible Ly term is the follow-
ing: (U Z) stands for an unknown term in which
the z’s are the only A-variables that are allowed
to occur. And since there is only one occurrence
of every A-variable z, there is no indetermination
on which occurrence of a A-variable is chosen for
unifying two terms.

This intuition can be extended to rigid terms
saying that they are (partially) unknown terms in
which some A-variables must occur and some oth-
ers can occur. A-variables that must occur are those
that have at least one occurrence at the end of a
rigid path. A-variables that can occur are those
that always occur at the end of a flexible path!?.
When unifying two L) terms, one must make sure
that the A-variables that must occur are the same
in the two terms, and one has to build a common in-
stance that accepts the A-variables that are allowed
in both terms.

Example 1.3.4
In term Auv.(f u (U v v) (V v)), variable v may
disappear because it only occurs at the end of flexi-
ble paths, and variable u definitely occur because 1t
occurs at the end of a rigid path.

Substitution [Aab. (W a)/U,Aa.X/V] suppresses
every occurrence of variable v, but no substitution
can suppress the rigid occurrence of variable u.

To force a flexible L) term to allow less
A-variables is done by substituting to its head
(U in the above example) an Ly term of the form
Ay (V ui, - ..ui,) in which V is a new unknown
and ¢ < p. Note that it 1s impossible to force a
flexible L term to accepts more A-variables. In a
rigid term, A-variables that are arguments in a flex-
ible subterm can be eliminated in the same way. A
A-variable that occurs as an argument of a rigid
subterm cannot be eliminated because of the form
of the flexible paths in L,.

This intuition holds also for the whole term lan-
guage of AProlog, but it does not yield an algorithm
so directly because of the lack of restriction.

1 Note that in Ly, a flexible path is always made of a, pos-
sibly empty, rigid path followed by one flexible application.

1.3.3 About universal = variables

and L,

The definition of the L fragment of AProlog must
be completed for dealing with universal variables.
Universal variables that are bound in the scope of
an unknown can be arguments of this unknown,
whereas universal variables that are bound out of
its scope cannot.

So, given an unknown, the universal variables
of its scope behave as A-variables and the others
behave as constant terms. This is coherent with
the fact that the former cannot be captured by the
unknown whereas the latter can.

So, the syntactic restriction becomes:

In every flexible application of a reduced
Ly term, all the arguments must be dis-
tincl universal variables or A-variables,
and the universal variables must be
quantified in the scope of the flexible
head.

Example 1.3.5

Formula ¥z .3Y.(p (Y z)) is not a Ly formula be-
cause ezistential variable Y is applied to a universal
vartable, z, that 1s not quantified in its scope. Using
the tntuition given in section 1.3.2, what s wrong
with this term is that variable  has two grounds
for occurring in term (Y z): ‘

o variable z is an argument to variable Y,

o and, variable Y .is allowed to capture vari-
able z because Y 1is in the scope of z.

Then, 1 1s redundant, and a cause of indetermina-
tion, to apply Y to z.
Formula 3YVz.(p (Y z)) is in L.

1.3.4 Unification in L, is unitary and
decidable

One can show that A-unification in L) is unitary by
analysing the behaviour of Huet’s procedure when
it is applied to terms in L.

Procedure SIMPL behaves as in section 1.1.4.1
until it produces flexible-rigid or flexible-flexible
pairs.

Before trying to solve a flexible-rigid pair, one
must do an occurrence-check: the flexible head
must not occur in the rigid term. Unlike in
the general case (see discussion in section 1.1.3),
occurrence-check in Ly can always be decided be-
cause an unknown can never hide another unknown
(unlike, for instance, < X,(f (U X)) > which is
not in Ly). Occurrence-checking is not necessary
for flexible-flexible pairs, because, by construction,
there can be no unknown in their arguments.
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1.3.4.1 Unification in L) is unitary

The flexible-rigid case

In the flexible-rigid case, it is easy to show
that procedure MATCH can choose deterministi-
cally between imitation and a single projection.

Let < AT.(F 5;),Az.(@1,) >, with F €U and
@ € ¥V U C, be aflexible-rigid pair. From the L re-
striction, it comes that the s;’s (i € [1,p]) are dis-
tinct variables, either taken in {Z}, or universally
bound in the scope of F'.

1. If @ is a constant or a universal variable

bound out of the scope of F', the imitation
rule produces [A\%,.(@ E,)/F).
Note that the projection rule cannot solve the
problem because it can only produce a term
with a head s;. Every s; is different from @
because they must be A-variables or universal
variables bound in the scope of F' (definition
of L)) whereas @ is a constant or a universal
variable bound out of the scope of F' (pre-
condition of imitation). So, in this case, the
unification problem has a single solution.

2. If @ is neither a constant nor a universal vari-
able bound out of the scope of F, the imita-
tion rule cannot apply. The projection rule
aims at selecting arguments of the flexible
term that can match the rigid head.

In L,, projection can produce a substitu-
tion (possibly) leading to a success-node only
when the rigid head is one of the s;’s, and
in this case only one substitution solves the
problem because there cannot be several oc-
currences of any of the s;’s. If the rigid head
is not one of the s;’s, unification fails. Oth-
erwise, for the unique 7 such that @ = s; the
projection rule produces [Au,.(u; £;)/F]. In
this case also the unification problem has a
single solution.

As in procedure MATCH (see figure 1.2), every E}
in E stands for (H up), where H is a new un-
known with the appropriate type. After the substi-
tutions are applied, the problem is still in L.

The flexible-flexible case

In the flexible-flexible case, Huet’s procedure
does not decide because the problem admits too
many solutions. In L), the problem has only one
solution and can be decided easily.

Let < AT.(F5,),Az.(G1,) >, with F and G
in U, be a flexible-flexible pair. It follows from the
Ly restriction that the t;’s (i € [1,¢]) are also dis-
tinct variables, either taken from {Z}, or universally
bound in the scope of G.

1. If F = G (then p = ¢ because of the well-
typing condition), only variables that are in
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the same position in the bodies of both terms
can be exploited in further bindings. Let 7;
be the i’s such that s; = t;, the solution sub-
stitution is o = [Aup.(H u;, ... ui, )/ F].

Note that any permutation of the i;’s solves
the problem, but all the substitutions built
with these permutations are equivalent,.

So, in this case, the unification problem has
a single solution.

2. If F # G, only variables that are in the bodies
of both terms, but not necessarily in the same
position, can be exploited in further bind-
ings. Let i, and j, be such that s;, = t;,
and {s;, ...si,} = {55} N {t,}, the solution
substitution is
(ASp.(H siy ... )/ F MG .(H 4, .. .15,)/G].
In this case too, all permutations lead to

equivalent substitutions, so that the unifica-
tion problem has a single solution.

We call this operation elimination of flezible-flexible
pairs.

So, we have proved that unification in L) is uni--
tary. ) :

Example 1.3.6
Terms Avweyz. (U wzy2) and
Avwzyz. (U v z y z) are unified by [Aabed.(V ¢)/U).
Variables v and w do not occur in the bodies of
both terms. Variable z and 2 occur in the bodies
of both terms, but in different posttions. Variable y
occurs in the bodies of both terms in the same posi-
tion.

Example 1.3.7

Terms

Mwzyz.(Rwzyz) and Alvwzyz.(Svzyz) are

unified by [Mabed.(T b c d)/ R, Aabed.(T d ¢ b)/S].
Variables v and w do not occur in the bodies

of both terms. Other variables occur in the bodies

of both terms, but sometimes in different positions.

They are adjusted in the binding values.

1.3.4.2 Unification in L, is decidable

To show that A-unification in L, is decidable, we
observe that Huet’s procedure, plus an occurrence-
check, plus the elimination of flexible-flexible pairs
(as defined in section 1.3.4.1), plus a special strat-
egy, always terminates for problems in Lj.

The strategy is to solve every flexible-rigid pair
in a first phase, and then flexible-flexible pairs in
a second phase. Remember that what Huet’s pro-
cedure actually computes (without the elimination
of flexible-flexible pairs) are pre-unifiers. By defi-
nition, pre-unified subproblems are solvable prob-
lems. So, the strategy is merely to pre-unify then
solve.
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Resolution of flexible-rigid pairs

The case of flexible-rigid pairs requires some at-
tention because every step in MATCH replaces one
unknown by possibly several (¢ in the notation of
previous section) new unknowns (the H;’s), and
also replaces one flexible-rigid pair by ¢ simplified
pairs < AT, .(H; 55), AT, .t; >. We have to express
that the “size” of the problem decreases anyway. -

We call solved an unknown that occurs as the
head of a member of a flexible-rigid pair. Other
unknowns are called unsolved. We call depth of an
occurrence in a flexible pair the length of the path
to that occurrence starting from the simplified pair.
What decreases is the sum of the depths of all oc-
currences of unsolved unknowns.

The H;’s that come in the binding value do
not count as unsolved unknowns because they
occur as the heads of the new simplified pairs
(so, they are solved). The B-reductions that be-
come possible because of the substitution do not
change anything about the depth of occurrences
of unknowns because, in L), B-reduction is re-
stricted to Bg-reduction which amounts to renam-
ing A-variables!2. Because of the occurrence-check,
the depths of all unknowns (including unsolved un-
knowns) that occur in the ¢;’s is decreased by one.

Additional attention must be paid for dealing
with degenerated cases in which there are no un-
solved unknowns in the ¢;’s, or when ¢ is 0. In these
cases, the sum of the depths of all the occurrences
of unsolved unknowns remain unchanged. Auxil-
iary measures are required such as the size of terms
with no unsolved unknown.

To sum up, the vector whose first component is
the sum of the depths of all occurrences of unsolved
unknowns, and second component is the size of
terms with no unsolved unknown, decreases in the
lexicographic order at every application of MATCH
if an occurrence-check is done. So, the first phase
always terminates, yielding a set of flexible-flexible
pairs (with a pre-unifier), or a failure.

Elimination of flexible-flexible pairs

When the first phase is terminated, every re-
maining pair is flexible-flexible, and their collection
forms a solvable problem.

The case of elimination of flexible-flexible pairs
is easy: it always suppresses one pair, never add
any, and never change a flexible-flexible pair into a
flexible-rigid pair.

So, the second phase always terminates, yielding
an empty problem (a success-node).

We have used Huet’s procedure for solving uni-
fication problems in L). Miller proposes a more
specialised (but we think more complex) algorithm
which aims more directly to the goal. It.does not

12This is the part of the reasoning that does not apply to
the general case. ' ’

create intermediary unknowns like the H;’s; this
makes the termination proof easier.

Finally, note that Quian proposes a linear
time and space algorithm for solving unification
in L, [66], and that Pfenning applies a similar re-
striction to the terms of the Calculus of Construc-
tion [19] and proves that the corresponding unifica-
tion problem is again decidable and unitary [65).

1.3.5 How to use L,?

Miller shows that every AProlog program can be
mapped onto an equivalent L, program. Since
A-unification is certainly cheaper in L, than in
AProlog, it seems to be a good idea to implement Ly
and then to map AProlog programs onto it. How-
ever, the very idea of a compile-time transformation
misses the fact that many programs which are not
in L produce unification problems which are in L.

Example 1.3.8
Higher-order predicates such as map_fun

type map_fun
(A ->B) =
(list A) -> (list B) -> o.

map_fun _Function [] [].

map_fun Function [X|Xs] [Function X[FXs] :-
map_fun Function Xs FXs.

are not in Ly (unknown Function is applied to
another unknown, X), but when used functionally
(e.g. in mode (map_fun + + -)), and if Function
and X are in Ly, they only produce unification prob-
lems that are in L.

Finally, the mapping of AProlog programs onto
L, programs does not work for polymorphic pro-
grams. The idea of the mapping is to write in L)
what is reduction for every constant; the problem
is that polymorphic constants stand for an infi-
nite number of monomorphic constants. It may
be that an extension of AProlog with more poly-
morphic types (e.g. - terms of the second-order
A-calculus (7, 5] instead of simply typed A-terms)
can implement the mapping.

So, we prefer to implement the whole core of
AProlog and to use the L, fragment as a special
pattern to be recognised by procedure TRIV. It
appears that the L, restriction encompasses every
more ad hoc circumstance that TRIV can detect.
To recognise flexible Ly terms is especially inter-
esting: it costs very little and gives a decision pro-
cedure where Huet’s procedure can do nothing. In
the following, we give several examples of AProlog
programs. For many of them, we analyse whether
they belong to Ly or not.
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1.4 Miscellaneous remarks

We present remarks on the pragmatics of AProlog:
an interesting property of object terms, the comple-
mentary aspects of the terms extension and the for-
mulas extension, and a comparison of implication
(=>) and assert/retract as a means for modifying
the program.

1.4.1 About combinators

Combinators are closed A-terms. In AProlog, they
may be non-pure combinators (i.e. combinators
containing constants), but it does not matter.

It 1s an easy observation that if the two terms
of a unification problem are combinators, then ev-
ery derived subproblem is also made of combinators
(because SIMPL propagates abstractions when de-
riving subproblems), and every binding value built
up by the imitation and projection operations is
also a combinator (because, in MATCH, neither im-
itation nor projection introduces free A-variables).

It follows that the property of being a combi-
nator is invariant through unification: unifying two
combinators results in another combinator, and ap-
plying the unifier of two combinators to another
combinator also results in a combinator.

AProlog ensures that every atomic formula is a
closed A-term because non-constant terms are ei-
ther A-variables explicitly quantified at the term
level or unknowns implicitly quantified at the clause
level or explicitly quantified at the goal level.

It follows that the terms of all unification prob-
lems produced when executinig AProlog are combi-
nators, and that every unknown stands for a combi-
nator. This has consequences for the programming
pragmatics and for the implementation. The sec-
ond is studied in other parts of this report. We
develop briefly the first in this section.

The pragmatical consequence is that every ob-
ject term in a AProlog program is closed. lL.e. pred-
icate parameters and unknowns are combinators.
So, there is no direct implementation of any state-
ment dealing with non-closed terms. The only way
to represent a non-closed term without introduc-
ing ambiguities is to replace the occurrences of free
variables by universal variables. Implication can be
used to attach properties to the universal variables.
This is a very systematic pattern for dealing prop-
erly with abstractions and their bodies. See the
clause implementing rule —; in example 1.

Note that the second clause in example 1 is
in Ly: the only unknown, E, is applied to a sin-
gle A-variable, x.

Universal quantification is the of
many L, patterns because universal variables must
be abstracted from terms for valuating unknowns
that are introduced outside their scope.

source
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1.4.2 The term language and the for-
mula language

We have given a name, CLP().), to the language
in which the term domain is extended to simply
typed A-terms and the formulas are Horn formu-
las. However, this language is almost useless. We
only took the care of naming it because the naming
scheme already existed.

The language CLP(A_) is almost useless be-
cause there cannot be any free A-variables in ob-
ject terms. A-unification alone is not the proper
tool for analysing or synthesising A-terms (espe-
cially abstractions). Since there cannot be any
free A-variables in object terms, the only way for
analysing or synthesising an abstraction is to ap-
ply the abstraction to some term. However, there
is a problem in choosing the term. It should not
clash with the subterms of the body of the abstrac-
tion, and should always be recognisable. This can
be done with a severe coding discipline, or sim-
ply using universal quantification. However, when
CLP(A-) is enough, it is always possible to do a
limited use of AProlog.

Example 1.4.1
The simple {types program (see ezamples 1
and 1.1.1) can be rewritten in CCP(A_ ).

/* Same declarations, plus ... */
type variable

simple_type -> lambda_term.
*/

/% Same first clause, plus ...

has_type (abstraction E)
(arrow Alpha Beta) :-
has_type (E (variable Alpha)) Beta.
has_type (variable Type) Type.

The idea is that the relation between a term and
its type is functional, and that we need not distin-
guishing between variables that have the same type.
So, typing statements can be stored in situ.

The status of constant variable is ambiguous
because it does not correspond to a construct of the
modelled language, but it cannot be distinguished
from the other constructs. The CLP(A_) imple-
mentation must be used in mode (has_type + 7),
otherwise it may produce a term with undistinguish-
able constructs variable.

The language with hereditary Harrop formulas
and first-order terms is more useful, but the encod-
ing of its formulas into its terms is difficult. On
the opposite, the language of A-abstractions gives a
natural notation for every kind of quantification.

A tag added to an abstraction (e.g. pi or sigma)
indicates that some semantics is added. The se-
mantics of pi and sigma is implemented by the
AProlog system, whereas the semantics of user-
defined quantifiers must be implemented by the
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user itself. In examples 1.1.1 and 1, constant
abstractionis a tag which gives the meaning of an
object level abstraction to an abstraction. The se-
mantics, with respect to types, 1s given in predicate
has_type. See also how predicate setof is consid-
ered as a quantifier constructor in section 4.1.1.3.
So, the extensions of both the terms domain and
the formulas domain are simultaneously needed.

1.4.3 Implication vs. assert/retract

Standard Prolog proposes built-in predicates
assert and retract for modifying the program.
Implication in goals has also the effect of modify-
ing the program, but there is no way to express one
with the other.

Predicate assert augments a program by a
clause that is conformed on the model of a term
but that has a new universal quantifier for every
unknown that occurs in it. On the opposite, impli-
cation augments a program with a term that is a
clause and it does not invent any quantification; it
only interprets the quantifications that are explicit.
So, implication may introduce free logical variables
in programs.

Example 1.4.2
In Standard Prolog, goal

assert (p U V)

adds clausel®

pi UN(pi W(p U V))
In A Prolog, implication goal

p U V=>G

adds clausel?

p U V.

Where variables U and V stand for terms that are
chosen by the proof process. This cannot be done
with predicate assert because the resulting clause
1s nol even a Standard Prolog clause. To achieve
the same quantification effect in AProlog as in Stan-
dard Prolog, one has to erecute goal

( piU\(piVW(p U V)
=> G
).

The Standard Prolog and AProlog ways of aug-
menting the program are also different as for the
lifetime of the new clause. In Standard Prolog, the

13The usually implicit quantification is made explicit for
the purpose of explanation.

41n this clause, variables U and V are free in the clause
but existentially bound in the proof.

In this particular occurrence, one must not apply the syn-
tactic convention saying that variables free in a clause are
implicitly universally quantified.
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new clause remains in the program until it is explic-
itly retracted. In AProlog, the new clause remains
in the program for the proof of the conclusion of
the implication of which it is the premise (goal G in
example 1.4.2).

In AProlog like in Standard Prolog, predicate
names have a global scope and names of unknowns
have a local (to a clause) scope. Moreover, terms
have no name in general. Since implied clauses are
not disjoint from the proof context (they may share
terms) implication is a way to give a global name
to a term. This is an important pragmatic feature
of implication. In Standard Prolog, the only way
to have two identical terms used in two different
occurrences is to maintain a continuous chain of
parameter passing between the two occurrences. In
AProlog, implication can be used to this end be-
cause it gives a global name to a term.

Example 1.4.3
Predicates append and reverse can be defined in
the following way:

type append

(1ist A) -> (list A) -> (list A) -> o.
type app

(list A) -> (list 4) -> o.
append X Y Z :-

( app 00 ¥

=> app X 2

).
app [EIX] (EIZ] :-

app X Z.

type reverse

(list A) -> (list A) -> o.
type rev

(1ist A) -> (list A) -> o.
reverse X Y :-

( rev [} Y
=> rev X []
).

rev [A|X] -
rev X [AlZ].

In both predicales append and reverse, unknown Y
is common to the new clause and the proof contezt.
In both cases, unknown Y is given a kind of global
name (C(app [1) or (zev [1)) for the duration of the
proof of a goal ((app X Z) or (rev X [1)). Finally,
in both cases, unknown Y disappears from the goal-
statement when the implication goal is executed and
re-appears later when solving a goal. In the mean-
time, unknown Y was only present in the program.
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1.5 A running example (con-
tinued): from d-lists to
f-lists

This section continues the “running example” pre-
sented in the introduction. It insists on using the
A-terms as data-structures and sheds some light on
the connection between unification and universal
quantification in goals.

Function-lists can yield the same improvement
as difference-lists while allowing a list to be a left
concatenand more than once. This is the logi-
cal advantage of function-lists over difference-lists.
It is up to the implementor to make them “non-
deceptive”. For instance, in contexts in which
difference-lists are correct implementations of lists,
using function-lists instead should yield the same
complexity.

Hughes presents a similar list representation in
the functional programming framework [33].

1.5.1 Function-lists

A list is represented by the function that left-
concatenates the Prolog representation of the list to
its argument. For instance, the empty list 1s rep-
resented by z\z and cons(1, cons(2, cons(3, nil)))
is represented by z\[1,2,312]. The function-list
representation is unique up to A-equivalence. A
function-list has type (1ist A) -> (list A) if its
elements have type A. Though there are no way in
AProlog for declaring a type function flist, type
(list A) -> (list A) is abbreviated to (flist A)
throughout this report. Type constructor flist
has kind type -> type. One would like to write

defkind flist
A\((list A) -> (list A)).

but it is not legal in AProlog.

To concatenate two lists is to compose the func-
tions that represent them. The concatenation pred-
icates are:

type fappend

(flist A) ->

(flist A) ->

(flist A) -> o.
fappend L R 2z\(L (R 2)).
type fappend3

(flist A) ->

(flist A) ->

(flist &) ->

(flist A) -> o. :

fappend3 L M R z\(L (M (R 2))).

Note that these clauses are not in L. But, when
used in functional modes (i.e. (fappend + + -) and
(fappend3 + + + -)), they only produce trivial uni-
fication problems.
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Unlike predicates dappend and dappend3, pred-
icates fappend and fappend3 operate in all modes
because equality of function-lists is completely en-
compassed by higher-order unification. In mode
(fappend3 - - - +), the backtracking implementa-
tion of unification enumerates the different possible
splits of the fourth parameter. Predicate fappend
and fappend3 are not destructive because of the se-
mantics of B-reduction. So, the following predicates
work as expected.

type ftwice

(flist A} -> (flist A) -> o.
L LL :-

fappend L L LL.

fteice

type common_prefix
(flist &) ->
(flist A) ->
(flist A) -> o.
common_prefix P L1 L2 :-
fappend P _ Lti,
fappend P _ L2.

The check for membership can easily be derived
from predicate fappend.

type fmember
A -> (flist A) -> o.
fmember E 2z\(_ [El(_ 2)D).

In the same fashion, predicate fselect relates a
list, one of its elements, and the list of the other
elements.

type fselect
A -> (flist A) ~> (flist A) -> o.
fselect E z\(B [E|(A z)]) =z\(B (A z)).

The naive reverse predicate is:

type fnrev
(flist A) -> (flist A) -> o.
fnrev z\z z\z.
fnrev z\[AI(L z)] 2z\(RL [alz]) :-
fnrev L RL.

The first clause is obvious since z\z represents the
empty list. The second clause uses higher-order
unification to split a list and construct another.

As we did with difference-lists, function-lists can
be used to produce an inversion predicate that op-
erates on Prolog lists but uses function-lists inter-
nally.

type frevi
(list A) -> (flist A) -> o.
frevl [1 z\z.
frevi [AIL) z\(RL [AlZz]) :-
frevli L RL.
type frev
(list A) -> (1list A) -> o.
frev L (RL [1) :-
frevi L RL.
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1.5.2 Function-lists
quantification

and universal

The transformation from function-hsts into Prolog
lists is trivial and is not destructive.

type flist2list
(flist A) -> (list A) -> o.
flist2list F (F [1).

In spite of (because of) A-unification, predicate
flist2list is not totally symmetrical. It cannot
be used to transform a Prolog list into a function-
list because there are other solutions than the in-
tended one, and there is no way to “separate the
wheat from the chaff” a posterior:. For instance,
let [[1]] be a Prolog list the only element of which
is a list. The solutions to < [[111, (F [1) > are
[z\[[1]] / F] and [z\[(1]11z] / F}. The intended
solution is the second, first solution is “chaff”. The
non-intended solution is produced by an excessive use
of the imitation rule.

Note that substitutions [2\[[11z]] / F]1 and
[z\[[11z]12z] / F], which are produced by projection,
are not solutions because they violate the type assign-
ment. In this problem, unknown F has type

(list (list int)) -> (list (list int)) ,
but first substitution gives it type
(list int) -> (list (list int)) ,

and second substitution cannot even be typed be-
cause the first occurrence of variable z has type
(list int) while its second occurtence has type
(list (list int)).

The problem is basically a logical problem. Predi-
cate f1list2list is not a correct implementation of the
relation between Prolog lists and function-lists, which
is

To append a Prolog list to a given list is to
apply the corresponding function-list to the
same list, for every given list.

Predicate flist2list implements the relation only
when the given list is the empty list. We have to design
another predicate for doing correctly the job for every
given list.

We propose two versions'®:

type list2flist
(list A) -> (flist A) -> o.

# ifdef first_version
list2flist L FL :-
pi list\
( append L 1list (FL list)
).
3 else second_version

list2flist [1 z\z.

list2flist (EIL] z\[EI(FL 2)] :-
list2flist L FL.

# endif

15Notation # ifdef ... # else ... # endif is bor-
rowed from the C preprocessor. It expresses conditional
reading of programs.

The second version uses cautiously the structure of
function-lists. The first version is more interesting in
that it reproduces directly the relation between Prolog
lists and function-lists. It makes a critical use of the uni-
versal quantification. In the example above, pi intro-
duces the universally quantified constant list, which
cannot be captured by imitation.

Predicate flist2list is not in Lx. The two ver-
sions of predicate list2flist are in L. The first
version satisfies the condition on quantification nesting
that is given in section 1.3.3.

1.5.3 Function-lists and combinators

A concatenation combinator can be written and used
autonomously. It is the function composition combina-
tor, 11\12\z\ (11 (12 z)). In the same vein, the nil
combinator is z\z.

Statements about the properties of lists and con-
catenation can be expressed in the language itself, and
the empty list and concatenation combinators can be
generated automatically.

type monoid

( (flist A) >
(flist A) ->
(flist A)

) >

(flist A) -> o.

APPEND NIL :-

pi 11\ (pi 12\ (pi 13\

( (APPEND (APPEND 11 12) 13)
= (APPEND 11 (APPEND 12 13))

M,

pi 1\

(  (APPEND 1 NIL)
(APPEND NIL 1) =

monoid

noa
-

)’

pi e\

(  (APPEND z\[elz]) = 1\z\[el| (1 2)]
).

The current state of the art of AProlog implementa-
tion makes this more a curiosity than a tool. In mode
(monoid + +), the predicate monoid can check that two
combinators have the required properties. In mode
(monoid - -), the same predicate finds solution

[x\y\z\(x (y z)) / APPEND, z\z / NIL] .

