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A Proof-Theoretic Approach
to Logic Programming

Une approche de la Programmation en Logique
par la Théorie de la Preuve

Miguel Suarez
INRIA - Rocquencourt
B.P. 105
78153 Le Chesnay, FRANCE

Abstract. We develop the foundations of Horn clause Logic Programming in
a proof-theoretic style. We present a formal unification system for first order
terms including a syntactic representation of environments, and formalisms for
the bottom-up and top-down computation of answers in a unified formal setting.
In passing, we propose an abstract unification machine. We also discuss the
possibility and implications of representing logic program evaluation strategies
in the Lambda Calculus. Key words: Logic Programming, Proof Theory,
Lambda Calculus, Abstract Machine

Résumé. Nous développons les fondements de la Programmation en clauses
de Horn dans le style de la Théorie de la Démonstration. Nous presentons
un formalisme pour Dunification de termes de premier ordre incluant une
représentation syntaxique des environments, et des formalismes pour le cal-
cul chainage avant et chainage arriere de réponses dans un cadre unifié. Nous
proposons une machine abstraite pour I'unification. Nous discutons la possi-
bilité et les consequences de la représentation de strategies d’évaluation dans
le Lambda-Calcul. Mots clés: Programmation en Logique, Théorie de la
Démonstration, Lambda-Calcul, Machine abstraite.



Chapter 1

Introduction

In Horn clause Logic Programming, we define relations (or predicates) by means of syntac-
tic objects called Horn clauses (to be defined later). A program is simply a finite set of
Horn clauses. Once a program is given, we have the possibility of asking questions through
queries. For instance, if the program P defines a binary predicate p, we can ask the following
questions:

i. Is it true that the objects a and b are in the relation p defined by P, or, simply, p(a, b)?
it. What are the objects z such that p(z,5)?

1. What are all the pairs in the relation p, or, p(z,y)?

In ¢ we demand a yes/no answer. In ¢, however, we demand that the specified objects be
listed. For each object a, we expect an answer of the form [z/a], telling us that p(a,b)
holds. Similarly, in 717, we expect answers of the form [z/a,y/b]. In the Logic Programming
literature[Llo87, Pad88] we can find means of defining these notions. Thus, the giving of
a Horn clause program and a query precisely defines an ‘evaluation problem’. A program
defines a set of evaluation problems, one for each possible query.

The next step is to define algorithms for solving such computational problems. An
evaluation algorithm (or strategy) is said to be sound on the class C of evaluation problems
when for all problems in C, it returns only specified answers; it is complete on C when for
each problem in C, it is capable of returning essentially all specified answers.

It is a known fact that there exist evaluation strategies sound and complete on the class
of all the Horn clause evaluation problems. This is a nice and reassuring theoretical result.
Unfortunately, such universal strategies are of limited practical use. Taking into account the
expressive power of Horn clauses and some computability results, we can affirm that there
exists no sound, complete and always terminating Horn clause evaluation strategy. This
means that any universal, sound and complete evaluation strategy is bound to not terminate
on some problems. The completeness of the strategy only ensures that, if given enough time,
the algorithm will compute all demanded answers. The problem is that there may exist no
algorithm capable of (correctly) deciding when to stop. There is another obvious practical
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limitation, that of efficiency. It is clear then that we need to develop specialized evaluation
strategies.

Prolog is such a specialized strategy. Typically, it is defined as follows. First, we define
an SLD-Resolution formalism. Also, for any given program and query, we define the notion
of SLD-tree, and define the Prolog evaluation of the given query with respect to the given
program as the depth-first, left-right traversal of the corresponding SLD-tree. The main
virtue of Prolog is that there exist efficient implementations of it. Its main defect is that it is
incomplete and too often non-terminating. The Cut operator has been introduced as a means
of modifying the default Prolog strategy, in this way defining new evaluation strategies. For
lack of a better name, here we will call these strategies the Cut-definable strategies. Good
texts on Prolog[CM87, SS90] recommend a careful use of the Cut, since it may produce
unexpected effects. A typical argument against its use is that it is ‘operational’, or ‘extra-
logical’, hence inadequate in a declarative environment. We argue that the Cut is not so
extra-logical as it seems. The problem is of a different nature.

The Declarative Paradise, where it is possible to specify a computational problem and
ignore the question of defining the evaluation strategy, is a myth. At computation time,
some algorithm is needed, and if it is to be of any practical use, it must be fast enough.
Concerning Horn clause Logic programming, once we accepted that no universal strategy
is practically acceptable, we must seriously consider the question of precisely defining ‘fast
enough’ specialized evaluation strategies, and tools for proving that they are safe on the
intended class of evaluation problems. In our view, the actual difficulty is that we currently
lack rigurous, powerful, and general enough techniques for defining and reasoning about
specialized strategies. There are two branches of Mathematical Logic that may be of great
help to this purpose: Proof Theory, and the Lambda Calculus.