The fourth literal is necessary for describing the relation
between APPEND and ’.°. When the fourth literal is
omitted, another solution where x and y are permuted
is possible. In both cases, the unification procedure
may enter a loop after finding the solution(s).

Note that the proof of (monoid APPEND NIL) makes
use of unification delay. The first literal produces a
flexible-flexible pair which becomes a constraint. The
other literals awake the constraint every time a binding
is found for APPEND.

Combinators APPEND, NIL and some others can be
used to write function-lists predicates more safely's.

16Notation #define is borrowed from the C preprocessor.
It expresses definition of named strings. We use it only for
naming strings that can be analysed as closed ground terms.
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#define APPEND x\y\z\(x (y z))
#define NIL x\x
#define UNIT x\z\(xlz]

fappend L R (APPEND L R).
fappend3 L M R (APPEND L (APPEND M R)).
ftwice L (APPEND L L).

fnrev NIL NIL.

fnrev (APPEND (UNIT A) L)
(APPEND RL (UNIT A4)) :-
fnrev L RL.

fmember E (APPEND _ (APPEND (UNIT E) _)).

fselect E
(APPEND B (APPEND (UNIT E) A4))
(APPEND B A4).

It makes programs safer and more readable, and it
costs nothing at run-time because programs are re-
duced at compile-time. In the same way, concrete data-
structures and notational conventions can be hidden in
combinators. Figure 4.3 in section 4.1.1.5 shows an-
other example of this trick.



Chapter 2

Technical Choices

Our implementation of AProlog relies upon two
technical choices. The first, to use MALI for repre-
senting the search-state, is a condition of the memory
efficiency of our system. The second, to compile to C,
is incidental. It is only an easy way to get the system
integration ability we look for.

Examples of programming with MALI can be found
in section 3.1.

2.1 MALI

MALIv06 is a software tool designed to provide a user
program with the memory management of a search-
stack. The intended application domain 1s the imple-
mentation of logic programming systems.

The principles implemented in MALIv06 are fully
exposed in a tutorial and reference manual from which
this section is an edited excerpt [69]. In the follow-
ing, MALIv06 stands for this particular implementation
of the principles, and MALI stands for the principles
themselves. MALI (Mémoire Adaptée aux Langages
Indéterministes — memory for non-deterministic lan-
guages) can be specified as the abstract data type stack
of mutable first-order terms.

We present in the following the domains of
MALIv06’s data-structures, and the great lines of the
memory management.

2.1.1 The domains of MALIv06

MALIv06 allows to store complex data-structures called
terms, to modify them in a controlled way, and to save
them on a term-stack for protecting them against mod-
ifications.

2.1.1.1 Commands, operations, types, con-
stants

As a memory, MALIv06 has a state and commands ex-
ist to either alter or consult its state. The semantics
of MALIv06 is mainly the semantics of its commands.
Commands are an enrichment of the read and write
commands of a conventional memory.

Companions to the commands are the operations.
Their behaviour does not depend on the state of
MALIv06 and they do not alter it. They hide the struc-
ture of MALIv06’s internal representations while giving
access to them.

MALIv06 introduces new computation domains to
describe what can be stored in its memory. Some of
the domains are public —i.e. they are part of the user
interface—, others are private. Private domains are de-
scribed in the documentation for the purpose of speci-
fication and explanation. When a domain is public, a
type is defined to allow the user to store values of the
domain and compute with them. Constant values and
functions are declared for some public domains.

2.1.1.2 Terms and names

The terms are private values stored in MALIv06. They
only serve as a semantic tool. The names are public
values related to terms by a partial function called the
designation (see section 2.1.1.3). The user of MALIv06
never gets any term value, but only names stored in
cells. Cells have type T_CELL.

Cells are the storage unit of MALIv06. The
memory of MALIv06 is an aggregate of
cells which can be pointed to by a user pro-
gram.

A term has a nature specifying which commands
may apply to it, and a sort for an elementary typing.
Domains of nature and sort are public. Cells have an
indicator field for storing nature and sort, and an in-
formation field which is interpreted according to the
indicator. Natures, sorts, and informations have types
T_NAT, T_SORT, and T_INFO.

Some terms, called compound terms, have subterms
which are also terms.

All compound terms plus some others exist in a
mutable and a non-mutable form. Mutable terms are
called muterms. They have the same structure as non-
mutable terms, but their usual destiny is to be replaced
by another term (of any nature and sort). In this re-
spect, they are similar to Prolog logical variables. Com-
mands exist to perform the replacement.

The terms used in this report have the natures listed
below. For every nature, we give a notation for terms of
this nature. This notation is not used for communicat-
ing with MALIvO06; it is only used in writing comments.

Atoms They have an information associated to them
which cannot be interpreted by MALIv06. It is
an arbitrary value and it is only stored unaltered.
The information size is restricted to what can be
stored in the information field of a cell. '

In the following, an atom of sort S and value V is
noted (at S V).
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Binary compounds They are similar to the cons of
Lisp. They have two subterms. There are also
nullary, unitary, and ternary compounds.

In the following, a binary compound (mutable or
not) of sort S and subterms T1 and T2 is noted’
([m]c2 S T1 T2).

Nullary Compounds They are similar to the nil of
Lisp. They are degenerate compounds since they
have no subterms. Mutable nullary compounds
are similar to Prolog logical variables. All other
muterms can be thought of as being decorated
logical variables.

- In the following, a nullary compound (mutable or
not) of sort S is noted ([m}cO S).

Tuples They are n-ary com-
pounds. They have n (n > 0) subterms. They
offer a more compact representation than a com-
bination of n-I binary compounds. Furthermore,
they offer direct access to their subterms. The
maximum size of tuples is discussed in the tuto-
rial and the reference manual.

In the following, a n-ary compound (mutable or
not) of sort S and N subterms T1 to Tn is noted
([m]JtuS N Tt ... Tn).

Levels An important component of MALIv06 is the
term-stack. Levels are substacks of the term-
stack. They are ordinary terms and can be sub-
terms of any compound term. Levels have a sub-
term called a root. It is the term which is saved
on the term-stack.

Conventionally, the term-stack grows upwards, so
that a level is called lower than another if it is a
substack of the other. Symmetrically, a level is
called higher than another if the other is a sub-
stack of the level.
levels by other lower levels.

Commands exist to replace

There is only one term-stack at a time, and every
level is one of its substack. So, when the term-
stack is not empty, there always exist a high-
est level (called the top level) and a lowest level
(called the bottom level).

In the following, a level of sort S, root R, and next
level N is noted (1e S R N).

There are no other term replacement op-
erations than the replacement of muterms
by terms and the replacement of levels by
lower levels.

The terms of MALIv06 can be considered as infinite
rational terms because they may be their own subterm,
but they may only have a finite number of different
subterms.

The notation of MALIv06 terms is extended to rep-
resent sharing of subterm. A subterm t can be la-
belled 1 using the following form: 19t. Every other
occurrence of the label stands for the subterm. A term
may have several labels (e.g. through substitution). An-
other way of seeing the terms of MALIvO06 is as graphs.

I'The square bracketed m ([m]) indicates the mutable vari-
ant of the nature.
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2.1.1.3 The designation

The relation between names and terms is specified by
a partial function called the designation. The reference
manual of MALIV06 intends to expose precisely how the
designation evolves.

The designation is an almost constant function from
names to terms. We say that a name designates a term.
By extension, names are said to have the nature and
sort of the term they designate.

Atoms are their own names. The information asso-
ciated to them is the content of the information field of
their names (themselves).

Replacing a muterm by a term and a level by a
lower one causes the only non-trivial modification of
the designation. Other modifications are term creation
and term suppression. They are trivial since they only
modify the domain of the designation. Term creation
is always explicit, whereas term suppression is always
implicit.

Term replacement always makes several
names designate the same term.

One says that a name designating a term without the
help of a term replacement is a direct name.

1t is always possible to find a direct name
designating the same term as a given non-
direct name.

A command exists for this purpose. Since the argu-
ments of many commands must be direct names, non-
direct names may cause run-time errors. It is up to the
user to determine where non-direct names can pop out,
and to make them direct when necessary.

Terms can be saved on the term-stack to be partly
isolated from the modifications of the designation.
There are two kinds of term replacement which act dif-
ferently on the saved terms. The first is the substitution
of a term to a muterm. It has no effect on the saved
terms. Once popped off the term-stack, a term shows
no sign of substitutions done after it was saved. The
second kind of replacement is the assignmentof a term
to a muterm, or of a level to a higher level. It affects
the saved terms as well as the designation. So, a term
popped off the term-stack keeps the effect of assign-
ments.

2.1.1.4 The objects

Terms are represented by contiguous subaggregates
of MALIv06’s memory called objects. The way the cells
are aggregated in objects is of no purpose for the user.

Objects are the allocation unit of MALIv06.

The domain of objects is private. It serves only a speci-
fication purpose. The domain of references to objects is
public. They can be used and stored by a user program.
There are operations that apply only to cells aggregated
in objects. References to objects have type T_ROBJ.
Objects can be seen as the descriptors of the terms.
Their component cells are the fields of the descriptors.
The way objects aggregate cells is hidden. However,
given the reference of an object representing a term of
some nature, selection operations return a pointer to
a particular cell of the aggregate. The cells that can
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Figure 2.1: Names, terms, objects and references

be pointed to in that way correspond to subterms of
the term. They contain the name of the subterm they
correspond to.

2.1.1.5 Making and reading objects

Making and reading objects follow two rules:
All terms are built one compound at a time
and
All terms are read one compound at a time.

Make commands exist for building a term of any
given nature and sort. They create a suitable object
for representing its constructor, and they return

1. the name of the new term in a cell chosen by the
user, and

2. the reference of the object.

The cell chosen by the user is often selected (using a
selection operation) in an object created earlier, while
the object reference serves for building subterms.

To read a term, one must know a cell where the
name of the term is stored. The cell can be either in
the representation of a term or elsewhere. The result of
reading a term is the reference of the object in which
the cells containing the names of the subterms are ag-
gregated.

Note that make and read commands are totally
symmetrical. Figure 2.1 summarises the relations be-
tween names, terms and subterms, objects and refer-
ences, and selection operations and read and make com-
mands. Recall that only names and object references
are public.

An analogy can be drawn between term naming in
MALIv06 and file naming in an operating system. A
file name designates a file in a file system. To actually
do something with a file, it must be opened in a mode
suitable for the intended use (say, read or write). To
open a file yields a file descriptor which must be used
for every access to the file. Noting that file directories
are also files, it appears that terms of MALIvO6 are
somewhat like files’. The names, objects, and read and
make commands of MALIv06 correspond to file names,
file descriptors, and to opering a file in read or write

2The analogy flounders as soon as rational terms are con-
sidered.

mode. A file descriptor is a structured data; selection
operations implement field selection on objects.

2.1.2 Memory management
2.1.2.1 Usefulness logic

The principles of MALI result from a research on the
implementation of logic programming systems which fo-
cused on memory management rather than speed. So,
MALI provides an efficient solution to the space prob-
lem, but brings no solution to the time problem. The
packaging of MALIv06 is designed to hinder the least
possible any effort to yield speed efficiency.

Logic programming systems require management of
their program space because programs are modifiable.
They also require management of the space in which
the state of the search process is stored. The mem-
ory management of the program space is dependent on
language issues that are not universally settled. The
memory management of the search process appears to
obey some rules and has a general solution which can
be wired in a garbage collector. The main rule is that

The data-structures implementing the
search must be interpreted by the garbage
collector.

MALIv06 is a packaging of this rule which is as much
as possible independent from any logic programming
system.

We call the interpretation of the data-structures for
garbage collection purpose the usefulness logic of a sys-
tem A survey paper by Bekkers, Ridoux and Ungaro
describes the emergence of this notion in logic program-
ming [10].

In logic programming systems, a search results in
the binding of some logical variable to some values.
The search algorithm defines a notion of search node
and search transition between nodes. Transitions pro-
duce new bindings, and the bindings produced along
the path leading to a given search node form a bind-
ing environment. It happens that a search node may
be the source (by the transition rules) of several other
search nodes, which in turn, etc. So, an implementation
of a logic programming system has to represent soundly
and as efficiently as possible a collection of search nodes
and their binding environments. Note that it is common
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practice to use a given data-structure in the representa-
tion of several binding environments (sharing). So, the
binding environments considered as graphs may share
vertices and edges.

MALPD’s usefulness logic specifies that

The run-time data-structures representing
binding environments must be interpreted
as vertices of as many graphs as there are
environments. Those that have at least one
connection to some root using edges of a
single graph are the only useful ones.

As a corollary, a data-structure that is either not con-
nected at all to any root or that cannot be connected
without using the edges of several graphs is useless. In
the latter case, Lisp usefulness logic would say that the
data-structure is useful.

MALI’s muterms, levels and compound terms cor-
respond to Prolog logical variables, search-stacks, and
terms and goal-statements. So, all what is said about
MALI can be transposed to Prolog.

2.1.2.2 Two new features

Muterms introduce two new features distinguishing
MALD’s usefulness logic. The two features can be de-
scribed with respect to the two roles that an object
representing a muterm plays alternatively. First, when
no term is substituted to. the muterm, the object rep-
resents only the muterm, it is a place-holder. Second,
when a term is substituted to the muterm, the object
represents the substitution by keeping a name of the
term, but it is ready to represent the muterm again if
it is popped off the term-stack.

A complete implementation of MALI’s usefulness
logic must detect that an object actually plays only one
role and may be replaced by a cheaper representation
of the remaining role. Note that if an object does not
play any role, it can be discarded. Since an object may
play no role as a consequence of the loss of one of the
roles of another object, a conventional usefulness logic
is not certain to recognise every object that plays no
role, without speaking of recognising objects that play
only one role.

Early reset

The first feature is called early reset or binding
shunting. It corresponds to the case in which the second
role is missing. Assume an object representing a substi-
tuted muterm that is connected to some roots only in
binding environments in which no term is substituted to
the muterm. Such an object actually plays only the first
role and the substitution can be undone. The potential
gain is the representation of the substitution value.

“Early reset” gets its name from the fact that a
substitution is undone without waiting for backtrack-
ing. Note that a substitution value can be any arbitrary
large structure. So, the gain of early reset is arbitrary.

Muterm shunting ,

The second feature is called muterm shunting
or variable shunting because of the relation between
muterms and logical variables. It corresponds to the
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case in which the first role is missing. Muterm shunt-
ing can either be global or local, according to the scope
of its effect.

Global muterm shunting is based on the object rep-
resenting a given muterm. Consider again an object
representing a substituted muterm. Assume it is con-
nected to some roots only in binding environments in
which a term is substituted to the muterm. Such an
object actually plays only the second role and need not
be ready to represent the muterm again. Then, every
occurrence of the name of the muterm can be replaced
by the name of the term. The potential gain is the
representation of both the muterm and its subterms.

Local muterm shunting is based on the occurrences
of the direct name of a muterm. It does not im-
prove memory allocation, but only shortens substitu-
tion chains. If an occurrence of the direct name of a
muterm is connected to some roots only in binding envi-
ronments in which a term is substituted to the muterm,
then this occurrence of the name of the muterm can be
replaced by a name of the term.

It is important to understand how the two kinds of
variable shunting are different. The first operates on
the muterm itself and all its occurrences. The second
operates on particular occurrences of a muterm. The
first may induce a memory gain, whereas the second
cannot. Both shorten substitution chains.

Assuming that substitutions are implemented by
pointers, what muterm shunting does is to collapse
pointers; the usefulness logic of functional programming
system has no ground for such an action.

In the case of Prolog, muterms are only used for rep-
resenting logical variables: they are nullary muterms.
So, the gain of muterm shunting seems to be a constant
amount. However, as logical variables get more com-
plex (types, constraints) their representation becomes
arbitrary large. So, the gain of not representing them
becomes also arbitrary®. Note also that as logic pro-
gramming systems get more complex, muterms are also
used for more purposes.

2.1.2.3

In addition to a garbage collector, MALIv06 benefits
from term-stack management to recover memory for
free. Popping the stack actually frees memory, so that
if the garbage collector is not used, MALIv06 behaves
as well (as badly) as a Prolog system with no garbage
collection.

A less extremist consequence, but more interesting,
is that short lived objects at the top of the stack are

Stack-like memory management

3In usual implementations of the WAM (Warren Abstract
Machine (75, 4]), some logical variable have no proper repre-
sentation: they are represented by a slot in one of the terms
in which they have an occurrence. It seems that muterm
shunting saves no memory for these logical variables.

It is false: even with the representation as a slot, it may
be that a slot is only used for representing a logical variable
and never as a component of a compound term. Muterm
shunting helps recover it.

Moreover, not every logical variable can be represented
this way (unsafe variables need a proper representation),
and it cannot be used either for representing complex logical
variables (they nced more room than a single slot). On the
opposite, muterm shunting is a general device.
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discarded at no cost. The cost of garbage-collection is
paid by long lived objects.

2.2 The Prolog-to-C transla-
tion

The translation from Prolog to an imperative language
is motivated by software engineering objectives, and the
facility of inheriting its back-end from an already exist-
ing compiler.

We present an execution model that merges
smoothly the use of MALI and the translation to an
imperative language.

2.2.1 Objectives

Our objectives for compiling AProlog include the usual
efficiency obsession: to make AProlog reasonably efhi-
cient, and above all non-deceptive. Its attractive fea-
tures should be truly usable. They also include a soft-
ware engineering concern: we want to revisit the inte-
gration of Prolog in a host system.

Several reasons make one feel unsatisfied with the
current style of Prolog integration.

1. It is often the case that Prolog is only accessi-
ble through the use of a specific programming
environment: the so-called “supervisor”. This
makes the use of Prolog independent of the host
system, but it insulates Prolog applications from
non-Prolog ones.

However, it is current practice to compose pro-
grams written in different languages with the help
of a shell language. For example. the pipe con-
struction (1) of some shell language composes
programs by connecting their standard inputs
and outputs and does not matter for the lan-
guages they are written in*.

2. Numerous attempts have been made to endow
Prolog with a capability for modular program-
ming. Every attempt we know about claims to
give a Prolog semantics to modularity (47, 48].
We believe that it misses the part of the point
which is to link at the system level modules that
were designed independently and in languages we
do not want to know about.

We want to make it possible to compose, share
and reuse program texts {among them, some
written in Prolog) by the exclusive use of sym-
bols. To this effect, one must give the scoping
laws of the different declarations of a Prolog text,
and rely on the link-editor of the host system.

This does not preclude a more Prologish way of
composing modules inside the Prolog parts of a
program.

So, our objective is to implement Prolog, whichever
variant is chosen, so that Prolog applications are as well
integrated in the host system as applications written

4Some Prolog systems offer a mode for generating stand-
alone applications.
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in other languages. Furthermore, every standard be-
haviour of the host system applications must be repro-
duced: standard input/output/error ports, exit codes,
etc.

To achieve this at low cost, we translate Prolog
source programs into source programs of a language
which already enjoys the integration. This is not
enough to have Prolog inherit the same integration ca-
pability. The translation must maintain a correspon-
dence between Prolog symbols and the target language
symbols so that link editing at the target level performs
the expected effect at the Prolog level.

A more efficient way of achieving the same effect
would be to translate to some portable compiler back-
end format. It would save some compilation time
and execution time, while preserving machine indepen-
dence. But, it is easier to use a real programming lan-
guage.

2.2.2 Model of execution

We use a new model for the execution of Prolog pro-
grams. It has been first applied to Standard Prolog,
and then to AProlog. We describe this model for Stan-
dard Prolog.

2.2.2.1 Standard Prolog

Standard Prolog programs are translated into C pro-
grams [37] that use MALI for representing the search
state. The search state is made of a success continua-
tion {often called goal-statement) and a failure contin-
uation (often called search-stack). Both continuations
are coded as MALIv06 terms. The success continuation
uses compound terms, atoms, and muterms for repre-
senting goals and terms constructors, symbols and con-
stants, and unknowns and mutable structures (S-redex,
etc). The failure continuation is mapped onto the term-
stack.

The mapping of continuations onto MALIv06 is hid-
den in the definition of a specialised intermediate ma-
chine built on top of MALIv(36. Like MALIv06, its in-
terface is mainly a set of commands and operations.

The translation scheme is to perform a top-down
analysis of Standard Prolog programs, and to associate
to every structure and symbol a declaration or a state-
ment. From the top to the bottom of the analysis,
we meet predicates, clauses, heads, bodies, and terms.
A predicate translates into a symbol definition and a
function implementing the part of the search procedure
that is related to the predicate. The function performs
side-effects on both continuations. A clause translates
into command calls implementing the search strategy
(depth-first search), the head and the body. Every head
atom translates into a sequence of command calls im-
plementing a specialisation of unification suitable for
this head. Body goals translate into a sequence of com-
mand calls implementing the proof strategy (left-to-
right selection of goals). Finally, we have head struc-
tures (compound terms, constants, unknowns) which
translate into command calls implementing unification
specialised for them, and body structures which trans-
late to command calls for creating new goals and adding
them to the success continuation.
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The C language serves as a glue for putting together
the command calls to the specialised intermediate ma-
chine. The call-stack of C is used neither for implement-
ing the traversal of the search-tree, nor the traversal of
the proof-trees. It would kill the benefit of using MALI
because MALI has to know about the search-stack but
cannot go through the C call-stack. So, the functions
implementing search for the predicates never call each
other. They are called by, and they return to, a unique
function called the motor. It is an extremely simplified
scheduler or interpreter.

C is not the best language to serve as a glue. It
lacks the ability to consider as a data a control point
other than a function pointer. Language PL/1 extends
this ability to labels and entries. However, the wide
availability of C makes it to be chosen despite this lim-
itation.

We have slightly extended the syntax of Prolog for
merging Prolog and C declarations in a single file, and
writing clause bodies in C. It is chiefly useful for imple-
menting the built-in predicates or for interfacing host-
system libraries.

2.2.2.2 Extension of the execution model
for AProlog

To extend the model for handling AProlog, one has to
add two new continuations: one for handling the signa-
ture, the other for the program (12, 14]. Remember that
both the signature and the program may change during
a computation. These two new continuations are rep-
resented as MALIv06 terms (see details in sections 3.3
and 3.2.3.1).

Because of the non-determinism of A-unification, it
is not possible to merely substitute the A-unification
procedure to the first-order one. We follow the tradi-
tion of a depth-first search of the unification tree so that
the non-determinism of unification merges smoothly in
the non-determinism of the proof-search. It merges
so smoothly that procedure MATCH (see figure 1.2)
is a AProlog predicate that non-deterministically calls
the imitation and projection procedures through clause
bodies written in C.

2.2.2.3 Management of Prolog symbols

To obtain that link editing at the target language level
implements Prolog link editing, one must make sure
that every linkable symbol of Prolog is mapped onto a
linkable symbol of the target language.

We achieve this by translating every symbol into a
pointer to a structure that contains the description of
the symbol (external representation, arity, a type re-
construction function, a search function for predicates
symbols, etc). The set of all this structures can be seen
as a symbol table.

CHAPTER 2. TECHNICAL CHOICES



Chapter 3

Compiling AProlog

A bunch of new problems comes with the exten-
sion to higher-order terms: terms are typed, they must
be considered modulo the A-equivalence relation, two
quantifiers (universal, pi, and existential, sigma) and a
new logical connective (implication, =>) are introduced,
and unification problems can have several solutions and
they can be delayed.

We have to design an execution scheme for AProlog
and then study how it can be specialised according to
recognisable source patterns. The new scheme should
be a mix of three different computing technologies.
First, the Prolog technology (goal and clause selection,
substitution, backtracking) is used because AProlog is
an almost conservative extension of Standard Prolog®.
Second, the A-calculus technology (afn-equivalence)
must cope with the extension of the term domain to
simply-typed A-terms. Finally, the uniform proof tech-
nology for hereditary Harrop formulas {Dg, Vr) has to
cope with the extension of the clause form.

All three technologies meet in unification. Unifica-
tion is the place which is really different from what it is
in Standard Prolog. However, part of the compilation
effort is to recognise patterns for which a mild alteration
of first-order unification does the job.

The Prolog technology is implemented by a
specialised intermediate machine called the MPPM
(“MALIv06 Pedagogical Prolog Machine”). We first
introduce it and its implementation with MALIv06,
and then the new problems. Implementing the two
other technologies is required to extend the MPPM.
We present the data-structures and only give hints on
the operations.

3.1 The MALIv06 Pedagogi-

cal Prolog Machine:
MPPM

The general architecture [13] of a system pro-
grammed with MALIv06 is the following:

e The bottom layer, MALIv06, offers a general
data-type for representing application oriented

't is almost conservative because definitional genericity
(see section 3.2.1.1) makes some Standard Prolog programs
definitely ill-typed (e.g. a flattening predicate for unbounded
nestings of lists: program 9.1a page 136, and its variants, in
The Art of Prolog [72]).
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terms. It also offers an efficient memory man-
agement.

It does not own any memory; the memory it man-
ages is provided by higher layers.

o The virtual machine layer defines how applica-
tion oriented terms are represented as MALIv06
terms. It also implements the operations de-
fined on these terms (resolution, unification, re-
duction). It may also define the great line of the
memory policy (what are the actual memory re-
sources, how large are they, are they paged, etc).

It says nothing of what is a program.

o The program layer may be made of interpreted
code or of executable code. We choose the second
in which the primitives of the virtual machine
layer are called from a target language (in our
case C).

The MALIv06 tutorial completely describes the
MPPM [69]. The content of this section is an edited
excerpt of the tutorial. It describes the parts of the
MPPM that are the most important for understanding
the execution scheme. An important part missing in
this section describes the control of MALIv06’s mem-
ory management (the memory policy).

MALIv06 is written in C and produces C defini-
tions. So, the preferred user language is C. However,
the use of C is purely incidental, and we try not to use
too many C tricks. ’

The MPPM has to deal with the mapping of Prolog
domains, control, and unification onto MALIv06. In
the following, commands with two-letter prefixes (MK,
RD, ...) are MALIv06 commands, and commands with
longer prefixes (MAKE, READ, ... ) are MPPM commands.

3.1.1 Prolog domains

An important task in the implementation of a logic
programming system with MALIv06 is to devise the
mapping of the application domains onto the terms of
MALIv06. As a mapping is chosen, we recommand to
design a set of application oriented commands. They
should be a specialisation of MALIvV06 commands.

3.1.1.1' Natures and sorts

The domains of the application (e.g. Prolog terms) must
be mapped onto the terms of MALIv06. Natures and
sorts must be chosen and combined properly to have an
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#define SORT_INT MK_SORT( 1984 )

#define SORT_UNK MK_SORT( 314159 )

#define SORT_FUNC MK_SORT( 1515 )

#define SORT_SYMB MK_SORT( 464 )

#define SORT_GOAL MK_SORT( 13 )

#define INDIC_INT MK_INDIC( N_ATOM, SORT_INT )
#define INDIC_UNK MK_INDIC( K_MCONSO, SORT_UNK )
#define INDIC_FUNC MK_INDIC( N_TUPLE, SORT_FUNC )
#define INDIC_SYMB MK_INDIC( N_ATOM, SORT_SYMB )
#define INDIC_GOAL MK_INDIC( N_TUPLE, SORT_GOAL )
#define FUNCTOR_OF( objfunc ) TUPLE_SELECT_ITH( objfunc, 1 )
#define SUBTERM_OF( objfunc, i ) TUPLE_SELECT_ITH( objfunc, 1+(i) )
#define ARG_OF( objgoal, i ) TUPLE_SELECT_ITH( objgoal, 2+(i) )
#define CONT_OF( objgoal ) TUPLE_SELECT_ITH( objgoal, 1)
#define PRED_OF( objgoal ) TUPLE_SELECT_ITH( objgoal, 2 )

Figure 3.1: Sorts, indicators and selection operations for Prolog data types

efficient and robust mapping. “Efficient” means that
the representation fits the functionality of the domain.
It is essentially a question of nature. “Robust” means
that every representation must be easily discriminated.
It is a question of sort.

Natures and sorts are paired in indicators which
have type T_INDIC. Indicators are structures with a sort
field and a nature field. They must be computed by
operation MK_INDIC which results in an indicator value.
Fields must be selected with the selection operations
INDIC_SELECT_SORT and INDIC_SELECT_NAT. Figure 3.1
shows definitions of indicators for terms that can rep-
resent Prolog data types. Indicators INDIC_FUNC and
INDIC_GOAL have the same nature, N_TUPLE, but are
disambiguated by their sorts.

The mapping of application terms onto MALIv06
is also required to define operations similar to the se-
lection operations at the application level. Selection
operations are given the reference of an object and
return a pointer to one of its component cells. Fig-
ure 3.1 shows MPPM selection operations. Operation
TUPLE_SELECT_ITH selects a subterm of a tuple. It has
a supplementary parameter that is the index of the sub-
term.

3.1.1.2 MPPM make commands

The identifiers of MALIv06 make commands begin
with MK_ and end with an indication of the nature of the
term to be created. Make commands have parameters
according to the specifics of each nature. They all have
a parameter of type T_SORT indicating the sort of the
created term. Make commands for compound terms
have a parameter of type T_CELL # indicating the place
where to store the name of the created term.

For non-degenera.t.e2 compound terms, the make
command has a variable parameter of type T_ROBJ for
returning a reference of a new object that represents the
created term. The new object contains unfilled cells. Its

2Every compound term, except nullary.

reference must be used to complete the creation of the
term. Make commands for tuples have also a parameter
indicating the size of the term to be created.

MPPM make commands have identifiers beginning
with MAKE_. Their parameters are similar to those of
MALIv06 make commands, with specialised attributes
added.

One must design a representation for Prolog terms
and goals. We choose to copy goals and represent goal-
statements as MALIv06 terms. A call to a make com-
mand of the MPPM corresponds to each symbol of a
clause body, so that the sequential execution of the
whole set of command calls makes a copy of the clause
body and connects it to the tail of the goal-statement.
Figure 3.2 shows a clause and the sequence correspond-
ing to its body. Identifiers nrevS and appendsS stand for
the C static structures representing the Prolog predi-
cate constants. Array X is an array of references to ob-
jects, and array U is an array of cells containing names
of MALIv06 terms that represent Prolog unknowns.
Indexes in X and U are allocated by the Prolog to C
translator. The NGS and XG are registers of type T_CELL
and T_ROBJ.

Arguments are indented so that those with similar
types are aligned. To produce such a sequence is not
difficult: it corresponds to the prefix Polish form of the
clause body. The command name and the argument
in the first column indicates the category and value (if
any) of the corresponding symbol in the clause body.
The second column argument constructs the subterm
relation. The argument in the third column specifies
how terms with subterms are identified in the subterm
relation. The resulting term is designated by NGS. It
has one unfilled cell for storing the name of the tail
of the goal-statement. The unfilled cell is pointed to
by CONT_OF(XG).

When invoked, every MALIv06 make command cre-
ates the representation of a term and invents a direct
name of the term. The sort of the term and a pointer
to a cell where to store the name must be given as pa-
rameters. The nature is given via the command iden-
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nrev [AIL] RLA :-
nrev L RL,
append RL [A]l RLA.

MAKE_GODAL( gnrevS, &NGS, &XG6  ); % nrev(
MAKE_UNKN( &U(1], ARG_OF(XG,1) ) % L,
MAKE_UNK1( au(2], ARG_OF(XG,2) ); % RL ),

MAKE_GOAL( gappendS, CONT_OF(XG), &XG ) % append (
MAKE _UNKN( su(2], ARG_OF(XG,1) ); % RL,
MAKE_LIST( ARG_OF(XG,2), &x{1]1 ); % C

MAKE_UNKN( 2U[3], CAR_OF(X([1]) )H % A
MAKE_NIL( CDR_OF(X[1]) ); % 1,
MAKE_UNKN( gu(4], ARG_OF(XG,3) ); % RLA )
/* NGS = (tu SORT_GOAL 4 (at SORT_SYMB &nrevS)
(tu SORT_GOAL 5 (at SORT_SYMB &consS) CONT_OF(XG)e...
RLE@{(mcO SORT_UNK) (c2 SORT_LIST A (cO SORT_NIL)) RLA)
L RL)
x/
Figure 3.2: A clause, the translation of its body, and the produced term
typedef struct { char *ident; int arity; } symbT;
typedef struct { char *ident; int arity; void (*pred)(); } psymbT;
void MAKE_SYMB( value, where )
symbT *value; T_CELL *where;
{ ST_ATOM( where, SORT_SYMB, (T_INFO)value);
/* vhere = (at SORT_SYMB value) =/
}
void MAKE_UNK1( var, where )
T_CELL *var; T_CELL »*where;
{ MK_MCONSO( SORT_UNK, where );
ST_CELL( var, where );
/* var = vhere = (mcO SORT_UNK) =/
} i
void MAKE_UNKN( var, where )
T_CELL #*var; T_CELL #*where;
{ ST_CELL( where, var );
/* vhere = var */
}
void MAKE_FUNC( functor, vhere, T obj)
symbT *functor; T_CELL #*where; T_ROBJ #*obj;
{ MK_TUPLE( SORT_FUNC, where, *obj, 1+(functor->arity) );
MAKE_SYMB( functor, FUNCTOR_OF(*obj) );
/* where = (tu SORT_FUNC 1+functor->arity (at SORT_SYMB functor) Args...) */
} .
void MAKE_GOAL( pred, vhere, obj )
psymbT *pred; T_CELL *where; T_ROBJ »*obj;
{ MK_TUPLE( SORT_GOAL, where, *obj, 2+(pred->arity) );
MAKE_SYMB( (symbT#)pred, PRED_OF(*obj) );
/s " where = (tu SORT_GOAL 2+pred->arity (at SORT_SYMB pred) Cont Args...) =/
} .

Figure 3.3: Sample make commands
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tifier. Commands MK_TUPLE and MK_MCONSO, which cre-
ate nullary compound terms and mutable nullary com-
pound terms, follow this scheme. They are used in com-
mands MAKE_FUNC and MAKE_UNK1 for creating a Prolog
compound term and a Prolog unknown (see figure 3.3).

In a first approximation, an unknown is a pure be-
ing with no information associated, but it is subject
to substitution. So, the solution is to map it onto a
mutable nullary compound. When decorated by types,
constraints, or frozen goals, unknowns must be mapped
onto larger muterms.

Procedure MAKE_UNK1 requires further explanations.
It is expected that the identifier of an unknown has sev-
eral occurrences in a clause. The first time the identi-
fier of an unknown is encountered (here for copy), its
representation must be created and its name must be
remembered for the other occurrences. So, the name
is stored in a register which is selected in a pool. The
association between an identifier and a register is local
to a clause, and is chosen by the Prolog compiler.

When an identifier of an unknown is encountered
again, it remains to fetch the name of its representa-
tion in the associated register, and to plug it in the
place designated by the where argument (see command
MAKE_UNKN in figure 3.3).

Make commands creating non-degenerate terms
have a variable parameter for returning the reference
of the object that represents the created term. For in-
stance, command MK_CONS2 creates a binary compound
term and returns such a reference. It is up to the
user to fill in the empty fields of the object. Com-
mand MK_TUPLE creates a n-ary compound term. It
has a supplementary parameter indicating the size of
the term. Command MARE_FUNC (see figure 3.3} shows
how to create a Prolog functional term. It allocates
an object referenced by *obj, fills in one cell using ref-
erence *obj and selection operation FUNCTOR_OF, and
leaves (functor->arity) unfilled cells. Structures rep-
resenting function (resp. predicate) constant have type
symbT (resp. psymbT). Pointer functor should point to
such a structure.

A command MAKE_LIST, for creating Prolog lists,
can be defined similarly using command MK_CONS2.

In a way that is symmetrical to the make com-
mands, one can desigh MPPM read commands. A com-
plete set of read commands is displayed in the MALIv06
tutorial. Once the mapping and the make and read
commands are devised it is a good idea to make a set
of display procedures. It is chiefly useful for debugging
purposes.

3.1.2 Prolog control

The control of Prolog is mapped onto MALIv06 by
means of two continuations. A search continuation (also
called failure continuation or search-stack) implements
or-control. It is mapped onto the term-stack. A goal
continnation (also called success continuation or goal-
statement) implements and-control. It is mapped onto
terms (more precisely, on tuples).

The translation scheme amounts to associating a
function to every predicate. The function is executed
when a goal with the proper predicate constant appears
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at the beginning of the success continuation. It pro-
duces new continuations according to the goal and the
associated predicate. A motor iterates calls to these
functions until both continuations are empty. The con-
trol of Prolog is represented by the continuations. plus
the control of C. MPPM control commands only affect
the continuations. C control statements must be used
to complete the control operations.

Several registers are required to hold the context of
the MPPM. Figure 3.4 shows their declarations. The
general idea is that, when entering the predicate speci-
fied by register CP for solving the selected goal, the goal
arguments are in array A, the tail of the goal-statement
Is in register GS, the clause counter is in register CC,
the current choice-point is in register PCP, and regis-
ter WMC contains 0. Arrays U and X are used in the
scope of each clause to store unknowns and terms. The
association between textual occurrences (identifiers of
unknown and term notations) and indexes in these ar-
rays is chosen by the compiler. Registers NGS and XG
also serve in the scope of each clause for copying the
clause body. Registers XR and GCR serve in the proto-
cols for managing choice-points and calling the garbage
collector.

3.1.2.1 Or-control

The search-stack of Prolog is mapped onto the term-
stack of MALIv06. Choice-points are mapped onto lev-
els and the information contained in choice-points must
be saved in the root term.

A level is created and pushed on the term-stack by
two separate commands. Command MK_TOP_LEVEL cre-
ates a level, given a sort and a root term to be saved.
The new level is known internally as the ghost level.
Command DO_PUSH_TOP_LEVEL pushes the ghost level
on the term-stack. It has no parameter and stores the
name of the new top-level in the only public register
of MALIv06, TOP_LEVEL. As soon as the ghost level is
pushed on the stack, its root term is protected from
further substitution. It is as if a copy of the term were
pushed on the stack. o

Figure 3.5 shows the creation and updating of
choice-points. Command TRY is used before the first
clause of a non-deterministic predicate is entered. Its
purpose is to save the current goal-statement and the
updated current clause number on the search-stack. It
must be followed by the C code corresponding to the
first clause. :

There is only one root name in a level, whereas sev-
eral registers must be saved (current clause number,
goal arguments and tail of goal-statement). So, a goal is
created with the arguments and the tail goal-statement,
and a root is created with the goal and the clause num-
ber. The root is implemented as a binary compound.
Figure 3.5 shows operations applying on roots.

A term is considered saved-on the term-stack until
its level is popped. Command DO_POP_TOP_LEVEL pops
the top level from the term-stack, sets the ghost level
to be the popped level, and cancels the muterm substi-
tutions that are more recent than the popped level.

Command FAIL_TRY (figure 3.6) shows how to han-
dle a failure in a clause that is not the last clause of
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T_CELL GCR, /* The root for garbage collection
GS, /* The tail of the goal-statement
NGS, /* The new tail
PCP, /* The parent choice-point
A[many_cells], Ulmany_cells]; /* Arguments and unknowns

T_ROBJ XR, /* The root of the top level
XG, X[many_robjs]; /* A goal and terms

int cc, /+ The current clause
WMC; /* The write mode counter

psymbT *CP; /* The current predicate

Figure 3.4: The MPPM registersl

*/
./
*/
*/
*/
*/
*/
*/
»/
*/

#define SORT_ROOT MK_SORT( 1 )

#define INDIC_ROOT MK_INDIC( N_CONS2, SORT_ROQGT )
#define SORT_CHPT MK_SORT( 2 )

#define INDIC_CHPT MK_INDIC( N_LEVEL, SORT_CHPT )
#define CLAUSE_OF( objroot ) CONS_SELECT_1ST( objroot )
#define GDAL_OF( objroot ) CONS_SELECT_2KD( objroot )
void TRY() .

{ T_CELL root; T_ROBJ objgoal; int arg;
MAKE_ROOT( &root, &XR );
CC = 2;
MAKE_INT( CC, CLAUSE_OF(XR) );
MAKE_GOAL( CP, GOAL_OF(XR), &objgoal );
for ( arg=1; arg<=(CP->arity); arg++ ) {

ST_CELL( ARG_OF(objgoal,arg), &Alarg] );

}
ST_CELL( CONT_OF (objgoal), &GS );
MK_TOP_LEVEL( SORT_CHPT, &rocot );
DO_PUSH_TOP_LEVEL(Q) ;

}

/* After TRY, register TOP_LEVEL designates

(le SORT_CHPT
(c2 SORT_ROQOT
(at SORT_INT CC)
(tu SORT_GOAL 2+CP->arity
) (at SORT_SYMB CP) A[1] ... A[CP->arity] GS)
old-top-level))
*/

void RETRY()

{ CC++;
MAKE_INT( CC, CLAUSE_OF(XR) );
DO_PUSH_TOP_LEVEL() ;

}

void TRUST(Q)
{1}

Figure 3.5: Choice-points creation and updating
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void FAIL_TRY()
{ T_ROBJ dummy;

DO_POP_TOP_LEVEL( dummy );
}

void FAIL_TRUST()
{ T_ROBJ objlevel, objgoal; int arg;
DO_POP_TOP_LEVEL( objlevel );

READ_ROOT( LEVEL_SELECT_ROOT(objlevel), &XR );

READ_INT( &CC, CLAUSE_OF(XR) );
READ_GOAL( GOAL_OF(XR), 2objgoal );

READ_SYMB( &(symbT#)CP, PRED_OF (objgoal) };

for ( arg=1; arg<=(CP->arity); arg++ ) {

ST_CELL( #A[arg], ARG_OF(objgoal,arg) );

}
ST_CELL( &GS, CONT_OF(objgoal) );
ST_CELL( &PCP, &TOP_LEVEL );

Figure 3.6: Backtracking

a predicate. Since the popped level becomes the ghost
level, it is ready to be pushed again. There is no need
to reinstall registers because they are not supposed to
have changed. This is often called shallow backtracking.
Command FAIL_TRY can be followed by a return state-
ment to the motor, or by a branching statement to the
next clause.

Command FAIL_TRY and other or-control com-
mands implement a sequential search for unifiable
clause heads. A common improvement in Prolog imple-
mentation is to use goal terms to compute keys giving
a direct access to selected subsets of clauses. This is
called clause indezing.

Command RETRY (see figure 3.5) shows how a
choice-point popped off the search-stack by FAIL_TRY
or FAIL_TRUST (see figure 3.6) is updated and resaved.
Command RETRY must be used before executing every
clause that is neither the first nor the last in a predicate.
It must be followed by the C code for the clause.

To push a level exactly as it has been popped would
cause a loop. A choice-point differs from the previous
one by its clause number only. So, the root of the level
is updated instead of creating a new level. Command
MAKE_INT is used to have a side-effect on the root term.
It is a rare instance in which it is justifiable to modify
a MALIv06 term. A common experience in Prolog is
that choice-point creation is costly; it is the same in
MALIv06. So, it is crucial to avoid choice-point cre-
ation. In the MPPM, choice-points are made of a level,
a root, and a goal.

When the last clause of a predicate is entered (see
command TRUST in figure 3.5), there is no need to create
a choice-point. To delete the top choice-point amounts
to forgetting it, because there is no explicit destruction
of terms. Anyway, it is still advisable to define and use
this empty command because it shares with commands
TRY and RETRY the property of being the first command
of a clause. In a more sophisticated design, or for trac-
ing the program, it might be non-empty.

Command FAIL_TRUST (figure 3.6) shows the more
complicated case of a failure in the last clause of a pred-
icate. One says that the predicate itself fails. This
causes a deep backtracking, and all registers must be
reinstalled according to the value of the popped choice-
point. As above, before entering a predicate, command
FAIL_TRUST saves register TOP_LEVEL in register PCP. It
must be followed by a return statement to the motor.

3.1.2.2 And-control

And-control aims at selecting the first goal of the
top goal-statement, for executing the function associ-
ated to its predicate constant, and so on. For efficiency
reasons, the first goal (the head of the goal-statement)
is not represented as the goals in the remainder of the
goal-statement. A pointer to its predicate descriptor
is stored in register CP and its arguments are stored in
array A. The other goals (the tail) are represented in a
term whose name is stored in register GS.

One of the purposes of the function associated to a
predicate constant is to construct a new goal-statement.
It is usually a slight variant of the old one, where the
selected goal is replaced by the copy of a clause body. In
the case of deep backtracking, the new goal-statement
is an old saved goal-statement.

Copies of clause bodies are created by MPPM make
commands. Their names are supposed to be stored
in register NGS, while references to objects represent-
ing copies of goals are stored in register XG. There is
only one register XG because goals are copied one after
the other.

If there is only one goal in a clause body, the new
goal replaces the former first goal and register GS need
not be updated. It is enough to initialise registers CC
and CP. Command JUMP_GOAL (see figure 3.7) imple-
ments this behaviour. The arguments are supposed to
be properly installed using Prolog make commands and
unification commands. So, the control of leftmost calls



3.1. THE MALIV06 PEDAGOGICAL PROLOG MACHINE: MPPM

void JUMP_GOAL( pred )
psymbT *pred;
{ CP = pred;
cC = 1;
CALL_GCQ);
ST_CELL( &PCP, &TOP_LEVEL );
}
void LINK_AND_JUMP_GOAL( pred )
psymbT »pred;
{ . ST_CELL( CONT_OF(XG), &GS );
ST_CELL( &GS, &NGS );
JUMP_GOAL( pred );
}

void CONTINUE()

{ T_ROBJ objgoal; int arg;
CC = 1;
READ_GOAL( &GS, &objgoal );
READ_SYMB( &(symbT*)CP, PRED_OF(objgoal) );
for ( arg=1; arg <= (CP->arity); arg++ ) {

ST_CELL( &Alarg], ARG_OF(objgoal,arg) );

}
ST_CELL( &GS, CONT_OF(objgoal) );
CALL_GCQ);
ST_CELL( &PCP, &TOP_LEVEL );

Figure 3.7: Management of the goal-statement

capsule :-
query,
sSuccess.
capsule :-
exit.

void motor()
{ MAKE_NIL( &GS );
CP = E&capsuleS;
CC = 1;
WMC = 0;
for (;;) (CP->pred)();

Figure 3.8: The capsule predicate and the Prolog motor
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GS =

out@(tu SORT_GOAL 3 (at SORT_SYMB &outS)

0ega@(tu SORT_FUNC 2 (at SORT_SYMB &gS) (at SORT_SYMB &aS))
success@(tu SORT_GOAL 2 (at SORT_SYMB &successS) (cO SORT_NIL)))

A[1] = capsule2€(le SORT_CHPT
(c2 SORT_ROOT (at SORT_INT 2)
(tu SORT_GOAL 2 (at SORT_SYMB &capsuleS) (cO SORT_NIL))
)
PCP = in2@(le SORT_CHPT
(c2 SORT_ROOT (at SORT_INT 2)
(tu SORT_GOAL 3 (at SORT_SYMB &inS) I@(mcO SORT_UNK)
(tu SORT_GOAL 4 (at SORT_SYMB &transS) I 02(mcO SORT_UNK)
(tu SORT_GOAL 3 (at SORT_SYMB &cutS) capsule2
out®(tu SORT_GOAL 3 (at SORT_SYMB &outS) 0@(mcO SORT_UNK) success)))))
capsule2)
cC =1 WMC = 0 CP = &cut$S
Figure 3.9: A control state
GS = success Af1] = ga PCP = capsule2 cC =1 WMC = 0 CP = &outS

Figure 3.10: Next control state

does not consume any terms.

After a clause body is created, and if it has more
than one goal, register GS must be updated for inserting
the new goals into the goal-statement. The reference of
the rightmost goal is in XG. It has one cell left unfilled
for storing its continuation. It is used to hook the tail
of the goal-statement. Command LINK_AND_JUMP_GOAL
(see figure 3.7) shows how the copy of the clause body
is appended before the goal-statement. Commands
JUMP_GOAL and LINK_AND_JUMP_GOAL can be followed
by a return statement to the motor, or by a branching
statement to the beginning of the procedure body.

When a clause body is empty —i.e. the clause is an
assertion—, things are different because the next goal
must be fetched in the tail of the goal-statement held in
register GS (see command CONTINUE in figure 3.7). The
first goal is read, and loaded in the registers. Register
PCP is installed. Command CONTINUE must be followed
by a return statement to the motor.

Throughout the control section, MALIv06’s terms
are read without checking for direct names (e.g. above,
or READ_ROOT and READ_GOALin command FAIL_TRUST).
In fact, the designer of the MPPM knows that terms
representing and-control never incur term replacement.
This is not a general law. It may become false in a more
sophisticated Prolog machine. Levels, which represent
or-control, are subject to term assignment.

The reader may have noted that MPPM control
commands never test if the search-stack or the goal-
statement is empty. It is easy to obtain that they are
never empty. Figure 3.8 shows a predicate that en-
capsulates the execution of every query. It must be
translated in the same way as other predicates. So do-
ing. the goal-statement always contains at least the goal
success, and there is always at least a choice-point for

the second clause of predicate capsule.

Predicate success always fails. It can print un-
knowns of the query and prompt the Prolog user for
alternative solutions. Predicate exit stops the search.
It can execute a postlude, or do an escape to a suitable
environment. The actual query must be compiled as a
clause of predicate query.

The capsule predicate can be much more sophisti-
cated. In AProlog for instance, implication goals may
be used to set environmental parameters of the execu-
tion.

The Prolog system must first execute a prelude,
and then call the motor. To start the motor, a goal-
statement is created, and the goal capsule is installed
in the registers. The goal-statement must be initialised
in GS, though it is never read, because no uncomplete
term should either be saved on the term-stack or passed
to the garbage collector. It is given the dummy value
nil. The first step in the loop initialises the two contin-
uations, and then the actual query is executed. It is the
quintessence of an interpreter, but has almost nothing
to do.

Figures 3.9 and 3.10 sum-up the control section.
Given program

in (f a).
in (f b).

trans (f X) (g X).

out X :-

query :-—
in I,
trans I O,
/*1%/ 1,
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out 0.

figure 3.9 shows the control state as it is when label
/*1%/ is reached. Label 0 occurs in GS and PCP accom-
panied with different terms. Terms in GS differ by a
substitution from terms with same labels in PCP, but
they share the same representation anyway. Note that
the (implicit) argument of goal ! is instantiated to a
substack (labelled capsule2) of the search-stack. After
goal ! is executed, the state is as shown by figure 3.10.

3.1.3 Prolog unification

The Prolog unification problem is to decide whether
a goal term (selected in a goal-statement) and a head
term (coming from the head of a clause selected in the
program) unify, and, if it is the case, to apply the solu-
tion substitution to the goal-statement. Head terms are
known as soon as a clause exists, and they are the same
(up to a renaming of unknowns) for every instance of
a unification problem with that clause. Goal terms are
different in every problem instance.

Unification (either Prolog’s of AProlog’s) does not
exist as such in MALIv06. It happens that, from a very
operational point of view, unification is a mixture of
reading, making, and substituting. Identifiers of unifi-
cation commands begin with UNIF_.

Unification commands return a boolean value (in C,
an integer). The value is true (different from 0) if the
head and goal terms are compatible, and false (0) if
not. The goal term is given explicitly as an argument,
while the head is given implicitly as the unification com-
mand itself. Every unification command is specialised
for one kind of Prolog term. Unification commands are
intended to be aggregated in a conjunctive expression
relating all the components of the head atom. Accord-
ing to the specification of C, the conjunction is evalu-
ated left-to-right and it is exited as soon as an atomic
expression evaluates to false.

Figure 3.11 shows a clause and the sequence cor-
responding to its head. Names of goal arguments are
supposed to be stored in array A. Again, command ar-
guments are indented to show their different roles. The
unification sequence can be improved allocating un-
knowns X, Y and Z in array A instead of array U, but
this is another story. The command identifiers indicate
the kind of the head terms. The first column param-
eter (according to the indented layout) represents the
binding of unknowns identified in the head terms. The
second and third column parameters describe the sub-
term relation in the goal terms.

As it is explained above, unification commands are
planned to be executed according to the head of a
clause. For a given kind of head term, a unification
command implements the suitable specialisation of the
first-order unification algorithm. It shows the known
part of a unification problem. The hidden part is the
goal term. So, a unification command is specialised for
a head term, but must allow for any goal term.

If the goal term is as instantiated as the head term,
unification reads and compares. If the goal term is more
instantiated than the head term, unification binds head
unknowns to goal terms. These two behaviours form
the read mode. If the goal term is less instantiated than
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the head term, unification must bind goal unknowns to
head terms. However, goal unknowns are represented
as MALIv06 terms, whereas head terms are represented
by unification commands. So, one must construct a
MALIv06 representation for the head terms. This is
the write mode.

Fortunately, the two modes involve isomorphic
data-flow. So, the same command with the same pa-
rameters can operate in the two modes.

Unification starts in read mode and switches to
write mode as soon as it binds a goal unknown. The
latency of the write mode is related to term structure.
Unification switches back to read mode when the cre-
ation of a head term is completed. The MPPM controls
mode switching via a write mode counter (WMC). It con-
tains the number of unfilled cells in the created term.

Command UNIF_LIST (see figure 3.12) is the unifica-
tion command for a Prolog list. Every time UNIF_LIST
1s executed in write mode, it creates a list constructor
instead of reading one, it fills in one cell and produces
two new unfilled cells. This is transposed in the incre-
menting of WMC.

It is essential that read and make commands are
symmetrical so that they share the same parameter
passing. Note that the program code for write mode
is used when the command is entered in write mode
and when it is entered in read mode but switches the
write mode on. That is why the write mode code is not
in the “else” branch of the “if” statement.

A successful unification may produce a term sub-
stitution, which is implemented with MALIv06 as a
muterm substitution. Command SU_MUT substitutes a
term, which must be specified later, to the muterm that
is specified by its first argument. It returns in its second
argument the reference of the object representing the
muterm. The value field of the muterm must then be
selected with the help of operation MUT_SELECT_VALUE
to fill in the name of the binding value. The muterm is
substituted though its binding value is not yet created.

After the creation of a muterm, its value field does
not count as an unfilled cell. It is the substitution (or
assignment) command that makes it an unfilled cell.
When entering write mode, the unique unfilled cell is
the value field of the muterm. That is why register WMC
is initialised to 1.

Figure 3.8 shows that the motor initialises the write
mode counter. Though commands TRY, RETRY and
TRUST are always executed before unification, they need
not reinitialise WMC because it is always 0 when unifica-
tion succeeds or fails. Indeed,

1. unification commands cannot fail in write mode
(i.e. when WMC is not 0), and

2. a properly generated unification sequence cannot
end in write mode®.

So, register WMC is always 0 when unification is exited.

31t is always a good idea to design a debug mode for ex-
ecuting the commands of the MPPM or any other interme-
diate machine. In debug mode, all sorts of checking can be
performed: e.g. preconditions of the commands and invari-
ants of the execution scheme. It helps debugging the im-
plementation of the MPPM, and, more importantly, it helps
debugging the code generation program.
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append [EIX] Y (E|Z] :-
append X Y Z .

( UNIF_LIST( &A[1], &xf1] ) N
[ 23 UNIF_UNK1( &U[4], CAR_OF( x{1] ) ) % El
&2 UNIF_UNK1( &ul1], CDR_OF( X[1] ) ) % x]
&k UNIF_UNKi( &U[2], gA[2] ) % Y
&8 UNIF_LIST( 2A(3], &x(11 ) % L
£ UNIF_UNKN( &U[4], CAR_OF( X[1] ) ) % EJ
13 UNIF_UNK1( auU(3], CDR_OF( X[1] ) )) % Z]
Figure 3.11: A clause and the translation of its head
int /* bool */ UNIF_LIST( vhere, obj )
T_CELL »where; T_ROBJ *obj;
{ if ( WMC ==0 ) { /* read mode. %/
RD_DIRECT( where );
switch ( where->indic ) {
case INDIC_LIST :
READ_LIST( where, obj );
return 1;
case INDIC_UNK :
{ T_ROBJ objunk;
SU_MUT( where, objunk );
vhere = MUT_SELECT_VALUE( objunk );
WMC = 1;
} /* enter write mode. */
break;
default : return 0;
}
} /* write mode. */
MAKE_LIST( where, obj );
WMC += 2-1;
return 1{;
}
int /* bool */ UNIF_UNK1( var, vhere )
T_CELL »var; T_CELL »*vwhere;
{ if ( WMC == 0 ) { /* read mode. */
ST_CELL( var, vhere );
}else { /* write mode. */
MAKE_UNK1( var, where );
WMC += 0-1;
}
return 1;
}
int /#* bool */ UNIF_UNKN( var, vhere )
T_CELL #var; T_CELL *vhere;
{ if ( WMC == 0 ) { /* read mode. */
return UNIFY( where, var );
}else { /* write mode. */
ST_CELL( where, var );
WMC += 0-1;
return 1;
}
}

Figure 3.12: Sample unification commands
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Unification commands for other kinds of terms fol-
low the same pattern. Though atoms do not involve a
real term creation, their unification command is not a
much simpler instance of the pattern because it must
cope for the case in which the write mode is switched
on in a previous command. For instance, command
UNIF_INT never produces any unfilled cell and always
consumes one; so, it decrements register WMC. When
write mode is entered in the command, it does not last
after the command invocation. The value of an atom
must be cast properly before being compared. Other-
wise, C might use the wrong instance of operator “==".
Comparing floats is not the same as comparing pointers
or integers.

Unification of head unknowns is again required to
distinguish among first occurrences of identifiers of un-
knowns and others. For its first occurrence (see com-
mand UNIF_UNK1 in figure 3.12), a head unknown can-
not have been substituted. So, unification amounts to
the assignment of the name of the goal term to a reg-
ister in read mode, and to a creation of an unknown in
write mode. In read mode, the unknown only serves as
a coreference and is never created. The name pointed
to by parameter where need not be made direct, be-
cause its indicator is not tested and it is not passed to
commands requiring direct names.

For other occurrences (see command UNIF_UNKN in
figure 3.12), neither the goal term nor the head term
are known. Write mode amounts to the assignment of
the head term to an unfilled cell of the goal term. In
read mode, the complete unification procedure must be
used.

3.2 Representation of terms
in AProlog

To design a representation for terms in the context of
AProlog is a new problem because the requirements of
logic programming (Prolog technology), of the simply
typed A-calculus, and of uniform proofs of hereditary
Harrop formulas must be met at the same time.

Prolog technology requires the representation of un-
knowns and substitutions. It also requires that substi-
tutions be reversible* because the search for a proof is
done by a depth-first traversal of a search-tree. '

The technology of the simply typed A-calculus re-
quires the representation of abstraction and application,
the representation of types, and the capability to com-
pute at least long head-normal forms because the unifi-
cation procedure needs them. To meet the first require-
ment, long head-normalisation should be reversible too.

Proofs of hereditary Harrop formulas are required to
represent universally quantified variables and to check
the correction of signatures for a sound implementation
of deduction rule Vg. Hereditary Harrop formulas also
require the handling of implied clauses but it has little
to do with the representation of terms.

4 Strictly speaking, it is the operation that maps a substi-
tution on the representation of some term which is reversible,
not the substitution itself.

It the same for every other occurrence of reversible.

3.2.1 Typing

One of the differences between Standard Prolog and
AProlog is that the terms of AProlog must be typed for
A-unification to be well defined.

3.2.1.1 Well-typed programs

The problem of what the typing of AProlog should be
is not completely solved. We tend to try extrapolat-
ing from Mycroft/O’Keefe type system [56] (see also
Typed Prolog [41]) to AProlog. The two basic ideas are
that every clause should be well-typed in an ML-like
fashion

Types of different occurrences of a con-
stant are independent instances of its type
scheme,

and that the typing of predicate should obey the defi-
nitional genericity principle

Types of body occurrences of a predicate
constant are independent instances of its
type scheme, whereas types of head oc-
currences are only renaming of the type
scheme.

For the first idea, checking and inferring types are both
decidable, as in ML [55], but for the second idea, only
type checking is decidable. With the definitional gener-
icity principle, type inference leads to a non-uniform
semi-unification problem which has been shown to be
undecidable by Kfoury, Tiuryn and Urzyczyn [39]°.
The reason for sticking to definitional genericity is
that it is the most natural when predicates are seen as
definitions and type schemes as abstractions of the defi-
nitions. A sound and easy modular analysis of programs
also requires definitional genericity. We want to be able
to type-check a module using the type schemes of the
modules it imports but not the modules themselves.

Example 3.2.1
Assume predicale constant append is declared as

type append
A->B->C->o.

in some module. The standard definition of predicate
append (see the “running ezample” in the introduction)
violates the definitional genericity principle because oc-
currences of constant append in the heads have types
that are strict instances of the type scheme. Using this
type scheme is not enough for preventing an incorrect
usage such as (append {1 2 X).

Example 3.2.2
Assume predicate constant append is declared as

type append
(list A) -> (list A) -> (list A) -> o.

and that clause

append "Lambda"™ "Prolog" "LambdaProlog".

SIn our implementation, types of constants (predicative
or not) are only checked, and types of unknowns, universal
variables and A-variables are inferred.
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is added to the standard definition of predicate append.
It violates the definitional genericity principle because
the type of constant append in the new clause®,

(list int) -> (list int) -> (list int) -> o
ts a strict instance of the type scheme.

An expected outcome of a type theory for a pro-
gramming language is a semantic soundnessresult that
states that “well-typed programs cannot go wrong”. In
the context of AProlog, “going wrong” means “trying
to solve il-typed unification problems”. The interest
of such a result is to give formal grounds for not rep-
resenting types at run-time. However, in AProlog, it is
necessary to represent types at run-time for unification,
and not all the conditions are met for having this kind
of semantic soundness result.

3.2.1.2 Well-typed programs may
“go wrong”
Type variables stand for arbitrary types. As for es-

sentially existential variable, a type instance is never
chosen arbitrarily. It is represented by a type unknoun
which gets a value through type unificatson. In A_ with
type variables, type unification is merely first-order uni-
fication.

The type declaration languages of ML or
Typed Prolog share a common restriction that ensures
the type preserving property [27):

Every type variable in a type scheme should
appear in the result type (the type to the
right of the rightmost ->).

Example 3.2.3

The declarations for constants cons and nil (see sec-
tion 1.1.1) can be written in ML as

datatype ’a list = nil | cons of ’a * ’a list

In ML, type variables (“’a” in example 3.2.3) in the
right side of “=” must occur in the left side. This en-
sures that well-typed programs cannot go wrong. This
restriction makes it always possible to derive the type
of subterms from the type of a term. AProlog lacks this
restriction. This makes it possible that a well-typed
program may “go wrong” if no dynamic type-checking
is done.

In AProlog, this restriction could be imposed by say-
ing that every type variable in a type declaration must
occur in the result type. As for the interest of dropping
the restriction, it may be a way for handling dynamic
types (2] and we show in the following that it costs noth-
ing for term constructors that obey the restriction.

Example 3.2.4
The following program goes wrong if no dynamic check-
ing is done.

81n \Prolog as in Standard Prolog, quoted strings denote
lists of integers that can be interpreted as character codes.
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kind dummy
type.
type eq
A->A->o0.
type forget
A -> dummy.
query :-
eq (forget 1) (forget x\x).

It i3 perfectly well-typed, but it goes wrong because pro-
cedure SIMPL eventually produces unification problem
< 1, x\x >, which is ill-typed.

All this means that types (or, at least, parts of
them) must be kept at run-time so that type unifia-
bility can be checked before term unifiability. Remem-
ber that the A-unification problem is only defined for
equally typed terms. In fact, for solving this problem
it is only necessary to represent the types which are in-
stances of the type variables that do not appear in the
result type of a declaration. We call these types the
forgotten types.

Example 3.2.5
Constant forget is implemented as if it were declared’

type $forget
’PI’ A\(A -> dummy).

So, term (forget 1) is imple-
mented as ($forget int 1), and term (forget x\x)
is implemented as ($forget (A->A) x\x) for some A.

If the unification procedure always checks type
unifiability before trying to unify the subterms of a
term, then type conflicts are always caught before an
ill-typed unification problem is searched.

Note that, unhke Typed Prolog, there is no special
syntax for declaring predicate constants. They are only
distinguishable by their result type, o. So, every pred-
icate constant forgets every type variable in its type
because its result type contains no type variable.

It can be shown that if the predicate obeys the def-
initional genericity principle, unification of these for-
gotten types always succeeds; type unification is only
required for conveying types along the computation. In
fact, if the type preserving restriction were imposed on
functional constants only, well-typed programs could
not go wrong [56, 27, 41).

To sum up, forgotten types of both function and
predicate constants are represented at run-time. Type
preserving constants (such as [] and ’.”) are imple-
mented with no extra costs.

Note that when several instances of a forgotten type
can be proven to be the same, then only one needs to
be represented.

Example 3.2.6
In the program of erample 3.2.1, it can be proven that
the instances of type variable A for both occurrences of

7This is not plain AProlog syntax. It is a wild extension
towards more polymorphic types: here second-order types.
Symbol ’PI’ stands for the product type quantifier [1. Here,
and in other occurrences, a $ sign prefixes internally defined
symbols.
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constant append in the second clause are the same. So,
they share the same representation. Note also that the
tnternal constant implementing append is as if declared
by

type $append

'PI? A\
( (1list &) >
(list A) ->

(list A) -> o

3.2.1.3 Projection is controlled by types

Unknowns must carry their types

As can be seen in figure 1.2, the projection rule
specifies after the type of the flexible term which of its
arguments may be selected for producing a substitu-
tion. This means that the type of all unknowns must
be available at run-time. It can be either reconstructed
or represented. We choose to have it represented.

It is still an open problem for us to see if an unknown
can be compiled in a kind of “projector” according to
its type. The projector of an unknown would select
directly the eligible arguments for projection. Not every
unknown is subject to this kind of compilation. Many
of them are introduced at run-time by the imitation
and projection operations of MATCH. They seem to be
out of the scope of a compile-time analysis, though they
may obey some pattern, anyway.

Types of constants must be computable

Procedure MATCH introduces
(the Hi’s in figure 1.2) that must be typed properly.
They all have types vy1 — ... — vp — p where the v;’s
are the types of the arguments of the flexible head,
and p depends on the rule.

In the case of projection (see notation in the con-
dition controlling projection: 1.2), the p of every new
unknown H; is 7.

In the case of imitation, the p of every new un-
known H; can be inferred from the type of the rigid
head. It is the type of the corresponding argument t;.
It remains to be able to infer the types of all rigid heads.

However, it is not necessary to have the rigid head
carry its whole type. There are three kinds of rigid
heads: A-variables, function constants, and universal
variables {they are introduced for solving universally
quantified goals).

new unknowns

1. X-variables cannot be imitated.

2. Every universal variable has its whole type at-
tached to it (see section 3.2.3.2).

3. We observe that the type scheme of a constant,
plus the forgotten types attached to it, plus the
result type give enough information for recon-
structing the type of the constant. During unifi-
cation, the resuit type can be found in the type
of the flexible head.

A type reconstruction function is generated at
compile-time from every type scheme declaration. Note
that the result type cannot be reconstructed from the
forgotten types because it may contain instances of non-
forgotten type variables (type variables occurring in the
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result type of the type scheme). So, the result type is
passed to the type reconstruction function as a param-
eter.

Let U be a function returning the most general
unifier of two types m_and 72. To every constant
with type scheme & = [I@.m.(0" ¢ )®, whose result type
is p?, we associate the type reconstruction function
Xpmr.(U(p, 7)(0" dm)}). The type reconstruction func-
tion must be applied to the actual forgotten types of
some occurrence of the constant and to the result type
of the matching unknown. Type checking makes it sure
that U(p, ) defines a substitution.

Example 3.2.7
Let the followsng declaration

kind t

type -> type.
type £

A ->B -> (t B).

Type variable A is forgotten, hence the declaration is
read as

type $f
'PI’ A\N(R -> B -> (t B)).
The type reconstruction function is
Aar.U((t B),7)(a -> B -> (¢ B))
With these declarations, unification problem

<(F 1),(f 1 [1])> is actually represented as

< (F:(int -> (¢ (list int))) 1)

, (8f int 1 [1D)
> .

Imitation yields substitution
[x\($f int (H1 x) (H2 x)) / F]

which introduces new unknowns Hl and H2. For typ-
ing them, the type reconstruction function is called
with types int and (t (list int)) as parameters.
It unifies (¢t (list int)) and (t B), producing sub-
stitutson [(1ist int) / B], and applies the substi-
tution to the type scheme in which the forgotten
type variable ts replaced by int. So, the ac-
tual type of this occurrence of constant f is re-
consgtructed: int -> (list int) -> (¢ (list int))
Then, unknowns H1 and H2 are given types int ~> int
and int -> (list int)

3.2.1.4 Some terms
n-expandable

are dynamically

Type variables add polymorphism to simple type the-
ory. However, they cause the introduction of type un-
knowns, which do not mix friendly with normal form
representations. Indeed, substituting a type unknown
can change the arity of terms. Long head-normalisation
of even rigid-terms is no more definitive, and dynamic
n-expansion may be necessary.

8 As suggested above, forgotten types are explicitly quan-
tified.

9By definition, it cannot depend on forgotten types.
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Example 3.2.8

The term Ar.z = idv has type V — V, where V is
a type unknown, and it is in long head-normal form.
If v — v s substituted to V, then the term must
be n-ezpanded to Azy.(z y) =idy_,, whose type is
(y=7—-v—-7

Another lack of restriction in the language of
type declarations prevents n-expanding every term at
compile-time. It is possible to have a type variable as
result type.

Example 3.2.9
Declaration

type identity
A -> A,

is legal. However, an occurrence of constant identity
cannot always be n-expanded at compile-time because
(identity 1) has type int and (identity cons) has
type (t -> (list t) -> (list t)) for some type t.

When an unknown with unknown result type is used
for projection, its arity (the number of arrows) is frozen
for ensuring that no other projection is possible. This
case is treated similarly by Nadathur [57] and Nip-
kow [60]. This is not really satisfactory and deserves
further studies. A better solution (from a logical point
of view) is to suspend unification.

3.2.1.5 The types that are actually repre-
sented

Only types of unknowns and universal constant, and
forgotten types of constants are represented at run time.
Types of constants are translated into type reconstruc-
tion functions. '

A declaration of a type constructor is translated
into the declaration and initialisation of a C structure
for storing its external representation and its arity. The
type of this C structure is given in figure 3.13.

Example 3.2.10
The C structure corresponding to type constructor 1ist
(declared in example 1.1.10) s

ksymbT PM_k_list = { "list", 1 };

The representation of a type as a term of MALIv06
depends on what kind of type it is. Type constructions,
arrows and type unknowns are respectively represented
by tuples and atoms, binary compounds and nullary
compounds. A type built with a type constructor of
arity n (e.g. list) is represented as

(tu SORT_TYPE_APPL 14N
(at SORT_TYPE_SYMB pointer)
Type1l TypeN)

A type built with a type constructor of arity 0 {e.g. o)
is represented as

(at SORT_TYPE_SYMB pointer)

In both cases, pointer points to the C structure corre-
sponding to the type constructor. A type built with an
arrow is represented as
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(c2 SORT_TYPE_ARROW Typel Type2)
A type unknown is represented as

(mcO SORT_TYPE_UNK)

Example 3.2.11
Type (A -> A) -> (list int) is represented as

(c2 SORT_TYPE_ARROW
(c2 SORT_TYPE_ARROW
a®@(mc0 SORT_TYPE_UKK)
a)
(tu SORT_TYPE_APPL 2
(at SORT_TYPE_SYMB &PM_k_list)
(at SORT_TYPE_SYMB &PM_k_int)))

See section 2.1.1.2 for notation a@(mc0 ...).

Note again (see example 3.2.6 in section 3.2.1.2),
that when two or more of these types can be proven
equal at compile-time, they need only be represented
once. In recursive predicates for instance, argument
types need only be represented once.

The types that are represented at run-time are in-
volved in unification to different extents.

e Unification of types forgotten by predicate con-
stants must be done before unifying the argu-
ments and always succeeds because of definitional
genericity.

o Unification of types forgotten by function con-
stants must also be done before unifying the sub-
types, but it may fail.

¢ Unification of types of unknowns need never be
done. When an unknown enters a unification
problem then it is certain that its type is the
type of the other term of the problem. The type
checking and unification have been done previ-
ously while unifying forgotten types of function
constants.

e Unification of result types of unknowns with re-
sult types of type schemes is done in type recon-
struction functions.

3.2.2 Representation of terms for
Prolog

Two techniques are used for satisfying the traditional
logic programming requirements: structure-sharingand
copy. The former represents a term by the closure of
a source term under an environment that binds its un-
knowns. The latter copies terms in order to have in-
dependent instances of them. Since our storage tool,
MALI, makes it easier to do copy than to share struc-
ture, we choose copy.

With copy, the unit of usefulness’® is the same as
the unit of allocation; it is the term constructor. With
structure-sharing, the unit of usefulness is smaller than
the unit of allocation.
tially useless though it is not generally partially de-
allocatable because the useless part may be buried

An environment can be par-

0that to which predicate “is useful” applies.
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typedef struct {
char *ident;
int arity;
} XxsymdbT;

/* Type constant: #/
/* its external representation */
/* its arity =/ ’

Figure 3.13: Representation of type constructors

in the middle of the environment. The environment
trimming'! operation of the WAM [4] is an example of
a partial de-allocation but it needs to know the goal-
selection strategy. As soon as the goal-selection strat-
egy is unpredictable, (constraints, delayed goals, ...},
a lesser part of the environment is subject to trimming.
This leads to memory leaks. .

Note that either technique implies sharing of dy-
namic structures because multiple occurrences of an
unknown are represented by multiple references to a
single object in which substitutions are noted. Then
the binding values are shared by all occurrences of the
unknown. This sharing is much more fundamental than
the sharing of structures.

3.2.3 Representation of terms for
uniform proofs of hereditary
Harrop formulas

Hereditary Harrop formulas introduce new operational
features. Universal variables and A-variables must be
scoped, the lifetime of universal variables is bounded
by some subproofs, clauses with still unknown terms in
them might be added to the program, and these clauses
also have a lifetime bounded by a subproof.

Many ways are possible for dealing with these fea-
tures. Our preferred way makes implication share the
term representation technology, and existential quan-
tification a trivial issue. All the burden relies on uni-
versal quantification and on creation and substitution
of regular unknowns.

3.2.3.1 The implementation of universal
variables

The only source for universal variables is deduction
rule Vg which is used for solving universal quantifica-
tions in goals. The side-condition

¢ is a symbol that appears neither in P nor
inG
is the key of a correct implementation.

Qur current implementation follows literally this de-
duction rule. Its side-condition can be rephrased as

111f the goal-selection strategy is known, and if the occur-
rences of an unknown satisfy some conditions, it is possible
to decide when its entry in an environment is certainly use-
less.

These unknowns are numbered such that they occupy an
end of the environment when the entry becomes useless.
Then the environment can be trimmed, simply shortening
it.

¢ i3 a constant that neither appears in the P
of the root, nor appears in a term intro-
duced by a lower (closer to the root) in-
stance of rules g and VL, nor is a constant
introduced in a lower instance of rule V.

Now, we can see that the lazy creation of terms
for implementing rules 3r and V. causes a problem:
one cannot know what are the used constants’?. A
solution is to attach to unknowns (they stand for lazily
constructed terms) the set of constants available at their
creation time, the allowed signature.

Then, every time an unknown is substituted, the
constants and unknowns of the substitution value are
checked. Constants should be in the allowed signature
of the unknown, and the allowed signature of every un-
known of the value must be subsets of the allowed sig-
nature of the substituted unknown.

If it is taken literally, it means that the set of avail-
able constants should be known at every time. If one
looks more closely, it appears that the sets of available
constants of every sequent in a branch of a proof tree
are totally ordered by inclusion, the smaller being at
the root and the larger at the leaf. This means that
rather than the sets, it is their sizes that are important
and that must be attached to unknowns. So, universal
quantification introduces universal variables that carry
the size of the augmented signature.

It can be sketched in AProlog:

pi G :-
push_constant NewSize,
G $universal_variable(NewSize),
pop_constant.

Notation $universal_variable(NewSize) indicates
that the universal variable is associated to the signa-
ture with size NewSize. In fact, the definition of (pi G)
can be expanded in-line every time it is used in a goal
position.

Now, every unknown must carry the representation
of its allowed signature’®*. Then, every time an un-
known is substituted, the universal variables and un-
knowns of the substitution value are checked against
the signature size of the unknown. One checks that

e The size of the signature of every universal vari-
able is lower or equal than the size of the signa-
ture of the unknown, and

e the same for the size of the signature of every
unknown.

12 A bottom-up construction of proofs for hereditary Har-
rop formulas does not have this problem: terms have the
right scope by construction. However, it has other prob-
lems [34).

13The size of the signature.
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When the first condition is violated, substitution is im-
possible. When the second is violated, then the signa-
ture size of the conflicting unknown in the substitution
value must be lowered until it fits the condition. We
call this operation the signature lifting.

If an unknown with a conflicting signature is in
fact in an argument of a flexible term then the scope-
checking must be suspended because the problematical
unknown may disappear as a side-effect of another sub-
stitution.

Note that when the terms are in L, the signature
checking is always decidable, because there can be no
unknown in an argument of a flexible term.

Example 3.2.12

Substitution [(U' 1 Y?)/ X} is problematical (the sig-
nature sizes are written as superscripts), but after sub-
stitution [Azy.(F' £)/U")] is applied, it is no more prob-
lematical. The term involved in the substitution is not
in L)\ .

The signature checking can sometime be avoided.
E.g. if the substituted unknown has the highest known
signature then checking its binding value is useless.
Unification commands must be augmented for dealing
with signatures (see section 3.5.1). They are the places
where this kind of situations can be encountered.

The representation of the current signature is con-
sidered in our execution model as a third continuation:
the signature continuation. It has the same search dy-
namism as the success continuation. This means that
it is saved on the search-stack and restored every time
the success continuation is. To be saved on the search-
stack a representation must be a term of MALI. In this
case, an atom is enough for representing the size of the
signature.

(at SORT_SIG sig)

3.2.3.2 Universal variables must carry their
types

We have introduced a new kind of term: the universal
variable. It behaves as a constant, and must be treated
as such in the unification procedure (especially in the
imitation rule). So, their types must be available in
some way. But as opposed to constants, they are not
declared and a type reconstruction function is not so
easily produced. So, they carry their complete types at
run-time.

They can be represented with MALIv06 as a binary
compound term:

(c2 SORT_UNIV type (at SORT_SIG sig)).

A more compact representation uses unary compound
terms and stores the allowed signature in the sort:

(c1 SORT_UNIV(sig) type).

The allowed signature is coded in the sort, and the type
is the unique subterm.
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3.2.3.3 The implementation of essentially
existential variables

The two sources for essentially existential variables are
rule g, which handles explicit existential quantifica-
tions in goals, and rule ¥z, which handles implicit ani-
versal quantifications in clauses.

As we have seen in section 1.2, rules 3g and Vi,
in which a term is to be chosen, are implemented by
introducing a new unknown.

This is our actual implementation of sigma.

type sigma

(_->0) ->o.
sigma G :-

G

Again, this can be expanded in-line when (sigma G)
is in a goal position, but a minimal carefulness is in
order. One should refrain from in-lining a (sigma G)
if its position as a goal results from the in-lining of a
goal (pi G?).

Example 3.2.13
A careless in-lining of goal

pi x\(sigma Y\
( p x ¥
»

results in

push_constant NewSize,
p S$universal_variable(NewSize)
pop_constant

which is a mistake. The scopes of variables x and Y
have been inversed because free variables (here, _) are
implicitly quantified at the clause level.

All the work is done in the resolution step which
implements simultaneously deduction rules ¥z and D;.
Unknowns are created by commands like UNIF_UNK1
and MAKE _UNK1 (see section 3.1.3). The difference with
the Standard Prolog case is that a nullary muterm is
not enough for storing the representation of the type
and of the allowed signature (see section 3.5).

3.2.4 Representation of terms for
the A-calculus

The main issue with meeting the requirements of the
A-calculus is fB-reduction. The implementor has to an-
swer a few technical questions.

3.2.4.1 Representation of S-reduction

The first question is

Does -reduction alter the representation
of terms, or not?

If yes, each time a procedure requires a long head-
normal form of a term, it alters the representation of
the term so that it becomes the representation of a
A-equivalent long head-normal term. If no, the rep-
resentation of a term cannot be modified. A procedure
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that requires the long head-normal form of a term has
to construct locally its own long head-normal represen-
tation; another procedure has to construct another one.

We prefer the first solution because it shares the
B-reduction effort. To be consistent with the require-
ments of logic programming, the alterations of the rep-
resentation by f-reduction must be reversible.

Note that what is merely an efficiency issue for
a confluent system becomes a logical issue in a non-
confluent one. If several non-confluent reductions are
possible then all should be explored, and the reduced
representation ought to be substituted to the non-
reduced one for ensuring the coherence of the search.

3.2.4.2 p[-reduction of representation

So, we choose that S-reduction alters the representation
of terms. The second question is

How does B-reduction alter the representa-
tion?

The representation to be computed must reflect the
substitutions of a term to a variable in the leftmost term
of a redex. One must avoid that the leftmost term of a
redex be altered during its f-reduction. Indeed, it may
have other occurrences that share the same representa-
tion. They should remain unaltered.

We know of two families of representations: envi-
ronment based and graph based representations. In an
environment based representation, the reduced term is
represented by a closure of the leftmost term under an
environment that binds its outermost variable. In a
graph based representation, the reduced term is rep-
resented by a copy of the leftmost term in which the
outermost variable is replaced by the other term.

We choose the graph based approach for the same
reasons we have chosen the copy of terms: it is more
convenient and efficient with MALIv06. With the graph
based approach, reduction is called graph-reduction.
Furthermore, graph-reduction is an efficient form of
memory management. A new sharing is introduced by
the graph based representation: the sharing of replace-
ment values by the multiple occurrences of the vari-
ables.

MALIv06 memory management, especially muterm
shunting, makes it sure that old versions of less reduced
terms are not kept unduly in memory. This is done au-
tomatically, without the AProlog implementor having
to take care of it. In Standard Prolog, muterm shunt-
ing has only the effect of shortening chains of unknowns
and, so doing, eventually recovering the place occupied
by the representation of unknowns (nullary muterms).
In a Prolog with modifiable representation, muterm
shunting shortens chains of non-reduced versions, and
may recover the place occupied by the representation of
intermediate versions (non-nullary muterms and their
subterms). This is also the case for extensions to Prolog
that introduce constraints, and dynamic proof strategy
(e.g. the freeze predicate).

'3.2.4.3 Representation of A-variables
Third question is

How are the A-variables represented?
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Two interesting possibilities are the nameless ap-
proach of De Bruijn [20], and a lexical representation
which is almost isomorphic to the external syntax. The
former is often described as unsuitable for a human be-
ing, but very suitable for a machine because it avoids
the management of actual A-variable names. The prin-
ciples are to replace the multiple occurrences of the
name of a A-variable by numbers that specify the rela-
tive positions of the binding abstraction and the bound
occurrences.

Example 3.2.14
De Bruijn’s notation for term Az.(z Ay.(z y)) is
A.(0 A.(10)).

De Bruijn’s notation is not really compatible with a
graph based representation because it forces to renum-
ber the rightmost term —hence duplicate it or inter-
pret it— for every occurrence of the replaced variable.
The A-variables free in the rightmost term are assigned
different contexts for every occurrence of the replaced
variable. So, the relative position of the free variables of
the rightmost term and their binding abstractions may
have to be updated.

It is often said that De Bruijn’s notation is good
for computers but terrible for humans. We think it is
certainly good for mathematics, but can be terrible for
humans and computers.

We choose a lexical representation of terms in which
A-variables have pseudo-name. Pseudo-names are refer-
ences to the binding abstractions. But they are absolute
references instead of relative references in the nameless
scheme. Plainly speaking, pseudo-names have to do
with memory allocation because they are implemented
by references to data-structures.

3.2.4.4 Representation of unknowns

As we have seen in section 3.2.1.3, a type information
must be added to unknowns. This type information
is used to control projection during unification. They
must also carry the representation of their allowed sig-
natures; it can be coded in their sorts for immediate
access.

Unknowns can be represented with MALIv06 as bi-
nary muterms:

(mc2 SORT_UNK type (at SORT_SIG sig)).

A more compact representation uses unary muterms
and stores the allowed signature in the sort of the
muterm:

(mc1 SORT_UNK(sig) type).

3.2.4.5 Representation of constants

Constants are represented according to their types
(taken in the informal sense) as described in section 3.1.

For instance, AProlog integers can be represented
with MALIv06 as

(at SORT_INT value)

More importantly, constants can be represented as
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typedef struct {
char *ident;
int arity;
int type_arity;
void type_reconstruction();
} symbT;

typedef struct {

/* Function constant: */

/* its external representation */

/% its arity =/

/* the number of its forgotten variables */
/* its type reconstruction function */

/* Predicate constant: */

char *ident; int arity; int type_arity; void type_reconstruction();

void (*pred)();
} psymbT;

/* the same, plus its predicate function */

Figure 3.14: Representation of constants

(at SORT_SYMB pointer)

where pointer points to a C structure describing the
constant: arity, external representation for printing,
predicate function if any, number of forgotten types,
type reconstruction function, and even information for
the debugging such as break-points, etc. Figure 3.14
shows the declaration of the C structure describing a
function constant and a predicate constant.

Example 3.2.15

The C structures corresponding to constants forget
(declared in example 3.2.4), *.?, [], and append (de-
clared in example 1.1.10) are

symbT PM__forget =
{ "forget", 1, 1, PM_t_forget };

symbT PM__056 = /% .0 %/
{".", 2,0, PM_t_056 };

symbT PM__133135 = /% [ »/
{01, 0, 0, PM_t_133135 };

psymbT PM__append =
{ "append", 3, 1, PM_t_append,
PM_c_append );

The prefizes (PM__, and PM_c_) are added by
the comptler to distinguish between the various “facets”
of a symbol: the symbol itself, its type reconstruction
function, and the function coding the relation when it
13 a predicate symbol.

Then the constants are represented by

PM_t

-y

(at SORT_SYMB &PM__forget)
(at SORT_SYMB &PM__056)

(at SORT_SYMB &PM__133135)
(at SORT_SYMB &PM__append)

Note that to be type preserving or not is a prop-
erty of constants, but that the extra cost for represent-
ing forgotten types is paid by applications that use the
constants.

3.2.4.6 Representation of abstractions

The encoding of abstractions maps exactly the long
head-normal form; all abstractions nested one under an-
other are merged in one super-abstraction. So, AT,.t,
where t has an atomic type, is represented by a (n+1)-
ary tuple of MALIv06. The first n arguments are the

variables of the abstraction and the last is the body of
the abstraction. So, what is actually represented as a
unit is the binder of a term.

Each variable is represented by a place-holder whose
only purpose is to be referenced. So, it can be as small
as possible, but interesting duplication algorithms can
be used if it is large enough to contain a name.

These interesting algorithms store the name of sub-
stitution values of variables in the place-holders, and
then duplicate the term. This gives a direct access from
a variable to its substitution value instead of associa-
tive search in a context. When duplication is over, the
place-holders can be cleared.

A-variables can be represented with MALIv06 as

(c1 SORT_VAR (cO SORT_DUMMY)).

Because of type unknowns as result types, an ab-
straction can be dynamically n-expanded. So, the rep-
resentation of an abstraction must also use a muterm.
This enables modification of the abstraction, with an
optimal memory management. With MALIv06, the
term Av,.t is represented as

(mtu SORT_ABS N+1 v1 ... vN t).

3.2.4.7 Representation of applications

Applications also map exactly the long head-normal
form. Like abstractions, they are encoded with n-ary
tuples of MALIv06 representing the leftmost paths of
the binary trees formed by the composition of abstrac-
tion. So, the internal representation of a term reflects
the notation in which every unnecessary parenthesis are
removed.

We call potential redex any application whose left-
most term is an unknown or a A-variable. Non-potential
redexes, also called first-order applications, have a fixed
heading. So, they can be created in long head-normal
form and always remain in long head-normal form.

In order to process them more efficiently, first-order
applications are distinguished from potential redexes.
Potential redexes may be f-reduced when their head, a
A-variable or an unknown, eventually gets substituted
by an abstraction. So, the representation of a higher-
order application uses a muterm to enable rewriting.
Reducing a redex amounts to substituting its reduced

form to the muterm. If the reduced form is again a
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potential redex, one must not forget to represent it by
a new muterm. This is an efficient way to deal with
normalisation while being consistent with depth-first
search.

To sum up, the representation of a first-order appli-
cation (@ f,,), where constant @ has n forgotten types,
is

(tu SORT_APP1 1+N+M
@ typel ... typeN
t1 ...t

and the representation of a potential redex (1m) is

(mtu SORT_APP M t1 ... tM).
Note that there is no forgotten types in the potential
redex. Indeed, forgotten types are associated to con-
stants, hence, to first-order applications.

Some very frequent first-order applications are
coded in a more compact way. For instance, lists nodes
are coded like

(c2 SORT_LIST car cdr)
(cO SORT_NIL) .

instead of

(tu SORT_APP1 3
(at SORT_SYMB &PM__056)
car
cdr)

(at SORT_SYMB &PM__133135) .

The price of these compact representations is that
specialised code must be written for dealing with
them in any circumstances (unification —SIMPL and
MATCH—, reduction, printing).

Example 3.2.16
We sum-up on representation of terms with a few ezx-
amples. The list [1,2] is represented as

(c2 SORT_LIST (at SORT_INT 1)
(c2 SORT_LIST (at SORT_INT 2)
(cO SORT_NIL))) .

The term ($forget int X) is represented as

(tu SORT_APP1 3
(at SORT_SYMB &PM__forget)
int@(at SORT_SYMB_T &PM__int)
x0(mc2 SORT_UNK int sig)) .

The term Ansz.(s (n s 2)) i3 represented as

succ@(mtu SORT_ABS 4
n€(c1 SORT_VAR (cO SORT_DUMMY))
80(c1 SORT_VAR (cO SORT_DUMMY))
2z0@(c1 SORT_VAR (cO SORT_DUMMY))
(mtu SORT_APP 2
8
(mtu SORT_APP 3 n s 2)))

3.2.5 Summary and comparison
with other implementations

To sum up, we choose copy of terms for memory man-
agement reasons. We choose the alteration of the repre-
sentation to share reduction effort, and also for memory
management. We choose graph-reduction for memory
management again. The A-terms are represented by re-
versibly mutable graphs, so that it is possible to physi-
cally replace a redex by its reduced form in the graph.
This provides sharing of the reduced term, and then,
of the reduction effort. “Reversibly” means that muta-
tions (reductions) must be undone when backtracking.
This is the result of plunging graph reduction in a Pro-
log context. Finally, a pseudo-name based representa-
tion is a natural consequence of the previous choices.
Every occurrence of a constant is represented with
its forgotten types. The forgotten types of two occur-
rences must be unified before the arguments of the oc-
currences are unified. Every constant has a type recon-
struction function associated to it. Type reconstruction
functions take as parameters the forgotten types and
result type of an occurrence of a constant, and return
its complete type. Unknowns and universal variables
are represented with their complete types. Types of
unknown are used for controlling projection, and their
result types are used for reconstructing types of con-
stants. A-variables do not carry any type information.

We know no publication on the implementation of
either the original AProlog or eLP. So, we can only com-
pare their behaviour with our implementation.

The implementation choices of a third AProlog im-
plementation are described by Nadathur and Jayara-
man [58, 36]. We can compare the choices but not
the behaviour because we have no access to a running
implementation. These choices are very different from
ours, so that an experimental comparison seems nec-
essary. The main differences are an environment based
reduction scheme, and a nameless approach. Another of
their ideas is to extend the WAM to execute AProlog.
It is not relevant to the current discussion as long as
memory management is not concerned. However, we
think that to base a design on the WAM makes it tricky
to obtain good memory management performances for
AProlog terms and implication premises'*.

Kwon and Nadathur address the problem of hav-
ing to represent types at run-time in a slightly different
way [40]. They propose to represent occurrences of con-
stants with all their type parameters, and to represent
unknowns with their complete types. So, it seems that
they considered the typing problem under the angle of
the interpretation of polymorphic constants, whereas
we considered it under the angle of the violation of the
type preserving property. Note that the constructors of
very important polymorphic data-structures (e.g. poly-
morphic lists) are type preserving and, then, incur no
type representation at run-time in our scheme. An-
other difference is that their scheme allows for type re-
construction in every context, whereas ours allows for
type reconstruction in unification only, or, at least in

141n fact, it might be as tricky as implementing MALI
usefulness logic.
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contexts in which the result type is available’®. For
the moment, unification is the only context in which
type reconstruction is required. Finally, they rely on
structure-sharing for representing types; what we call
type reconstruction functions becoming type skeletons.
This is only coherent with the starting point of their
project: extending a structure-sharing version of the
WAM?'S,

Note also that differences are tempered as long as
improvement are done to the original schemes. For
instance, we use an environment based representa-
tion of terms for short-term storage inside unification
and revert to the graph based representation for long-
term representation outside unification. E.g. procedure
SIMPL produces many short-lived terms that do not
need a graph representation.

3.2.6 \-quantification
vs. V-quantification

It is interesting to note that A-quantification and
V-quantification can represent each other. However, we
choose to have separate specialised implementations for
both. It appears that they share lower-level routines.

This correspondence is merely folklore and we do
not use it directly in our implementation. However, it
can be used for justifying some implementation tech-
niques (see procedure TRIV in section 3.5.6.2). The
AProlog programmer must also keep this correspon-
dence in mind because a lot of AProlog programming
is about converting essentially universal quantification
at the term level (A-quantification) towards universal
quantification at the goal level (V-quantification), and
vice versa (see for instance predicate has_typein exam-
ple 1 or first version for predicate 1ist2flist in sec-
tion 1.5.2).

As the two quantifications are represented con-
currently, it would be more precise to speak of
“AV-unification” and “AV-equivalence”.

3.2.6.1 J-quantification for representing

V-quantification

A-unification can implement the side condition of
rule Vg through skolemisation. The idea is to re-
place rule Vg by the variant shown in figure 3.15.
It introduces a new kind of goals quantified by a
A-abstraction. The other deduction rules must be re-
visited to deal with such goals on the basis of proce-
dure SIMPL. It means that deduction rules must prop-
agate A-abstractions from formulas to subformulas, just
like procedure SIMPL propagates A-abstractions from
terms to subterms.

In example 3.2.17, the application of procedure
SIMPL is anticipated in the program: every logical vari-
able is applied to the A-variable that stands for a uni-
versal variable. This is careless with respect to types,
but we hope it makes the example clearer. This make
skolemisation visible in the program.

15]¢ is always possible to reconstruct types of terms from
types of goals, but we hope to never have to consider this.

16 Note that the WAM is not at all committed to structure-
sharing [75].
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Example 3.2.17
The following program illustrates rule V}.

type eq
A->A->o0.
eq X X.
query :-
pi x\
( eq x Y
)’
print Y.

The query fails because goal (eq ¢ Y) should be proven
for a constant c that must be different from every other
constant, including the value of unknown Y, whereas
clause (eq X X) forces them to be equal. It is easy to
transform the goal and program so that A-unification
implements the side-condition.

Suppose that the program®’ is transformed into

x\(eq (X x) (X X)).
query :-
x\(eq x Y),
print Y.

Solving the new query is required to solve unification
problem

< x\(eq x Y), x\(eq (X X (X x)) >,
which simplifies to

{< x\x, x\(X x) >, < x\Y, x\(X x) >},
and n-reduces to

{< x\x, X >, < x\Y, X >},

The first pair is trivially solved by substitution
{x\x / X], yielding the derived problem

<x\Y, x\x >
which i3 detected unsolvable by MATCH because un-

known Y is not allowed to capture A-variable x.

To understand why the transformation works, re-
member the intuition given in section 1.3.2 for flexible
terms. In the situation of example 3.2.17, term (X x)
is an unknown term in which A-variable x can occur,
and Y is an unknown term in which A-variable x can-
not occur, Miller gives the formal basis of this kind
of manipulation under the name of “unification under
mixed-prefix” [51].

In a real-life implementation, the program is not
actually modified. The set of universal variables, such
as x above, is in the search context and unknown X
is interpreted as (X x) according to the context. As
noted by Nadathur and Jayaraman, the set of universal
variables has a stack-like life and can be denoted by a
unique number, its size.

An early stage of our implementation of AProlog
followed this scheme. We found it less efficient than the
technique of the signature size. We think it is because
this specialised usage of A-unification deserves a more
specialised procedure. Even if the signature-checking is
a costly operation, it is tailored for one purpose. This
makes it less inefficient than A-unification.

174Goal”, “query”, and “program” are now used in a broad
sense, because they have no more type o.
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Az. P, F Az.G

“PFvwc

A

P: is the result of substituting in P every essentially existential variable » by (v z). If needed, variable z can be

renamed with a-conversion.

Figure 3.15: The rule V}

SIMPLY: (A x A) — (2(A*) U Failure)
SIMPLY(< t',t* >) = .
assume t! = A5 (@) e}, ) and t* = AT5.(@; €2,)
in ifn #0
then SIMPLY(< (t! 3), (t? &7) >)
else if @ € U
then {< t',#* >}
else if @, € U
then {< #?,¢! >}
else if @; # @2
then Failure

else Ugp py) SIMPLV(< ele?>)

Every cx is a new universal variable with the appropriate type.

Figure 3.16: Procedure SIMPLY

3.2.6.2 V-quantification for
A-quantification

representing

In procedure SIMPL, one can suppress the need for ac-
cumulating abstractions by applying these abstractions
to new universal variables. Note that this is correct
only when y-equivalence is assumed.

Example 3.2.18

If n-equivalence is not assumed, terms t; = Azy.(z y)
and t; = Az.z are not A-equivalent, but terms (1, u v)
and (t2 u v) are B-equivalent for every u and v.

Figure 3.16 shows the modified version of SIMPL.
Note that “new universal variable” means among other
things that the signature is augmented.

Example 3.2.19
The query of program

type eq
A->A->o0.
eq X X.
query :-
eq v\(U 1) v\(g (v 1)).

fails because unknown U has to capture A-variable v for
making the two terms equal. It i3 easy to see that pro-
jection gives nothing because < v\1, v\(g (v 1)) > is
detected unsolvable by SIMPL. We concentrate on imi-
tation. It substitutes w\(g (H w)) to unknown U yield-
ing a new unification problem,

< v\(g (H 1)), v\(g (v 1)) >
which simplifies to

< v\(H 1), v\(v 1) >

which is clearly unsolvable because unknown H cannot
capture A-variable v.

It is easy to transform the unification problem so
that V-quantification controls the capture of A-variables.
The unification problem is

< W\(U 1), v\(g (v 1)) > .

We apply the two terms to the same new universal vari-
able $, yielding the new problem

<@, (g ¢ 1)>.

New means that $ is in the scope of U. Again, projection
can do nothing, and imitation substitutes w\(g (H w))
to unknown U. The new unknown H is created in the
scope of unsversal variable $, but since it is in the bind-
ing value of U it must migrate to the scope of U.

The new unification problem is

< (g (H1)), (g ($1)) >,

which simplifies to < (H 1), ($ 1) > and is unsolv-
able. Substitution [W\($ (G w)) / H] cannot be a so-
lution because now that unknown H has migrated to the
scope of U the universal variable $ is no more in its
avaslable signature. So, unknown H cannot be substi-
tuted by a term containing universal vartable $.

So the side-condition of rule Vg prevents capture of
A-variables. Again, we prefer a specialised procedure
for a specialised purpose. We never tried this imple-
mentation, but its most visible inconvenient is that it
costs a 3-reduction for every abstraction that procedure
SIMPL traverses. A direct implementation of proce-
dure SIMPL avoids the #-reductions using a temporary
environment based representation.
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3.3 Implication

Expression PA D in rule Dg (see figure 1.5) shows that
the program is augmented in some way when an impli-
cation goal is executed. However, the implementation of
this rule cannot use the Standard Prolog assert/retract
technology (see section 1.4.3).

We call staticthe clauses that belong to the program
since compile-time, and dynamic clauses that are added
to the program when executing an implication goal. We
call dynamic the predicates that can be extended by ex-
ecuting an implication goal, static the other predicates.

3.3.1 From a premise-stack to a
closure-stack

In a first design of our implementation of AProlog, facts
(or clauses) that are dynamic clauses (i.e. premises of
implication) were pushed on a premise-stack when en-
tering the proof of the conclusion. They were popped
when returning from the proof. This can be expressed
in Prolog as

push_clause D,
G »
pop_clause.

As for quantifiers pi and sigma, this can be expanded
in-line. Dynamic clauses are searched for before static
clauses. This is done by a special first clause that is
added to every predicate. To avoid paying an exces-
sive cost, dynamic predicates must be declared. So the
search in the premise-stack and the special clause are
paid only by predicates that deserve it.

The premise-stack is considered as an outgrowth
of the goal-statement and undergoes the same oper-
ations with respect to the management of the non-
determinism. Both are pushed and popped at the same
time on the search stack. Since dynamic clauses are
shared with the goal-statements, pushing involves no
copying and amounts to consing. Recall that predicate
assert must copy the clause to protect it from further
substitutions or backtracking (i.e. to close the term by
a new quantification).

In a latter design (somewhat inspired by Nadathur
and Jayaraman’s work [36]), dynamic clauses are com-
piled as (almost) ordinary clauses. At run-time, only
their connection with the proof context is managed as
we did in the first design. So, the premise-stack is
replaced by a closure-stack. The only difference with
static clauses is that care is taken for handling the en-
vironment of the dynamic clause (i.e. the context of the
corresponding implication goal).

This is done by the means of supplementary param-
eters and of supplementary universal quantifiers.

1. A dynamic clause Vz.(® C ¥), for predicate p,
with free variables Fm %, is translated into the
static clause Vgm 7.((p' ¥m ®) C V), where p' is
a new constant corresponding to this occurrence
in the source program. The new clause is then

18 Note that free variables may be either universal (e.g. p1
x\(p x => q)) or existential (e.g. ( p X => q)).
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compiled as an ordinary static clause. The ac-
tual values of the free variables are added to the
arguments of every goal that is solved using this
clause. Then comes the actual head of the dy-
namic clause.

2. When the clause is added to the program'?, a
closure is stored. It links constant p with constant
p’ in a context made of the current values &, of
variables ym. It has the form < p, Ag.(p’ cm g) >

3. When a goal (p 3) is executed, the closure-stack
is searched for all the closures whose left-hand
part is p. Their right-hand parts are successively
applied to the goal, and the resulting goals called.

Example 3.3.1
In smplication goal

( pi2\
( p X Z (£ Y) :-
q W
)
=> G
)

the dynamic clause is compiled as

type $this_p
TX => TY => T¥W => o0 -> o.

pi X\(pi Y\(pi W\(pi 2\

( $thisp X Y W (pXZ (fY)) :~
q V

»NN.

or in the implicitly quantified notation

$this p X Y W (pXZ (fY)) :-

q V.

where $this_p is associated to this clause of the predi-
cate.

Predicate $this_p must be compiled in the usual
way. Among other things, its forgotten types must
be computed and implicitly represented. The atom
(p X Z (f Y)) is passed as a whole in the head of
$this_p for making the compilation easier. Another
solution is to pass its parameters separately.

So, instead of storing an entire clause in a premise-
stack, a pasr

<p, g\($this p X Y W g) >

ts stored in the closure-stack. The pair associates the
predicate constant p to the new constant $this_p in the
environment X Y W.

A closure is conceptually an abstraction. When se-
lected, it is applied to the current goal for building a
new goal (of constant $this_p in example 3.3.1) which
is executed using the single clause for it. Note that since
the abstraction is very specialised (e.g. there is always
one occurrence of A-variable g, and it is always in the
same position) it need not be actually implemented as
an ordinary abstraction.

197 e.
cuted.

when the corresponding implication goal is exe-
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The closure-stack {or the premise-stack) is imple-
mented so that a hash-table may give almost direct
access to relevant clauses (contexts) given a predicate
constant. However, no clause indexing is implemented
(neither in the all system).

The closure-stack is considered in our execution
model as a fourth continuation: the program continua-
tion. It has the same search dynamism as the success
continuation or the signature continuation.

3.3.2 Implication and definitional
genericity

Implication is in contradiction with definitional gener-
icity because it may add to the program clauses whose
head symbol has a type that is a strict instance of the
type scheme. Since we wish to stick as much as possi-
ble to definitional genericity, there is a problem which
is still open.

Example 3.3.2
Assume predicate constant append i3 declared as

type append
(list A) -> (list A) -> (1list A) -> o.

nothing prevents adding a clause with a more instanti-
ated head symbol in the following way:

( append '"Lambda"
"Prolog"
"LambdaProlog"

=>

)

3.3.3 Comparison with other imple-
mentations

The implementation of implication by Nadathur and
Jayaraman is explained at length in their ICLP’91 pa-
per [36]. They compile the clauses that are in an
implication goal as ordinary static clauses, and use a
new kind of choice-point (remember that their scheme
is WAM-based) for representing the instances of them
that are currently in the program. The connection to
unknowns that were introduced in the program is made
using the environment in which the implication goal was
executed.

Their scheme is made slightly more complicated
than ours by the problem of adding, removing, and re-
adding clauses due to backtracking. This is transparent
using the muterms of MALIv06.

3.4 Reduction procedure

The normalisation of A-terms is essential for the unifi-
cation procedure. It takes the place of the dereferencing
function derefin Standard Prolog implementations [3].
Function deref goes through bindings of unknowns. It
is very similar to command RD_DIRECT and can be im-
plemented by it in a MALI based implementation of
Standard Prolog. To transform non-direct names into
equivalent direct names is a trivial form of normalisa-
tion. This is not enough for AProlog.
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Normalisation is required to (-reduce redexes and
n-expand the unknowns and A-variables.

We show in the following that reduction in AProlog
is basically lazy, then we present a powerful optimi-
sation which finds its root in the new properties of un-
knowns and substitutions presented in section 1.1.3. Fi-
nally, we show how the representation of terms can be
folded.

3.4.1 Lazy outermost reduction

In fact, except for making displayed terms more read-
able, it is never necessary to completely reduce a term.
B-reduction is done only when required, i.e. before uni-
fication, to allow comparison of terms. Even when uni-
fication is required to do S-reduction, it is not required
to achieve a complete normalisation. What it is re-
quired to do is to put the terms to be unified in long
head-normal form, so as to exhibit the headings of the
terms. It follows that B-reduction is done with an out-
ermost strategy. Note that outermost reduction is not
necessary to have a converging normalisation of simply
typed A-terms. In this context, it is only used for its
connection with lazyness.

Example 3.4.1

A common form of function-lists (see the “running ez-
ample”) follows the pattern z\[el| (L 2z)] rather than
the normal form pattern z\[el,...,eN|z]:

z\[11(z\[2] (z\[312] 2)] 2)]

instead of the normal form z\[1,2,31z]. The two ver-

gions of predicate 1ist2flist produce lists which have

the first form. In both forms, the first element of the list

and the end of the list are accessible in constant time.
A third pattern is zZ\(L [eN|z]):

z\(z\(z\(z\z [11z]) [21z]) [31z]) .

Predicate fnrev produces a list with this form. With
this representation, the end of the list is accessible in
constant time, but an access to the first element is re-
guired to reduce all the redezes. It is linear because of
the detection of combinators (see in section 3.4.2). Note
that after only one access to its first element, a list has
its structure normalised (its elements may still be non-
normal). So, further accesses are immediate.

3.4.2 Detection of combinators

Because the left member of a S-redex may be shared
by some other term, B-reduction cannot apply its sub-
stitution in situ. It is required to duplicating the left
member.

Duplicating subterms whose only free A-variables
are also free in the redex is useless. We want to detect
as much as possible of this circumstance.

It would be too cumbersome to record for every
term all the A-variables that occur free in it and in
some including redex. It is much easier, if less precise,
to record the terms having no free A-variable at all.
These terms are usually called closed terms or combi-
nators. So, all closed subterms of the left member of a
redex are shared by reduction.
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A lot of terms are combinators. Every instance of a
combinator is itself a combinator because A-unification
forbids A-variables capture. So, it is effective to record
which source terms are combinators. Every binding
value is a combinator by definition of A-unification. So,
binding values are tagged as combinators as soon as
they are created. Then, combinators detection incurs
no dynamic checking cost.

Our experience is that the recognition of all source
combinators, and the tagging as combinators of all
binding values is crucial. The mere exception causes
a visible slow down. Note that a lot of terms are recog-
nised to be combinators only because we have distin-
guished A-variables from unknowns in the definition
of A-terms in section 1.1.1.2. If this distinction was
dropped, non-groundness and non-closedness would be
mixed and no “interesting”?° term could be recognised
as a combinator.

The effect is three-fold.
B-reduction. Less memory is consumed, hence less time
is spent garbage collecting. More sharing is achieved,
hence unification and S-reduction costs are better fac-
torised.

Constant terms, unknowns, and universal vari-
ables, which are always combinators, need no tagging.
A-variables, which are never combinators, need no tag-
ging either. So, there remain applications and abstrac-

tions which are tagged in their sorts. With MALIvO06,

Less time is spent in

(mtu SORT_ABS (COMB/NO_COMB) N+1
vi ... vN t)
(mtu SORT_APP1(COMB/NO_COMB) 1+N+M
Q typel ... typeN
t1 ... tM).
(mtu SORT_APP(COMB/NO_COMB) M
t1 ... tM).

This improvement is fundamental and changes the
complexity of useful AProlog predicates [15] (e.g. predi-
cate fnrev for reversing a function-list; see definition in
section 1.5.1 and complexity comparisons in figure 4.7).
It is not committed to our architecture; it only has to
do with reduction.

Note again that combinatorness, which is about oc-
currences of A-variables, cannot be completely decided
for flexible terms. A closed flexible term remains closed
anyhow, but a non-closed flexible term may become
closed at run-time. We do not try to recognise this
kind of combinators at run-time.

Example 3.4.2

Term (U z), where U is an unknown and z is a
A-variable, is not a combinator, but after substitution
(Az.1/U] is applied it is a combinator.

3.4.3 Folding representations

Both S-reduction and g-reduction may cause folding of
representation.

Example 3.4.3
Term t, = (Az.(f z) 1) B-reduces to (f 1). We assume
the type int — int for constant f.

201n logic programming, interesting terms are not ground.

CHAPTER 3. COMPILING APROLOG

Figure 3.17 gives a graphical representation of
the term before and after fB-reduction. Allocation of
new terms and representation sharing can be observed.
Nodes are decorated by the terms they represent and
optionally by labels (e.g. t1@ (f 1)). Nodes with iden-
tical labels are the same node before and after the
B-reduction.

Note the potential redezes represented as muterms.
Every muterm is graphically represented with an arc la-
beled by a circle. When the muterm is not substituted,
the circle is empty and the arc points to its compound
term part. When the muterm is substituted, the circle
is filled and the arc points to its substitution value.

The terms are represented with MA LIv06 as follows:

o (Az.(f z) 1) : (this entry and the next one share
the same label space)

t1@
(mtu SORT_APP(COMB) 2
(mtu SORT_ABS(COMB) 2
x@(c1 SORT_VAR
(cO SORT_DUMMY))
fx@(tu SORT_APP1(NO_COMB) 2
fffeQ
(at SORT_SYMB f)
x))

one@(at SORT_INT 1))

The outermost application is represented as a
muterm because it has been a potential redex
sometime. The innermost application is repre-
sented as a non-mutable term because it 13 not @
potential redez. The COMB/NO COMB tags are set
by an analysis prior to the execution.

o (f1):

t1@(tu SORT_APP1(COMB) 2 f£ff one)

Note that the reduced representation takes the
place of the old one and that subterms labelled
by £ff and one are shared.

In this example, they are both atoms so that shar-
ing i8 not a great matter. However, any actual
argument or combinators of the left-hand of the
redez with a non-atomic representation would be
shared as well.

The structure of the reduced term t1 dersves from
term £x, but the tag COMB is inherited from the tag
of the non-reduced t1.

Example 3.4.4
Term t; = Az.z n-ezpands to Ayz.(y z2). Figure 3.18
gives the graphical representation.

The terms are represented with MA LIv06 as follows:

e Az.z : (this entry and the next one share the same
label space) :

t20
(mtu SORT_ABS(COMB) 2
x0(c1 SORT_VAR (cO SORT_DUMMY))
x)

The abstraction is represented by a muterm be-
cause Ax.z is a potential n-redez.
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t10 (Az.(fz) 1) t1e (f 1)

B-reduction
—_—

(f1)

1xfx@ Az.(f z) one® 1 1xfx€ Az.(f z)

/>\m(fz) fxe (f z)
/N /N

x0 / xQ z

f£f0 f fffQ f

one@ 1

Figure 3.17: fB-reduction of (Az.(f z) 1) into (f 1)

t20 Az.x t20 Ayz.(y 2)
7-expansion Ayz.(y 2)
x0 z x0 z
(v 2)
Q
vty z0Q z

Figure 3.18: n-expansion of Az.z into Azy.(z y)
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® Ayz.(yz2) :

t2¢

(mtu SORT_ABS(COMB) 3
y@(c1 SORT_VAR (cO SORT_DUMMY))
z0(c1 SORT_VAR (cO SORT_DUMMY))
(mtu SORT_APP(NO_COMB) 2 y 2z))

Note that the n-ezpanded representation takes the
place of the old one. As in example 3.4.3, the
ezpanded representation inherits tag COMB from
the original term.

With a memory management point of view, one
must note that if a reduction is done definitively (no
backtrack point over it), the representation of the re-
dex ((Az.(f z) 1) in example 3.4.3) may be collected
according to the usefulness logic of MALI.

3.5 Unification

We present now the implementation of the unifica-
tion procedure. It is made of a collection of unification
commands, and of procedures UNIF (first-order unifi-
cation), SIMPL, TRIV and MATCH. Finally we show
that, like reduction, unification gives a chance for fold-
ing representation.

Everything starts from the unification commands
that are generated for the clause heads. Then, as things
get more complicated, procedure UNIF and the others
are called. They are organised as a sequence of sieves
that try to solve a given unification problem or pass
it to the next sieve if it is not in their capability. So
doing, we give the highest priority to simple specialised
problems.

3.5.1

As we have seen in the MPPM (see section 3.1.3), unifi-
cation can be partially compiled when one of the terms
of a unification problem is known. But, even with
first-order unification, one has to revert sometimes to
the general procedure (see command UNIF_UNKN). The
terms of AProlog can be compiled in a similar way.

Compiled unification

3.5.1.1 Read/write mode

In Standard Prolog, unification commands operate in
read mode or write mode according to the relative in-
stantiations of the goal term and the head term. Write
mode is used for building the binding value of an un-
known coming from the goal term. In AProlog, write
mode is also used when read mode makes no sense be-
cause of the properties of the A-unification problem. So,
write mode is also used to build the representation of
unification problems to be solved later.

Operating in write mode for creating a binding
value is a trivial operation in the first-order case, but
it is less trivial in the higher-order case because of the
signature checking. In principle, unknowns should be
created with the current allowed signature. However,
they are created as parts of the binding value of an
unknown that already have an allowed signature. The
naive solution is to try creating the unknowns of the
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binding value with the allowed signature of the sub-
stituted unknown. It does not work because flexible
application may make the signature lifting incorrect.

The problem is that the write mode behaviour is
in fact a compilation of the TRIV procedure. It is al-
ways permitted in Standard Prolog, but we have seen
that flexible applications make any decision on occur-
rences unsafe (e.g. signature checking). A rough so-
lution is to compare the signature of the unknown to
be substituted and the current signature. If they are
equal, the unknown is substituted (TRIV is permitted),
otherwise, a unification problem is created dynamically
whose members are the unknown and the candidate
binding value. In both cases, the write mode is en-
tered, either for building a binding value, or for build-
ing a term of a unification problem. Figure 3.19 shows
sample commands of the MPPM upgraded for dealing
with allowed signature. Command ADD_UNIF_PAIRadds
the new unification problem to the collection of not yet
solved problems.

Because the general A-unification is too complex,
unification commands for flexible terms or abstractions
never operate in read mode. In this case also, the com-
mands operate in write mode for building a unification
problem. The method for creating a unification prob-
lem is the same as in command URIF_LIST. Since these
unification commands always operate in write mode,
they are mere variants of make commands.

Note also the management of the combinator tag
in figure 3.19. Because of previous remark, unifica-
tion commands always operate on head terms that are
combinators. We cannot assume that goal terms are
tagged COMB.

3.5.1.2 Type unification

As we have seen in section 3.2.1.5, some types are repre-
sented at run-time. Type commands must be designed
for either creating or unifying them.

Types represented at run-time belong to two cate-
gories: forgotten types and types of unknowns.

Forgotten types behave much like extra parameters
to term constructors. The only difference is that their
unification order is specified: they must be unified be-
fore the regular parameters. Since they are first-order
terms, the technique described in the MPPM applies
directly.

The type of an unknown is only part of the represen-
tation of the unknown. It should be created if and only
if the unknown is created. So, there is no read mode
for types of unknowns, and make commands for types
are used in the unification sequences. Figure 3.20 shows
the compilation of the head of the recursive clause of
append. Commands MAKE_TYPE_FUNC, MAKE_TYPE_UNK1
and MAKE_TYPE_UNKN follow the patterns of commands
MAKE_FUNC, MAKE_UNK1 and MAKE_UNKN of the MPPM.
Note that, like for unknows, first and next occurrences
of type unknowns must be distinguished.

Variables X, Y and Z have the same type but three
different sequences handle the three occurrences of the
type. It does not mean that the same type is created
three times; in mode (append + + -), only the type of
variable Z is created. In mode (append + + +), no type
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#define SORT_LIST(comb) MK_SORT((comb?2001:2002))
#define INDIC_LIST(comb) MK_INDIC(N_CONS2,SORT_LIST(comb))
#define SIG_OF_UNK (objunk) CONS_SELECT_2ND(objunk)
#define TYPE_OF_UNK(objunk) CONS_SELECT_1ST(objunk)
#define COMB 1
#define NO_COMB 'COMB
int AS; /* Allowed signature */
void MAKE_LIST( comb, vhere, obj )
int /#* bool */ comb; T_CELL #*where; T_ROBJ *obj;
{ MK_CONS2( SORT_LIST(comb), where, *obj );
/* vhere = (c¢2 SORT_LIST(comb) ... ...) %/
}
void MAKE_UNK1( var, shere, obj )
T_CELL svar; T_CELL *where; T_ROBJ *obj;
{ MK_MCONS2( SORT_UNK, where, *obj );

ST_CELL( var, where );
MAKE_SIG( AS, SIG_OF_UNK(*obj) );

/* var = where = (mc2 SORT_UNK ... (at SORT_SIG sig)) =/
}
int /#* bool #/ UNIF_LIST( vhere, obj )
T_CELL #where; T_ROBJ *obj;
{ if ( WMC == 0 ) { /* read mode. */

RD_DIRECT( where );
svitch ( where->indic ) {
case INDIC_LIST(COMB) : case INDIC_LIST(NO_COMB) :
READ_LIST( where, obj );
return 1;
case INDIC_UNK :
{ T_ROBJ objunk, objpair; int sigunk;
READ_UNK( where, &objunk );
GET_SIG( &sigunk, SIG_OF_UNK(objunk) ) ;
if ( sigunk < AS ) {
ADD_UNIF_PAIR( &objpair );
ST_CELL( PAIR_SELECT_1ST(objpair), where );
wvhere = PAIR_SELECT_2ND(objpair);

}else {
SU_MUT( where, objunk );
vhere = MUT_SELECT_VALUE(objunk);

}
WMC = 1;
} /* enter write mode. */
break;
default : return O0;
}
} /* write mode. »/
MAKE_LIST( COMB, where, obj );
WMC += 2-1;
return 1;

Figure 3.19: Management of allowed signature
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type append
(list A) -> (list a) -> (list A) -> o.

append [EIX] Y [EIZ] :-
append X Y Z .
( UNIF_LIST( &A[1], &x[1] )
&2 UNIF_UNK1( &U[4], CAR_OF( X[1] ), &x(2] )
73 ( WMC ==0
|| ( MAKE_TYPE_FUNC( 2listS, TYPE_OF_UNK(X[21), &x[3] ),
MAKE_TYPE_UNK1( &U[s], ARG_OF_TYPE(X[3],1) ),
true ))
&% UNIF_UNK1( &U[1], CDR_OF( X[11 ), gx{2] )
&% ( WMC ==0
Il ( MARE_TYPE_FUNC( #1istS, TYPE_OF_UNK(X[2]), &x(3] ),
MAKE_TYPE_UNKN( gU[s], ARG_OF_TYPE(X[3],1) ),
true ))
2% UNIF_UNK1( &ul2], &A[2], &x[2] )
&& UNIF_LIST( £A[3], ex[1] )
&& UNIF_UNKN( &U(4], CAR_OF( X{1] ) )
&t UNIF_UNK1( &U[3], CDR_OF( X[1] ), &X(2] )
&8 ( WMC == 0
|| ( MAKE_TYPE_FUNC( &listS, TYPE_OF_UNK(X[2]), &x[3]1 ),
MAKE_TYPE_UNKN( &U[5], ARG_OF_TYPE(X[3],1) ),
true )) )
Figure 3.20: Management of types of unknowns
is created. 3.5.3 SIMPL
SIMPL, which is the deterministic part of A\-unification
is not compiled in the current state of our implementa-
359 UNIF tion of AProlog. However, it could be compiled (almost)

Procedure UNIF performs first-order unification as
much as possible. It is almost redundant because
SIMPL and MATCH can unify first-order terms. Note
however that first-order unification can deal with
flexible-flexible pairs whereas MATCH cannot. Proce-
dure UNIF is used for executing the first-order part of
AProlog programs as efficiently as in implementations
of Standard Prolog. The main difference with Stan-
dard Prolog is that long head-normalisation takes the
place of function deref (see 3.4), and that types must be
accounted for anyway. First-order unification is used as
often as possible. It is the only part of unification that
is compiled, i.e. specialised instances of it are computed.

When a A-unification subproblem pops up during
first-order unification, the pair of terms to be unified is
created and stored, and first-order unification continues
with other unification subproblems. When a term of a
A-unification problem comes from the head of a clause,
it is created by a sequence of unification commands al-
ways operating in write mode. If unification ends with
a success, the stored pairs are given to SIMPL.

This is a general scheme for dealing with the unifi-
cation of new domains. We can imagine different unifi-
cations procedures which could be called by UNIF ac-
cording to the domain of terms.

as well as UNIF.

The implementation of SIMPL mirrors its formal
description. The list of pairs to be given to MATCH is
constructed like a AProlog list. Procedure SIMPL does
not call directly MATCH because MATCH is imple-
mented as a AProlog predicate. When needed, SIMPL
prepends a call to MATCH in the goal-statement. Note
that when it is straightforward that MATCH is deter-
ministic (e.g. a flexible-rigid pair with no argnment
in the flexible term) SIMPL computes the substitution
without the help of MATCH.

Unification of types is always done before unifica-
tion of terms (see 3.2.1.5), so that SIMPL always see
well-typed problems.

3.5.4 MATCH

MATCH takes as argument a list of flexible-rigid
pairs and solves them one after another. For each
pair, the imitation and projection procedures are non-
deterministically called. They perform substitutions of
the flexible heads and call SIMPL with the new pairs
obtained.

Imitation and projection introduce new unknowns.
For projection, the types of these unknowns can be de-
duced from the type of the substituted unknown. For
imitation, their types are deduced from the type of the
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rigid head. If the rigid head is a constant, its type is
reconstructed by the function which is generated for ev-
ery constant declaration. If it is a universal variable, it
carries its own type. It cannot be a A-variable.

MATCH is written in AProlog whereas it is called
from unification. This kind of predicate call amounts
to insert a goal in front of the goal-statement that is
created after the body of the clause.

Inserting MATCH goals prevents (or at least makes
less easy) improvements of the execution control that
are otherwise easy to implement. In the WAM as with
the MPPM, the first goals of a clause are not com-
piled like the others. The first built-in’s are executed
in-line if they are deterministic. The first non-built-
in is not created, but its arguments are stored into
registers, ready for the next execution step. MATCH
goals come across these improvements because, when
inserted, they must be checked immediately, and they
are non-deterministic.

So, even if the improvements are implemented
(which is in fact the case), one must always check that
no MATCH goal has been awakened. If a MATCH goal
must be executed then the in-lined goals and the in-
registers goal must revert to the regular representation.

3.5.5 Flexible-flexible pairs as con-
straints

Constraints are not difficult to implement, at least with
MALIL It is only a special case of merging terms and
control.

The flexible-flexible pairs are added like constraints
to the two unknowns which are the heads of the terms.
Note that every constraint must contain the representa-
tion of its allowed signature because it might be awak-
ened in a different context?’. The flexible-flexible pair
is added to the attributes of the unknowns (their types
and allowed signatures, plus other constraints if any).
When one of the unknowns is eventually substituted,
the constraints are processed.

This is similar to the attributed variable technique
described by Le Huitouze [43].

3.5.6 TRIV

TRIV is a heuristic for solving more problems than the
general procedure can handle. In many cases, a uni-
fying substitution can be straightforwardly computed.
Two difficulties arise: the need for an occurrence-check
and the fact that an unknown may be hidden in an ab-
straction by n-expansion. A failure of TRIV does not
imply a failure of unification. It only means that the
general procedure must be applied.

3.5.6.1 The occurrence-check problem

The most trivial case is a unification problem with the
form < X, t>. A solution is the substitution [t/X]
if X and t satisfy an occurrence-check. The notion of

21 More generally, a suspended computation must be rep-
resented with its relevant program and signature continua-
tions. Suspended unification needs only the signature con-
tinuation because it does not depend on the program.
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occurrence-check for A-unification is not as simple as
for first-order unification. An occurrence of X in t may
be discarded by further reduction. Sufficient criteria
for performing the trivial unifications are presented by
Huet.

Example 3.5.1
Let term t be (U X Y), X could appear in t according
to whether U gets substituted by Azy.z or Azy.y.

As for Standard Prolog, the occurrence-check is not
implemented. However, a special first-order equality
predicate with occurrence-check is available for doing
type-checking in AProlog. Occurrence-checking is really
crucial for type-checking.

3.5.6.2 Dealing with n-equivalence

f-expansion may cause an unknown X to be replaced
by A%.(X u). An efficient TRIV procedure must recog-
nise similar cases. When fnrev is called in mode
(fnrev + -), its second argument is an unknown but
it is #-expanded. The procedure TRIV recognises it
and does the substitution. The permutation version of
TRIV [57] is not implemented in our system, but it can
be.

Another feature of TRIV comes from the obser-
vation that the application of an unknown X with
allowed signature S to a collection of universal vari-
ables {%}, disjoint from S, is equivalent to an unknown
with allowed signature S U {@}. TRIV recognises cases
of the form < (X u,), t > and computes substitution
[(Ava.t[vi/u1,...,vn/un))/X]). In fact, the duality of
A-quantification and V-quantification shows that it is
another case of recognising n-equivalence.

The latter situation is very frequent. It occurs every
time there is a conversion between an essentially uni-
versal quantification at the term level and an essentially
universal quantification at the goal level.

Example 3.5.2
In clauses

abstraction E :-

pi x\
( variable x
=> term (E x)
).
and
list2flist L FL :-
pi list\ .
( append L 1list (FL list)
R

terms (E x) and (FL list) are recognised as unknowns
by procedure TRIV.

Because term ¢t may contain unknowns and because
it is not certain that term Avn.t[vi/ui,...,vnfun] is
really useful, the substitutions [vi/u;] are not actu-
ally applied to t. They are coded as explicit substi-
tutions [67, 1]. Note that long head-normalisation done
before A-unification has better perform immediate sub-
stitutions because the heading of the term is actually
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used by A-unification. In this case of TRIV, one can-
not be so sure that the normal form is useful. Since
explicit substitutions must be reduced sometime, they
are represented by muterms:

(mc3 SORT_SUBST u v t)

As we have seen in section 1.3.5, recognising L pat-
terns generalises a lot of trivial pairs. It subsums all the
above examples. Recognising flexible L, patterns is not
more complicated than recognising more specific TRIV
patterns such as n-redexes. Recognising rigid L pat-
terns is much more complicated; it has the complexity
of an occurrence check. Recognising rigid L patterns
matters less than recognising flexible L, patterns be-
cause as soon as one term of a unification problem is
rigid then Huet’s procedure applies and is deterministic
if the terms are in L. Recognising flexible L patterns
allows to apply elimination of flexible-flexible pair when
Huet’s procedure can only suspend the problem.

3.5.7 Folding representations
3.5.7.1 Folding unificands

The logic of unification is to find a substitution mak-
ing two terms equal. If they are equal then they can
share the same representation. We have seen that both
abstractions and non-first-order applications are repre-
sented by muterms. So, it is easy to make the two terms
share the same representation by substituting one to the
other. The effect is to fold the representations because
two terms with initially different representations end up
to have the same. This substitution must be reversible
(like the others: solution substitution and A-equivalence
substitution). Reversibility comes as a consequence of
using muterms. Folding saves unification effort because
identity of representation is easier to check than equal-
ity. It also saves memory, hence garbage collection time.

Note also that, when used systematically, folding of
unificands is the basis of rational terms unification (18,
22, 73, 42] and of a fast unification procedure [31].

3.5.7.2 Folding normal forms

Terms in unification problems must be put in long head-
normal form before being compared. After applying
the substitutions invented by imitation or projection,
the flexible term is no more in long head-normal form.
However, its new long head-normal form is easy to de-
duce from the term and the substitution without using
the B-reducer. So, imitation and projections invent a
substitution value, substitute it to the head of the flex-
ible term, compute its new long head-normal form, and
substitute it to the flexible term.

Remembering that unification also substitutes equal
for equal, it appears that many more substitutions than
the so-called “solution substitutions” are done. The
supplementary substitutions contribute to saving unifi-
cation and reduction time, and to saving memory.

Example 3.5.3

Unification problem < ti,t; >, where t;, = Az.t3,
ts = (U (z S1)), and t; = Az.(z S2), yields three sub-
stitutions after one run of MATCH:
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1. [Ay.y/U] (solution substitution),

2. [(z S$1)/t3] (for direct long head-normalisation of
t, before passing it to SIMPL), and

3. [t2/t1] (substituting equal for equal).

Remember that unknowns, abstractions, and potential
redezes are all represented by muterms. So, they are
mutable.

3.6 Special static patterns

Compiling becomes really valuable when special source
patterns exist for which the general execution scheme
can be specialised. We sum up in this section the pat-
terns our compiler currently recognises and the associ-
ated specialisations and savings.

3.6.1 Forgotten types

A simple example (see in section 3.2.1.2) shows that
well-typed programs may go wrong if types are not dy-
namically checked. Moreover, computation of projec-
tion is based on types. So, types must be represented
at run-time.

Representing types of unknowns solves the projec-
tion problem but does not help preventing programs
from going wrong. More types need to be represented.
The worst would be to have to represent the types of
every term and subterm. The important pattern that
improves the representation of type is the occurrence of
forgotten types in type declarations. They indicate the
only places in which types need to be represented for
checking the well-typing of unification problems.

Furthermore, the type checking done at compile-
time indicates which types are identical and can share
representation.

3.6.2 Combinators

B-reduction is required to duplicate left members of re-
dexes. It is easy to see that combinators need not be
duplicated and that their representation can be shared.

Since substitution values are always combinators,
all instances of combinators of the source program
are combinators. So, it is worth recognising them at
compile-time. QOur experiments show that it is a very
important pattern, and that using it properly changes
the complexity of programs.

3.6.3 First-order applications and

constants

The general unification procedure of AProlog is Huet’s
algorithm. However, first-order applications (i.e. appli-
cations with a constant leftmost term) and first-order
constants in head are recognised for using the first-order
unification scheme. So, these patterns are compiled
rather classically. The representation of first-order ap-
plications is chosen so as to be easily recognisable so
that, at run-time, unification and fB-reduction are im-
proved.
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Figure 3.21: The reduction of (SUCC (SUCC (SUCC ZERO}))
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Figure 3.22: The reduction of (SUCC (SUCC (SUCC ZERO))) with B-reduction
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Figure 3.23: The reduction of (SUCC (SUCC (SUCC ZERO))) with Bn-reduction
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3.6.4 Long head-normalisation of

source terms

All terms of source clauses are put in head-normal
form before generation. All terms, except logical vari-
ables, are n-expanded according to their types. This
makes dynamic long head-normalisation less necessary.
It also provides a macro-like feature which may im-
prove the programming style. Long head-normalisation
makes more applications to be first-order applications.

However, a careless use of n-expansion costs several
orders of complexity in some cases. The problem is that
the number of 3-redexes and the size of the terms that
must be duplicated during 3-reduction are dramatically
increased.

Example 3.6.1
If no care is taken with n-expanded terms, the time com-
plezity of goal

SUCC = n\s\z\(s (n s z)),
ZERO = s\z\z,

reduce (SUCC (SUCC ...(SUCC ZERD)... ))

13 cubic with the number of SUCC’s.
Because of long head-normalisation the actual goal
13

SUCC = n\s\z\(s (n x\(s x) z)),
ZERO = s\z\z,
reduce a\b\(SUCC
c\d\ (succ
u\v\ (SUCC ZERD x\(u x) v)
x\(c x) d)
x\(a x) b)

The rightmost s in (SUCC ...) is n-expanded because
it ezpects an argument. Applications (SUCC ...) ez-
pect 2 arguments. Term ZERO expects 2 arguments but
it 15 a logical vartable. A-variables a, ¢, and u have
been introduced by the n-ezpansion process and are also
n-ezpanded.

The reduction is shown in figure 3.21. Irrelevant in-
termediary steps are skipped so that several elementary
B-reductions may be necessary to go from one line to
the next one. Carets underline what is duplicated dur-
ing a reduction step, and numbers refer to the following
enumeration.

1. First reductions carelessly nest abstractions cre-
ated by long head-normalisation.

2. They introduce parasitic 3-redezes that need a lot
of copying. Note that recognising combinators
does not help because the terms that are dupli-
cated are not combinators.

8. Third SUCC causes more nesting and parasitic
B-redexes that . . .

4. ...cause more copying.

Note that the amount of copy for reducing each SUCC is
the area of a triangular pattern that grows with the rank
of the SUCC. Hence the cubic time.
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We observe that the parasitic §-redexes that are
created by n-expansion can be reduced using a sim-
pler rule than B-reduction. We call this simpler rule
weak f-reduction (noted ). It is based on axiom
(Az(E z) F) =5 (£ F), where variable z does not oc-
cur in E. The interest of B-reduction is that it can be
implemented without duplicating the body of the ab-
straction, F.

Long head-normalisation creates terms AZ.(E T)
where variables T do not occur in E. We represent
abstractions which are created by n-expansion with a
different sort so that these terms are easily spotted.
The new sort of abstraction is represented as

(mtu SORT_ETA_ABS N+1 x1 ... xN E).

Note that the two sorts of abstraction must be con-
sidered the same way in every procedure (unification,
display) except in B-reduction.

Example 3.6.2
This improvement makes the goal in example 3.6.1
quadratic with the number of SUCC’s. The reduction is
shown in figure 3.22. It performs B-reductions in place
of some (-reductions. Hence, reduction does less copy-
ing.

1. The reduction goes as above . ..

2. ... except that no_duplication is required for par-
asitic 3-redezes (-reduction).

3. Agatn, third SUCC nests more abstractions but . ..
4. ...no duplication is required.

Now, the amount of copy for reducing each SUCC is the
length of a pattern that grows with the rank of the SUCC.
Hence the quadratic time.

Among the terms that are n-expanded are the
A-variables. 7n-expanded A-variables must be recog-
nised when applying a substitution because it is use-
less to keep their supplementary binder in the result:
(Az.(z 2))[t/z] =t. This preserves the invariant that
all applications and constants are in long head-normal
form.

This improvement is similar to what procedure
TRIV does for spotting trivial pairs. Having distin-
guished abstractions caused by n-expansion makes it
simply easier.

Example 3.6.3

The two improvements make the goal in example 3.6.1
linear with the number of SUCC’s. The reduction is
shown in figure 3.23. The improved reduction does not
nest abstractions coming from n-expansion. This pro-
duces less B-redexes, hence less reduction steps and less
copying.

1. The reduction goes as above except that ...

2. ...n-expanded A-variables are recognised, so that
abstractions are not nested.

3. One B-reduction is enough to go to third SUCC
and ...

4. ...neither reduction nor duplication is required.

The cost of reducing each SUCC is constant. Hence, the
linear time.
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3.6.5 A weak substitute for clause
indexing

Clause indexing is the exploitation of the clause heads
contents for computing more direct clause selection pro-
cedures. We have not yet implemented it.

Usually, when control enters a clause that is not
the last of a predicate, a choice-point is created (or an
already existing choice-point is updated). It can be a
waste of time and memory if a succession of choice-
point creations and choice-point consumptions is used
to select a clause in a predicate. Clause indexing helps
selecting more directly the proper clause.

We have partially compensated the lack of clause
indexing by delayed creation of choice-points. Delayed
creation of choice-points amounts to indicating that a
choice-point is to be created instead of creating it. The
creation must be resumed as soon as an unknown is
substituted, or at the end of unification, if no unknown
is substituted. If a failure occurs while the choice-point
creation is still delayed, failure is merely implemented
as a jump.

More interestingly, substitutions of a long head-
normal-form to a non-normal form do not count as
substitutions of unknowns. So they do not trigger the
choice-point creation. The neat effect is that a goal ar-
gument is reduced only once before all the attempts to
unify it with a clause head, whereas if the choice-point
were created as soon as ordered then the goal argu-
ment would be reduced for every unification attempt,
and unreduced at every backtrack. Note that the brute
force solution consisting in reducing a goal before uni-

fying
1. kills lazyness, and
2. does not eliminate the need for normalising dur-

ing unification because substitutions might build
redexes.

Example 3.6.4
In program

test 0 :-
do_something.
test 1 :-
do_something_else.
query :-

N = s\z\(s(s(a(a(s(s8(s 2))))))),
M=1,
test (N x\x M).

reder (s\z\(s(s(s(s(s(s(s 2))))))) x\x 1) is re-

duced only once instead of twice.

So, delayed creation of choice-point gives a partial
solution to a critical problem that appears every time
normalisation of terms or awakening of constraints are
possible.
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Chapter 4

Evaluation of Performances

4.1 The compiler

All that we have presented in the previous sections
is implemented in a system called Prolog/Mali. The
compiler source amounts to about 6000 AProlog lines.
When translated into C, it amounts to 50000 lines
(=~ 1 MPPM statement per line). The source of the vir-
tual machine and run-time system is made of 7000 lines
of C.

4.1.1 Description of the system

Prolog/Mali implements the complete core of AProlog
plus extensions such as a catch/throw escape mecha-
nism, predicates freeze and setof, and a debugging
environment. A DCG expansion mechanism for a typed
and higher-order variant of the DCG formalism (Def-
inite Clause Grammars [64, 61]) is also part of Pro-
log/Mali. Since the structure of grammar rules is still
that of definite clauses, the extended system still de-
serves the name DCG. A variant of the DCG formalism
following the structure of hereditary Harrop formulas
wonld better be called HHG (Hereditary Harrop Gram-
mar) [44].

4.1.1.1 Separate compilation

Prolog/Mali favours separate compilationand the build-
ing of linkable object files. That the compiler is rather
slow is also a strong incentive for using separate com-
pilation. Like for C compilers, compilation is a multi-
staged process that can be entered and exited at any
stage.

Modularity is managed as in C, with the difference
that locality of symbols is the rule rather than the ex-
ception.

4.1.1.2 Stand-alone application

Prolog/Mali programs are always compiled in appli-
cation mode. This means that the compiler produces
stand-alone executable files. Furthermore, Prolog/Mali
applications follow the host-system call/return conven-
tions and use the standard input/output ports.

All Prolog/Mali applications also recognise options
of the form -PM_.... They may be used for control-
ling execution: e.g. for specifying memory management
when the standard behaviour does not fit the applica-
tion, or for ordering a monitored execution of the ap-
plication.

Every Prolog/Mali application should contain in
one of its modules a definition of the following form
for the predicate main:

type main
int -> (list (list int)) -> o.
main Argc Argv :-

Argument Argc is unified with the number of words in
the calling command. Argument Argv is unified with
the list of these words. If the call to the program is

% prog argl ... argN

the initial goal is

(main N+1 ["prog","argil", ...,"argN"])

4.1.1.3 Predicates freeze and setof

Predicate freeze

Predicate freeze is a transposition of the predicate
of Prologll with same name [74, 42]. In Prologl], the
semantics of goal

(freeze Term Goal)

is that Goal is not executed as long as Term is an un-
known. In AProlog, Goal is not executed as long as Term
is flexible. As we have seen in several occasions, flexible
terms must be considered as unknowns.

The versatility of the representation with MALIv06
makes it easy to attach suspended goals to an unknown,
and to detach them when the unknown gets substituted.
Operationally speaking, to add predicate freeze to
AProlog is just natural since the basic mechanism must
exist for delaying resolution of flexible-flexible pairs.

Predicate setof

Predicate setof is a transposition of the predicate
of Standard Prolog with same name. In Standard Pro-
log, the semantics of setof, which is roughly to accu-
mulate solutions of a goal, is made hairy by the lack of
scoping construct. The semantics of goal

(setof Pattern Goal List)

depends on the run-time occurrence of unknowns in

65Pattern and Goal. Unknowns that occur in Pattern
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(when calling setof) are called local'. Unknowns that
occur in Goal and are not local are called global. When
Goal is executed, its solution substitutions produce in-
stances of Pattern. Those giving the same values to the
global variables are accumulated in List. When differ-
ent values are given to global variables, different List’s
are accumulated and enumerated by backtracking.

That run-time circumstances must be invoked for
giving the semantics of predicate setof is in contradic-
tion with the objectives of declarative programming.

We transpose the same semantics to AProlog, but
we benefit from the scoping constructs of AProlog for
making the scopes of the unknowns explicit. Scopes are
no more determined at run time. In AProlog, predicate
setof is declared and used as

type setof
(list A) -> (A -> o) -> o.

setof List p\(sigma LI\(...(sigma Ln\
( Goalll ... Lnp
...,

The type declaration and the layout show that
(setof List) is a quantifier, just like sigma and pi.
That is why we put the list parameter in this unusual
position. The local unknowns L1, ..., Ln are all ex-
plicitly quantified by existential quantifications. The
pattern, p, is scoped by a A-quantification.

Example 4.1.1
With the classical “drinkers” program [59]

kind (individual, beverage)

type.

type (’Tim’, ’Joe’)
individual.

type (tea, milk, beer, wine)
beverage.

type drinks
individual -> beverage -> o.

drinks ’Tim’ tea.

drinks °’Tim’ milk.

drinks ’Tim’ beer.

drinks ’Joe’ tea.

drinks ’Joe’ wine.

the query

query :-

setof L p\(sigma I\(sigma D\
( p=(pair I D),

drinks I D
).

gathers all the individual-beverage pairs in unknown L.

The notion of “global variable” must be slightly al-
tered for taking into account logical variables in pro-
gram clauses. We have seen in section 1.4.3 (exam-
ple 1.4.3) that an effect of implication in goals is that

! There is also a special syntax for explicitly tagging un-
knowns as local.

logical variables may be kept in the program while dis-
appearing from the goal-statement. However, these log-
ical variables are also global variables, even if they do
not occur in the goal. They are easy to find in the
program continuation, though it is a new overhead.

Example 4.1.2
The following query

query :-
( p X o
=> setof L x\
( pt x
H P 2 x
)’
).

must succeed twice because it gives two different bind-
ings to unknown X in the program. In both cases, un-
known L 13 substituted by list [0].

The notation we have chosen is heavier than the
Standard Prolog notation, but it is explicit and does
not make the actual quantification of a goal depend on
a run-time circumstance.

Some problems remain: sorting the instances of the
pattern in the list, type unknowns, and delayed unifi-
cation problems.

e The instances of the pattern are supposed to be
put in the list according to a stable, total order
on terms. It is easy for ground terms, it becomes
quite arbitrary for unknows, and it is completely
ad hoc for abstractions and flexible applications.

e Type unknowns should also be candidate to
be considered as global variables. Definitional
genericity should prevent from giving different
bindings to the same type unknown in different
branches of the search-tree. However, some pred-
icate are definitively not definitionally generic.
E.g. built-in predicate read has type A -> o;
imagining its extensional definition in Prolog
shows that it is not definitionally generic.

¢ The instances of the pattern may be qualified by
delayed unification problems, which can be in-
terpreted as pending equality constraints. They
should probably be part of the accumulated solu-
tions, but are currently forgotten. This problem
is common to every logic programming system
with constraints or delayed goals.

4.1.1.4 An interactive symbolic debugger

When compiled in debug mode, an application can
be monitored using an interactive symbolic debugger.
The user can follow the execution step-by-step, or leap
over subproofs or leap to break-points. The user can
also display terms, the search-stack and the proof-stack.

The debugger interprets the program with the pro-
cedural reading of Prolog. The state of the debugger
is described by a current goal, a current environment,
a call-stack, and a search-stack. The main debugger
commands are the following:
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append, pm

append [1 Y Y,

>>append [RIX] Y [AIZ2) :-~append X Y 2Z,

main _ _ :- append [0,1,2,3,4] [5,6,7,8,91 L, print L,
R
stopped at "append.pm”:7, append
f run |l rerun |i  fail ]I stopon ||  stack |I  erint |1  dmp |} clear_cu
{ interrupt || cont || success || stopat || where || display || status | M tupes
Poquit |1 stee |1 try [l hide ]} w || displagx || delete | 01 reduce
I help  |I  rnext |1 retry || nodebug |i  down ]| write | file |

(xdbg) where
"append.pn”:7, append
"append.pn” 7, append
"append.pn":9, append
{xdbg) stack

(xdbg) switch types on
(xdbg) dump

Z = KFJB[(list int}]
Y=105 6,7, 8, 9]
X=1(2, 3, 4]

A=1

(xdbg>

I

Figure 4.1: A snapshot of a debugging session

o

xZ = [1 | _KFJB]
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type T’ /* Terminal string */
(list A) -> (segment A).
type epsilon /* Condition (empty terminal string) #*/
o -> (segment A).
type (’&°, ’:?) /% Concatenation and disjunction =/
(segment A) -> (segment A) -> (segment A).
type ’-->’ /* Derivation #/
(segment A) -> (segment A) -> o.
type ’DCG rule’ /* Expansion of grammar rules =/
o ->o0 ->o0.
type ’DCG head’ /* Expansion of rule heads */
(segment A) -> (segment A) -> o.
type ’DCG pushback’ /* Pushback list =/
((segment A) -> (segment A)) -> o.
type ’DCG head’ /* Expansion of rule heads »/
(segment A) -> (segment A) -> ((segment A) -> (segment A)) -> o.
type ’DCG body’ /* Expansion of rule bodies s/

(segment A) -> (segment A) -> o.
type ’DCG terminal’
(list A) -> (segment A) -> o.

/+ Expansion of terminals */

Figure 4.2: The DCG translator (declarations)

run args, rerun args — Starts the execution of a pro-
gram with arguments args. The current goal is
the first goal of the first clause of predicate main
that matches the argument. The current environ-
ment is this clause together with new unknowns.
The call-stack is empty. The search-stack con-
tains the goal (main n+1! argn) if clauses re-
main, it is empty otherwise.

fail, succeed — Commits the current goal to fail or
succeed without executing it.

step n, next n, cont n — Proceeds on the execution
of a program. Each command may succeed or
fail. They succeed respectively when the current
goal can be rewritten in a clause body, or when
it can be solved, or when the end of the program
or a breakpoint is reached. Otherwise, they fail.
In case of failure, nothing is changed, and the
user can proceed, probably using a finer grained
execution command, or can commit the current
goal to success or failure.
All these commands may be repeated n times.

stop on p, stop at position — Creates a breakpoint
on predicate p, or at position position.

stack, wvhere n — Displays the search-stack, or the n
most recent levels of the call-stack.

up n, down n — Moves along the call-stack.

try, retry — Creates an exploratory search-point,
and backtracks to it.

print u, display u, display* u, dump — Prints or
orders the permanently updated display of the
value of unknown u. Command display inter-
prets the name of the unknown in the environ-
ment of the display; it displays the value of a
different unknown in every different environment

containing an unknown of that name. Command
display= interprets the name of the unknown in
the environment in which the display is ordered;
it always displays the value of the same unknown.
Note that the value may change because of substi-
tutions. Command dump displays the whole cur-
rent environment.

status, delete n — Displays the data-base of break-
points and display orders. Command delete sup-
presses entry number n from the data-base.

Figure 4.1 shows a snapshot of a debugging session.
The graphical debugging environment has four main
areas.

1. The topmost area displays the source of the mod-
ule being executed. The line of the current con-
trol point is marked by one of >>, <<, and ><.

>> The control point is a call to a goal.
<< The control point is a return from a clause.

>< The control point is a failure.

The predicate name of the actual control point
is also displayed under the topmost area. It is
mainly useful when lines contain several goals,
which is altogether a bad program lay-out.

2. Second area from the top is a command panel
with buttons and switches. It allows to send com-
mands with parameters selected in other areas.
In the figure, switch typeis on, which means that
types of unknown values will be displayed.

3. More elaborated commands can be sent from the
third area which also display the history of the
debugging session. One can see on the figure the
dump of all logical variables of the current clause.
Note that logical variable Z is displayed with its
type (eighth line).
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/*

Combinators used for translating connectives. =*/

#define CONJ left\right\in\out\(sigma Link\(left in Link, right Link out))
#define DISJ left\right\in\out\(left in out; right in out)
#define EPSILON goallin\out\(goal, in=out)

/*

*%

(’T’

Definitions of the connectives.

They are used at run-time, if a non-terminal is flexible at compile-time. =/
Terminal0) In Out :-

’DCG terminal’ TerminalO Terminal,

Terminal In Out. ’

(S1 & S2) In Out :-

(st :

CONJ S1 S2 In OQut.
S2) In Out :-
DISJ Si S2 In Out.

(epsilon Goal) In Out :-

/%
*%
g

’DCG

’DCG

*
’DCG

’DCG

/*
-
’DCG

’DCG

’DCG

’DCG

/*
’DCG

/*
%
’DCG

EPSILON Goal In Out.

Translates a rule. )
First strips the rule of its universal quantifications,
second splits the rule in a head and a body. =/

rule’ (pi Rule) (pi Clause) :-
pi y\
( ’DCG rule’ (Rule y) (Clause y)
).

rule’ (Head0 --> Body0) (pi In\(pi Out\(Head In Out :- PushBack Body In Out))) :
y P P y

(  ’DCG pushback’ PushBack
=> ’DCG head’ Head0 Head
),

’DCG body’ Body0 Body.

Translates a head and specifies a transformer to be applied to the body.
The transformer is either a "conjunctor' or the identity function. =/
head’ (Head0 & (’T’ Terminal0O)) HeadO :- !,
’DCG pushback’ body\(CONJ body in\out\(Terminal out in)),
’DCG terminal’ TerminalQ Terminal.
head’ Head0 HeadO :-
’DCG pushback’ x\x.

Translates a body.

Applies a combinator according to the main connective and proceeds. =*/
body’ (Left0O & Right0) (CONJ Left Right) :- !,

'DCG body’® Left0 Left,

’DCG body’ Right0 Right.
body’ (LeftO : Right0) (DISJ Left Right) :- !,

’DCG body’ Left0 Left,

’DCG body’ RightO0 Right.
body’ (epsilon GoalO) (EPSILON GoalO) :- !.
body’ (’T’ Terminal0) Terminal :- !,

’DCG terminal’ Terminal0 Terminal.

A true non-terminal is ready to get its missing arguments. =*/
body’ NonTerminal0 NonTerminalO.

Translates a terminal.

The only part that has to do with lists. Can be easily changed. #/
terminal’ Terminal in\out\(in=(FTerminal out)) :-

list2flist Terminal FTerminal.

Figure 4.3: The DCG translator (definitions)
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4. Last area from top contains the displays the user
has ordered. Here, #Z indicates a display of kind *
of logical variable Z.

There is a contradiction in displaying a procedural
semantics with a call-stack when the actual execution
scheme is based on continuations: continuations give
no account of the call history. When compiled in de-
bug mode, every predicate is augmented with special
goals that hold the necessary redundancies: call-stack
structure, name of unknowns, line numbers, etc.

4.1.1.5 A DCG translation system

The DCG formalism has been adapted to AProlog. The
main problem is the strict typing policy of AProlog.
In Standard Prolog’s DCG, the connective ’,’ serves
both as a logical connective with type o => o -> o in
the clause syntax, and as a concatenation connective
in the DCG formalism. Furthermore, the DCG for-
malism accepts strings (denoting terminals), goals (for
side-conditions), and true non-terminals in the same
syntactic position. One have to find a common type to
all these features.

We consider that non-terminals, terminals and side-
conditions have type

(list A) -> (list A) -> o

Though there is no proper means for doing this, we ab-
breviate it in (segment A). This is the type of a binary
relation on strings. It can also be seen as the type of a
goal with two arguments missing.

Items are connected with concatenation and dis-
junction connectives ‘&’ and ’:’. Goals are
wrapped into term constructor epsilon (for empty non-
terminal), and terminal strings are wrapped into term
constructor ’T’. True non-terminals are not wrapped
at all; they are AProlog goals with the input and out-
put arguments missing. The types of these connectives
and constructors are given in figure 4.2.

Figure 4.3 shows the main lines of the DCG trans-
lator. There is no fiddling with unknowns as in the
Standard Prolog version. Adding the missing argu-
ments is done by mere application rather than using the
functor/3 and arg/3 built-in’s. Moreover, unknowns
of the generated clauses are correctly represented by ex-
plicit quantifications, whereas they are incorrectly rep-
resented by unknowns in the Standard Prolog version.

Note how combinators are defined and used in pred-
icates just like we did with function-lists predicates in
section 1.5.3.

Translation of terminals (term constructor °T’})
could have used predicate ’C’ of Standard Prolog. It
would not have committed the formalism to work on
lists.

4.1.2 A running example (contin-
ued): application to predicate
fnrev

We apply all the mechanisms we have described in chap-
ter 3 to the execution of goal

(fnrev z\[11(z\[21(z\[31z] z)] z)] LOut)

The unification problem associated with the first
parameter of fnrev is

<z\[11(2\[21(2\[3!2] 2)] 2)]1,z\[AI(L 2)]> .

Simplification (done by procedure SIMPL) results in
two new problems

< z\1, z\A >
and
< z\(z\[2|(2\[312] 2)] z), z\(L z) > .

The first pair yields substitution [1 / A] by imita-
tion. In the second pair, z\(L z) is recognised to be
n-equivalent to L. So, the second pair yields the trivial
substitution

(z\(z\[2] (z\[3iz] z)] z) / L]

No occurrence-check is required because it is the first
occurrence of L.

The unification problem associated with the second
parameter of fnrev is

< LOut, z\(RL [Alz]) >
or
< LOut, z\(RL [1]z]) >

if it 1s treated after the first parameter. It produces the
trivial substitution [z\(RL [Al2]) / LOut].

So, one execution step is done in constant time and
produces the derived goal

(fnrev z\(z\[2|(z\[3{z] z)] z) LOut1)

After a B-reduction of the outermost redex of its first
parameter, the derived goal has the same profile as the
father goal; the next execution step will take the same
amount of time. And so on. So, the execution of goal
(fnrev LIn LOut) with mode (fnrev + -) is linear in
time with the length of LIn.

When the input list is completely 8-reduced, fnrev
is linear for similar reasons. When the list is in the
third form (see in section 3.4.1), the access to its first
element causes its reduction; then the previous analysis
applies.

4.1.3 Application to predicate append

We give in this section examples of the actual C
code that is produced for two versions of the append
predicate. In one version, the predicate is declared
monomorphic, whereas in the other it is polymorphic.
In the latter case, the produced code has to deal with
forgotten types. It results in a few more instructions,
and a slower executable code. The speed of the nrev
predicate using the monomorphic append is 26000 Lips
on a workstation “sun4/sparc2”. It is 23600 Lips with
the polymorphic version of append (a 10% penalty).
The translation takes 5 seconds and produces about
100 lines of C for predicates append and nrev. Much
more lines are actually generated because of the default
definitions. The compilation and linking of the C code
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¥ ifdef polymorphic
type append
(list A) -> (list A) -> (list A) -> o.
# else monomorphic
type append
(list int) -> (list int) -> (list int) -> o.
# endif

append []J] X X.
append [EIX] Y [E|IZ] :-

append X Y Z.

Figure 4.4: (Poly/Mono)morphic append

static void PM_c_append()
{ loop:
SELECT_ENTRY()
{ PM_ENTRY(1L): /*+ type A = 128

{

}

RECORD_TRY(2L);
if (
UN_T_UNK1(REG_TYPE(1), 128) &k
UNA_NIL(1) &% UNA_UNKN(3, 2)) 2& FINISH_UNIFY())
{ COMMIT_CHOICE(); CONTINUE() } else { FAIL_TRY(); }

PM_ENTRY(2L): /* type A =128 E= 127 X=1 Y =2

{

}}}

RECORD_TRUST() ;
if (
UN_T_UNK1(REG_TYPE(1), 128) &&
UNA_CONS(1, &xx[1]) &&
UN_UNK1(CONS_SELECT_CAR(xx[1]), 127,
( MK_T_UNKN(UNK_SELECT_TYPE(control.robj.unk), 128))) &&
UN_UNK1(CONS_SELECT_CDR(xx[1]), 1,
( MK_T_APPL1(&PM_k_list, UNK_SELECT_TYPE(control.robj.unk), &xx[2]),
MK_T_UNKN(T_APPL1_SELECT_ARG(xx([2], 1), 128))) &t

UNA_CONS(3, &xx[1]) &&
UN_UNKN(CONS_SELECT_CAR(xx[1]), 127) &&
UN_UNK1(CONS_SELECT_CDR(xx[1]), 3,
( MK_T_APPL1(&PM_k_list, UNK_SELECT_TYPE(control.robj.unk), &xx[2]),
MK_T_UNKN(T_APPL1_SELECT_ARG(xx[2], 1), 128)))) &&
FINISH_UNIFY())
{ COMMIT_CHOICE(); MK_FIRST_GOAL(&PM__append);
MK_T_UNKN(REG_TYPE(1), 128);
LOOP();
} else { FAIL_TRUST(); return; }

Figure 4.5: Compilation of the polymorphic eppend (edited)

/* (2)

/* (3)

/* (4)

/* (5)

/* (6)

/* (T)
/* (8)

=/

=/

*/

*/

*/

*/

*/

*/

*/
=/
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static void PM_c_append()
{ loop:
SELECT_ENTRY ()
{ PM_ENTRY(1L):
{ RECORD_TRY(2L);

/¢ X=2 =%/

if ( UNA_NIL(1) &% UNA_UNRN(3, 2) && FINISH_UNIFY())
{ COMMIT_CHOICE(); CONTINUE(); } else { FAIL_TRY(); }

}
PM_ENTRY(2L):
{ RECORD_TRUST();
if (
UNA_CONS(1, &xx[1]) 2%
UN_UNK1 (CONS_SELECT_CAR(xx[1]), 128,

( MK_T_SYMB(&PM_k_int, UNK_SELECT_TYPE(control.robj.unk)))) &&

UN_UNK1(CONS_SELECT_CDR(xx[1]), 1,

/+ E=128 X=1 Y=2 Z=3 »/

/% (1) »/

( MK_T_APPL1(&PM_k_list, UNK_SELECT_TYPE(control.robj.unk), &xx[2]),
MK_T_SYMB(&PM_k_int, T_APPL1_SELECT_ARG(xx[2], 1)))) &&

UNA_CONS(3, axx(1]) &&

UN_UNKN (CONS_SELECT_CAR(xx[1]), 128) &&

UN_UNK1(CONS_SELECT_CDR(xx[1]), 3,

( MK_T_APPL1(&PM_k_list, UNK_SELECT_TYPE(control.robj.unk), &xx[2]),
MK_T_SYMB(&PM_k_int, T_APPL1_SELECT_ARG(xx[2], 1))))) &&

FINISH_UNIFY(Q))

{ COMMIT_CHOICE(); MK_FIRST_GOAL(&PM__append); LOOP(); } else { FAIL_TRUST(); }

11}

Figure 4.6: Compilation of the monomorphic append (edited)

takes 2 seconds. The speed of an efficient Standard Pro-
log compiler (SICStus 0.7) is about 170000 Lips.

Figures 4.5 and 4.6 show the actual generated code.
Its commands follows the principles of the MPPM, but
are slightly different for dealing with the specifics of
AProlog. For instance, command LOOP is almost the
same as

JUMP_GOAL (&PM__append) ; goto loop

but it has also to deal with awakened constraints and
inserted MATCH goals. Command FINISH_UNIFY has
to do with delayed unification. For dealing with de-
layed creation of choice-points, or-control commands
are split into commands RECORD_something for record-
ing the delayed or-control operations, and a command
COMMIT_CHOICE for executing the current delayed oper-
ation.

We do not want to insist too much on a particular
intermediate machine. What is important is to spe-
cialise and to extend MALI in the style of the MPPM.
The intermediate machine is an unstable part of the
Prolog/Mali system. It must satisfy two requirements
that happen to be contradictory:

¢ Code for the intermediate machine must be eas-
ily generated. This leads to many variants of
the commands for fitting the different contexts.
E.g. unification commands can be specialised for
operating on argument registers (write mode is
impossible —the type of unknowns need not be
created—, the term is necessarily a combinator,
the vhere parameter is a cell in an indexed array

—it is easier to denote the index than the cell—).
More specialisation can be achieved if one consid-
ers the number of occurrences of unknowns.

One may object that code generation does not
matter because a computer is doing the work.
However, this is important when designing the
execution scheme, the intermediate machine, and
its implementation at the same time.

e Theintermediate machine must be simple and or-
thogonal for making its development safer. This
means that the machine adapts to the context
through parameterisation rather than through di-
versification of commands.

Figure 4.5 shows the C code produced for the poly-
morphic append. It calls for a few remarks.

Line (1) The forgotten type of the head is unified with
the forgotten type of the goal. Since, it is always
the first occurrence of the type unknown, com-
mand UN_T_UNK1 always operates in read mode.
The forgotten type is stored in register 128.

Line (2) The forgotten type must be read for every
clause. A first improvement would be to produce
the code for forgotten types only once because it
is the same for every clause. A second improve-
ment is to execute it only once.

Line (3) Every unknown must carry its type. For a
first occurrence in read mode, one has only to
read the corresponding goal term. If it is an un-
known, then it comes with its type, otherwise no
type is required. In write mode, the unknown is
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created and its type too. Since it only operates in
write mode, the type sequence is made of make
instructions.

Type sequences corresponding to the forgotten
types of append are not part of the conjunc-
tion of unification commands because they should
always succeed?. In some sense, they operate
in two modes, but one of them is trivial and
amounts to doing nothing.

In this case, the unknown (E) has the forgotten
type of the predicate. So, it is an n-th occurrence
of the type stored in register 128.

Line (4) As for line (3), a type may be created in
write mode. In the case of unknown X, it is a
complex type (list ...).

Line (5) No code is produced for unknown Y. The goal
term, whichever it is, remains in register num-
ber 2, ready for the recursive call to append.
Note that unknowns X and Z are loaded in the
argument registers 1 and 3, to be ready for the
recursive call.

Line (6) The type sequence of unknown Z is like the
one of unknown X.

Line (7) The forgotten type of the body goal is in-
stalled. It is a copy of register 128. This can be
improved in the same way as the unknown argu-
ments.

Line (8) Predicate append loops without going
through the motor. A jump to label loop is hid-
den in command LOOP.

In the monomorphic case, every instruction pro-
duced for dealing with forgotten types is needless.

Line (1) The type of unknown E is perfectly known
(int). It is created under the same conditions as
above.

Note that monomorphism saves instructions for
forgotten types. But it may be at the price
of larger type sequences for the unknowns.
Suppose that the type of the list elements
is (1ist (list (list (list int)))), then the
type sequence for occurrence of E would grow ac-
cordingly.

4.2 A running example (con-
tinued): performances of
function-lists

The function-list technique makes an intensive use of
higher-order unification and B-reduction. The logi-
cal advantage it has over the difference-list technique
is gained at the cost of a sound implementation of
B-reduction. In principle, this means duplicating a
function every time it is applied to a term. We have
shown how to avoid it in many cases. So, the question
is

2Type sequences corresponding to the forgotten types of
terms belong to the conjunction.
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What about performances?

We have observed that it is efficient. We give the results
of some experiments with function-lists and theorem
proving applications.

We describe time and space behaviours, and then
compare with eLP.

4.2.1 Execution times and memory
consumption

Table 4.1 shows the run-times of some of the pred-
icates that we have presented in previous sections, and
of a built-in predicate, reduce, which normalises terms.

Normalisation must be included in the measured
times. The different non-normal forms that a function-
list is likely to assume are presented in section 3.4.1.
The outputs of the two versions of 1ist2flist are not
only A-equivalent as expected, they are also identical.
Furthermore, the times for normalising the outputs of
either version of 1ist2flist and for fnrev are the
same.

The entry for reduce shows the times for the com-
plete reduction of the output of fnrev. The entries
giving the times for fnrev are tagged with (n) when its
input is normalised, and (nn) when it is the output of
list2flist. The entries tagged (1) and (2) show the
times for the first (with the pi) and second versions of
list2flist.

It can be seen that reduce and the two versions of
list2flist are linear. This is desirable, but should be
noted because the computations involved in these pred-
icates are not generally linear. Finally, fnrev appears
to be linear (even normalisation included).

Times for large lists show a deviation which is ex-
plained because memory is almost exhausted and the
garbage collector is called more frequently and has more
to do.

The programs measured in table 4.1 do not use the
output of the tested predicate after its execution (in-
put is used). Terms can be discarded as soon as they
are produced. This makes memory management less
intrusive in the time measurement, but it gives an op-
timistic indication on the capacity of the system. Ta-
ble 4.2 shows for some predicates the size of the largest
list they can operate on while using both their input
and output after their execution. This corresponds to
the most pessimistic memory requirements. Knowing
that the measurements are done with 3 mega-bytes of
memory indicates the capacity of the system.

4.2.2 Comparison with eLP

We compare Prolog/Mali with eLP (version 0.15},
the Lisp based implementation of AProlog. (Ergo
Project at Carnegie Mellon University). To be fair, one
must say that eLP is interpreted. However, complexity
has nothing to do with the implementation technology,
and fnrev is quadratic on eLP. So, it is deceptive in the
sense of the introduction. Table 4.3 shows run-times
for eLP. The two versions of 1ist2flist are probably
linear, but they are the victims of an intrusive garbage-
collector. Note also that no predicate can operate on
lists longer than 4096, in spite of the garbage-collector
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Table 4.4: Compared run-times (seconds on sun4/sparc2 with 32 Mbytes)

List lengths 32 64 128 256 512 1024 2048 4096 8192
‘nrev 0.19 0.7 2.6 10 41 167 685 2940 13733
drev 0.01 0.02 0.04 0.08 0.17 0.34 0.67 1.3 2.7
frev 0.07 0.13 0.26 0.52 1 2.1 4.1 8.2 17
(n) fnrev 046 091 1.8 3.6 7.2 145 29 59 119
(nn) fnrev 0.47 0.94 1.9 3.7 7.5 15.5 33 77 322
(1) 1ist2flist 0.1 0.2 0.35 0.7 1.4 2.7 5.5 11 22
(2) 1ist2flist 0.05 0.09 0.17 0.35 0.69 1.4 2.7 5.5 11
reduce 0.03 0.06 0.12 0.23 0.46 0.91 1.8 3.6 13
Table 4.1: Prolog/Mali run-times (seconds on sun3/60 with 3 Mbytes)
Predicates reduce (2) 1ist2flist (n) fnrev
(1) 1ist2flist (nn)fnrev
Max lengths 9000 9000 9000 4000 8000
Table 4.2: List crunching capability of Prolog/Mali (list lengths with 3 Mbytes
List lengths 32 64 128 256 512 1024 2048 4096
nrev 8.6 48.5 4 4 L L L 4
fnrev 6.2 20.6 79 338 1600 1 1 1
(1) 1ist2flist .9 1.7 3.8 8.2 20 53 152 1
(2) list2flist 5 1 2.2 4.9 10.7 27 89 1
Table 4.3: eLP run-times (seconds on sun4 with 14 Mbytes)
List lengths 32 64 128 256 512 1024 2048 4096 8192
Prolog/Mali nrev 0.024 0.092 35 14 6.1 26.4 121 552 2450
Prolog/Mali fnrev 0.01 0.02 0.05 0.1 0.21 0.61 1.07 2.5 6.4
(eLP) fnrev 4.6 15.5 56 240 1107 L 1 1 1
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reversing a function-list (list-length x run-times in

of Lisp and the nearly 5 times bigger memory space.
Table 4.4 allows to comparing absolute speeds when ex-
ecuting fnrev. The sign L means that the computation
exhausted memory.

Figure 4.7 shows a graphical insight to the difference
between the complexities of Prolog/Mali and eLP for
reversing a functional list. Time is given as a function
of the length of a list. Scales are logarithmic on both
axes. Continuous lines correspond to the ideal linear
or quadratic case. The slopes of the lines, 1 and 2,
indicate a linear complexity for the first and a quadratic
complexity for the latter.

4.3 Performances of theorem
proving applications

The bench-marks of section 4.2 were chosen on pur-
pose for exhibiting algorithmic differences. We now
compare Prolog/Mali and eLP on applications that we
have not written. We again compare space and time
behaviours.

4.3.1 Memory management

If we consider a wider range of applications, it appears
that Prolog/Mali is about fifty times faster than the
eLP interpreter (version 0.15 in Common Lisp) and
that its memory management is qualitatively better.
Prolog/Mali often terminates in much less time than
needed by eLP to overflow the memory. As eLP is
an interpreter the comparison is partly unfair.
ever, we believe that it is instructive since it shows that

How-

the underlying memory management of Lisp does not
help AProlog much. The reason comes from the lack
of knowledge of Prolog usefulness logic in Lisp mem-
ory management. The muterm of MALI offers the re-
quired flexibility and are properly memory managed.
This shows that the memory management of MALI is
efficient and compatible with a normally fast implemen-
tation. :

One of the largest application we have tested in both
Prolog/Mali and eLP is a theorem prover for sequent
calculus improved with a mechanism for cutting redun-
dant subproofs [11]. It involves large data-structures
(for example, deduction rules and proofs are encoded
in terms). When asked to solve Andrew’s problem [63],
the eLP version overflows in about forty-five minutes
with a ten mega-bytes memory, while the Prolog/Mali
version solves it in about eight minutes with one mega-
byte memory (or less than eleven minutes with 500 kilo-
bytes memory).

Table 4.5 shows times and numbers of garbage col-
lections measured with different memory sizes. It can
be observed that Prolog/Mali does not collapse when
memory size decreases. With the minimal memory
space that allows execution without overflowing, we
measure a time shorter than twice the time measured
with a large memory.

This validates our giving priority to an efficient
memory management. In particular, we believe that
muterms help greatly in the improvement of the re-
duction and unification procedures. They give a way
to represent mutable but still backtrackable structures
and to ensure an efficient memory management.
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Memory sizes 475 480 500
run-times 800 700 632
numbers of GC 316 302 244

550 600 700 800 1000 2000 10000
586 565 540 525 515 500 490
184 149 111 90 65 27 5

Table 4.5: Memory efficiency for Andrew’s problem (seconds and Kbytes on sun3/60)
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Figure 4.8: Comparison of run-times for executing a tactical theorem prover (run-times in sec-

onds x speed-ups)

4.3.2 Times
We compare Prolog/Mali and eLP on the implemen-

tation of an intuitionistic theorem prover written in
AProlog. It is an interactive theorem prover which can
be driven by the user to use some tacticals. The out-
come is a sequent proof or a natural deduction proof.

We measure how much time Prolog/Mali and eLP
take for executing the proofs of a set of small problems.
The small problems are of the following type®:

[ (VX.~(prime X)V (prime X))
A (VX. (greater (f X) X))
A (VX VY. (divides X (f Y)) = (greater X Y))
A (VX. ~(prime X)
= 3Y.(prime Y) A (divides Y X)) ]
= (VX.3Y.(greater Y X) A (prime Y))

Figure 4.8 shows the speed-ups of Prolog/Mali over
eLP. It lays between 25 and 240. Every point corre-
spond to a particular problem. Execution times with
Prolog/Mali are on the X-axis and the speed-ups (Pro-
log/Mali on eLP) are given on the Y-axis.

4.4 Juggling with variables

The problem is to transform a term containing no-
tations of free variables into a term in which all these
variables are explicitly scoped at the term level. An ap-

31t may help to know that f can be interpreted as
Az (24 1).

plication of this transformation is to make explicit the
implicit quantifications of program clauses.

Example 4.4.1
Term

(add (add (unk 1) (unk 1))
(add (cst 1729) (unk 2))
)

where (unk 1) and (unk 2) represent variables and
(cst 1729) is a constant, is transformed into the term

(all x\(all Y\
( add (add X X)

(add (cst 1729) Y)
»)

The algorithm operates in a single phase. It uses a
continuation passing technique and the following prop-
erty on predicates p of arity n:

VE((p(F1)...(Fn)) & VX..(p X))

The difficulty is to construct a term without knowing
the number of abstractions at its top. The property
shows that a unique second-order quantification does
the job. A unification problem that abstracts the (F i)’s
and installs the X;’s is built during the traversal of the
term and solved at the end. The second-order quantifi-
cation is used to build an intermediary representation
such as
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kind termT type.

type unk

int -> termT.

type cst

int -> termT.

type add

termT -> termT -> termT.

type all

(termT -> termT) -> termT.

type generic

termT -> termT -> o.

type tr

(int -> termT) -> termT -> termT -> termT -> termT -> (termT -> termT -> o) -> o.
dynamic tr.
/* Qut is In with implicit quantifications explicited.
*% Uses second-order universal variable f for representing quantifications
** in intermediary representation A. =/
generic In Out :-

pi f\(sigma A\

( tr £f In A A Out in\out\(in = out)

).
/= tr F T1 T2 In Out C
% Given a quantified variable constructor F, T1 is in implicit representation,
*x T2 and In are in intermediary representation, and Qut is in explicit representation.
L In translates to Out if T1 translates to T2 and (C In Out) holds. =/
/* An implicitly quantified unknown translates to an explicitly quantified unknown.
% An explicit quantification is added in Out.
% Proceeds, remembering that the intermediate translation of (unk Unk) is (F Unk)
% in any further context. =/
tr F (unk Unk) (F Unk) In (all Out) C :-

(  pi In\(pi Out\(pi C\

( tr F (unk Unk) (F Unk) In QOut C :-
(C In Out)
)]

=> (C In (Out (F Unk)))

).
/* A node translates to a node. Traverses the subterms in continuation passing style. =*/
tr F (add T1 T2) (add S1 S2) In Out C :-

tr F T1 S1 In Out in\out\{(txr F T2 S2 in out C).
/* A constant leaf translates to itself. Proceeds. =/
tr _F (cst X) (ecst X) In Out C :-

(C In OQOut).

Figure 4.9: Expliciting implicit abstractions (the program)

Numbers of unknowns 1 2 4 8 16 32 64 128
Prolog/Mali (1) € € € 0.07 0.14 0.53 2.6 13
Prolog/Mali (2) € ¢ 0.04 0.1 0.3 1.4 5 29
Prolog/Mali (8) € € € € 0.03 0.03 0.15 0.5
eLP (1) € 0.1 0.36 1.7 8.5 59 546 1
eLP (2) 0.07 0.29 0.96 4.2 24 182 1832 1

Table 4.6: Expliciting implicit abstractions (run-times in seconds)




78 CHAPTER 4. EVALUATION OF PERFORMANCES

F\

( add (add (F 1) (F 1))
(add (cst 1729) (F 2))

)

The program is given in figure 4.9.

Table 4.6 shows the times for the transformation.
Time is given as a function of the number of distinct free
variables. The two entries for Prolog/Mali and eLP cor-
respond to terms containing 1 and 2 occurrences of ev-
ery free variable. The third line for Prolog/Mali shows
the normalisation times. Remember that the default is
to leave terms non-normalised. Symbol ¢ indicates that
the time is too small to be measured.



Conclusion and Further Work

On the advantages of AProlog

The promoters of AProlog have mostly shown the logi-
cal advantages of AProlog (or any language of a similar
brand) over Standard Prolog: a greater subset of pred-
icate logic, a better meta-language for encoding logics,
etc. We like to emphasize the importance of AProlog
for the Art/Science of programming in logic.

The various scoping constructs of AProlog deal with
complex relations that otherwise ought to be left to the
programmer. One of them, implication in goals, helps
in giving global names to terms in a logical fashion. For
instance, we use it for handling options in applications.
In Standard Prolog, one must either assert an optional
fact or continuously pass options from the query to the
predicates that depend on them. .

A-terms help in devising “active” data-structures
that operate through S-reduction. It also help in defin-
ing macros with an elaborated but safe parameter pass-
ing (B-reduction again). In fact, A-terms can be used
at three levels:

Syntactic level: Every potential B-redex is reduced

at compile-time. The A-calculus is used as a lux-
ury macro-programming language for producing
first-order logic programs. '
It may help in hiding the constructors of data-
type. Note that in Standard Prolog, the
“do-it-in-unification” style goes against informa-
tion hiding by making explicit mentions of data-
type constructors throughout the programs.

Delayed syntactic level: Not all potential S-redexes
are reduced at compile-time, but they are always
reduced before entering a unification problem. It
is as if a part of the macro-expansion is done at
run-time.

Semantic level: Some potential S-redexes enter uni-
fication problems. It uses the full power of
A-unification like, for instance, with function-
lists.

The distinction between the syntactic levels and the
semantic level also applies to constraint logic program-
ming systems (e.g. CLP(R)) in which the syntax allows
non-linear constraints though the semantics (the solver)
can only cope with linear constraints. The program-
mer hopes that the non-linear constraints will eventu-
ally simplify into linear constraints.

Strong typing, though still controversial, also helps
in safer programming. It filters many faulty programs
before they are executed. We must admit that the cur-
rent typing scheme is sometimes painful. Further works
need to be done on polymorphism, especially ad hoc
polymorphism and inclusion polymorphism [16].
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Miscellaneous conclusions

We have presented a compiled implementation for the
language AProlog. This implementation has been made
with the MALI memory. Several lessons can be drawn.

o The use of MALI made the development of this
implementation (relatively) easy and fast. This
new implementation experiment proves the versa-
tility and the appropriateness for logic program-
ming of MALI. The bad point is that it costs at
run-time. The overhead is obvious in the imple-
mentation of Standard Prolog, because versatil-
ity does not help very much. But it is actually
used for non-standard Prolog, and the overhead
is probably less detectable.

o We have used list manipulation as a pretext to ex-
pose efficiency issues. Primitive operations such
as unification and reduction must be carefully de-
signed so as to have a non-deceptive system. The
priority given to memory management allows to
cope efficiently with large lists.

o We have implemented the A-calculus primitive
operations on a graph-reduction basis. A result of
this study is a set of techniques which are the nec-
essary companions of a graph-reduction oriented
implementation of AProlog. These techniques
are: a lazy outermost fB-reduction, the recog-
nition of combinators, and a TRIV that knows
about n-equivalence and universal variables. The
study also confirms the need for an efficient mem-
ory management such as the one that MALI of-
fers. Muterms play a crucial role in the sharing
and folding of representations.

e Since the term-stack and compound terms are
regular MALD’s terms, we have a uniform rep-
resentation of AProlog terms and control. This
makes continuation capture trivial. It appears
that the Prolog cut is merely a capture of the
failure continuation (a reification) followed by its
reinstalment (a reflection). Continuation capture
is also used for implementing a catch/throw es-
cape system.  All this comes for free by using
MALL

Some general remarks can be done on the represen-
tation and processing of typed A-terms in AProlog.

e Type variables as result types make the ar-
_ ity of some terms unpredictable. So, dynamic
7-expansion is required.

e A-unification and forgotten types require to rep-
resent types at run-time. '
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Forgotten types make dynamic type-checking
mandatory, even in the absence of A-unification.
Checking can be limited to forgotten types.

A-unification is required to know the types of
unknowns and constants at run-time. In Pro-
log/Mali, types of unknown are represented at
run-time, and types of constants can be recon-
structed given their forgotten types and their re-
sult types.

e Full normalisation is not necessary, long head-
normal form is enough. This leads to lazy reduc-
tion.

e A depth-first strategy for the search of a unifier
is not complete. However, it is the usual compro-
mise that leads to a more efficient implementa-
tion.

o Detection of combinators avoids many copies and
improves sharing. They can be detected easily
since all terms constructed by the MATCH pro-
cedure are combinators. Moreover, since all in-
stances of combinators are combinators a com-
piler can usefully detect them in the source pro-
gram. Every unknown stands for a combina-
tor. Note that this feature has no equivalent
in functional programming. This shows that the
functional and logical technologies are not merely
merged in an implementation of AProlog. They
must enhance each other.

e The relation between A-quantification and
V-quantification must be kept in mind for improv-
ing the implementation of both. Though map-
ping one on the other is logically satisfactory,
they both deserve a specialised implementation.

More generally, it seems to be self-contradictory
to hope for a uniform representation while look-
ing for specialising patterns.  Sophistication
might increase the number of different represen-
tation schemes used at the same time. For in-
stance, the current system does a timid step to-
wards explicit substitutions in terms (see proce-
dure TRIV in section 3.5.6.2). Their use could
be generalised concurrently with the use of im-
mediate substitutions at S-reduction-time.

Further works

Although our implementation of AProlog enjoys nice
complexity properties, and its performances are encour-
aging, it is rather slow when it is compared with the cur-
rent state of the art for Standard Prolog. In its present
state the control of search is compiled but unification
of higher-order terms is not and there is no clause in-
dexing. Our current implementation task is to devise a
compilation scheme for unification and clause indexing
so as to bring the performance level of the first-order
part closer to the current state of the art. Note also
that the sharing of types should be greatly improved
by means similar to those that permit an efficient man-
agement of unknowns.

Our implementation of AProlog is not that much
slower than Standard Prolog: less than 10 time (= 5

CONCLUSION AND FURTHER WORK

on the average) slower than a good implementation of
Standard Prolog. It shows that AProlog can come close
to Standard Prolog in speed. It gives the hope that the
use of AProlog may be generalised.

To improve performances, more static analysis
ought to be performed. For instance, it is important
to detect when the full mechanism of Huet’s unifica-
tion is not needed. The L, fragment of AProlog has
a unitary and decidable unification theory. It is easy
to test at run time if a flexible term of AProlog belongs
to L, but it could be more efficient to detect that some
predicate or some argument is always in L.

Last observation is that the type system deserves
further study. It should be studied for itself because
the current type system is not flexible enough. E.g. it
does not cope for overloading, and does not describe
accurately what is going on with predicates name, read
or =.. . We believe that higher-order types may give
the required flexibility. It should also be studied for
its interaction with compilation (clause indexing and
projection).

Availability of MALIv06 and
Prolog/Mali

MALIv06 and Prolog/Mali are registered by APP
(“Agence pour la Protection des Programmes”, 119 rue
de Flandre, 75019 PARIS, FRANCE) under numbers
87-12-005-01 and 92-27-012-00.

MALIv06 and Prolog/Mali are available in source
form in an anonymous account at IRISA (“Institut
de Recherche en Informatique et Systémes Aléatoires”,
Campus Universitaire de Beaulieu, 35042 RENNES
Cedex, FRANCE).

rlogin irisa.irisa.fr -1 anonymous
<your e-mail address>
cd maliv06

cd pm

This facility may be altered or suppressed without no-
tice.
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