Proof theory is logic from the syntactic (formal) viewpoint. The raw materials of proof
theory are (in general, finite) syntactic objects called formulas,, and proof (or deduction)
rules, which are syntactical (formal, mechanical) means of proving (deducing, producing)
new formulas from given formulas. We call formal theory any set of formulas, the azioms of
the theory, supplemented with a set of proof rules. With a theory at hand, we can define
the notion of proof in this theory. The exact definition depends on the exact nature of
the formulas and rules. An acceptable approximation is to say that a proof in the theory
To is a finite sequence of formulas, each of which is either an axiom of 7p, or is obtainable
from previous formulas in the sequence by some rule of the theory. A proof is then a finite
syntactic object. Each proof defines a theorem of the theory, namely, its last formula. We
write Ty F « for expressing that a is a theorem of 75. This is the syntactic (formal) side.
On the semantic (informal, but rigurous) side, we introduce the notion of ¢ruth, allowing us
to define what it means for a formula a to be true in 7y, that we write 7o = a. A typical
problem is to ensure that the formally provable formulas are the same as the true formulas.
In symbols, we try to ensure that the statement

for all formulas a, To E a if and only if T + a. (1.1)

(%)



holds for the system at hand. Note that here we have two levels of reasoning. The formal
level, the proofs in 7g, and the informal but hopefully rigurous level, the reasoning allowing
us to verify the validity of (1.1). Note also that (1.1) is a statement about 75. We say that
it is a meta-theoretic property. The distinction, however, is not absolute. Proof Theory
also studies the possibility of formalising the proofs of certain meta-theoretic properties.
Given a theory 7o, and a meta-theoretic statement like (1.1), the idea is to find a formal
theory 77, and a formula § of this last theory, such that 7; + 3 implies (1.1). This may
seem an awkward idea. In our opinion, however, it may be quite useful for studying Logic
Programming strategies. Let us justify our claim.

Typical versions of SLD-Resolution[Ll0o87, Pad88] have two main defects. On the one
hand, they lack a syntactic representation of answers, and they fail to formally represent the
unification operation. Said otherwise, in such systems, the unification operation is informal
and external to the system. We present here a version of SLD-Resolution where these gaps
have been filled in. This is based on a formal unification system, and a finite syntactic notion
of environment. In passing, this allows us to define an abstract unification machine that may
be of interest to Prolog compiler writers, and in general, logic programming implementors.
We also prove the classical results concerning SLD-Resolution in this new setting. Among
these results, the completeness of SLD-Resolution, which roughly says that given a program
P and a query @, we can construct an SLD-theory 7, depending on P and @, such that
the set of all the proofs in 7 encode all the answers we need in a well defined way. Next,
we identify a particular kind of proofs, that we call the canonical SLD-proofs, which is a
proper subset of the set of all the proofs, but that also contains all the answers we need.
The set of all the canonical proofs, ordered in a natural way, is a tree, that we define to be
the SLD-tree of the given query @ relative to the given program P. Note then that with
this definition each node of the tree is an SLD-proof. This allows us to define Prolog as a
canonical-SLD-proof generating strategy. For this, it suffices to define the Prolog-successor
relation > between canonical proofs, and say that the Prolog strategy simply consists in the
set of all the proofs reachable from the root of the SLD-tree by a finite number of >-steps,
set which is totally ordered by >. We argue that the Cut-definable strategies can also be
defined in this way.

This may seem a pedantic definition of Prolog, but it has interesting consequences. In
particular, it makes possible the application of the technique of Gédelnumbering, which
consists in representing syntactic objects by natural numbers. In this way, we can transform
statements involving syntactic objects (in particular, meta-theoretic statements about a
_ given theory) into statements about the set A'of natural numbers. For instance, a Horn
clause program is a finite syntactic object, hence may be represented by a natural number
p (its Godel number). Analogously, a query ) may be represented by a number ¢q. Now,
consider a strategy s defined as above. An SLD-proof is a finite syntactic object, hence
representable through a number. The full strategy may involve an infinity of proofs, but the
list of the first n + 1 proofs of the strategy is a finite syntactic object, hence representable
by a number s(n) depending on s and n. Since we can represent answers by finite syntactic
objects, an answer may be represented by a number. Now, consider the following statement



about the natural numbers:

for all a, if a is (the Godel number of) an answer for the query
(of Gédel number) ¢ with respect to the program p, then
there exists an n such that a is among the answers encoded in s(n).

Even if we have not given full details, this suggests that the completeness of the given
strategy may be expressed through a property of the natural numbers. Since there are
formal theories for formally reasoning about N, this shows the possibility of rigurously (even
formally) proving properties of evaluation strategies when these are defined as suggested
above. We remark that we have not yet used this idea. What interests us here is to explore
the applicability of typical proof-theoretic and Lambda Calculus techniques to the study of
Logic Programming problems.

There are other interesting possibilities that merit attention. By definition, from the
set-theoretic point of view, a unary function f is a set of pairs (z, f(z)), that is, a function
is its graph. According to [Bar84], one of the aims of the founders of the Lambda Calculus
was the study of the idea of ‘function as rule’. The basic objects of the Lambda Calculus are
the lambda terms. Let us take a denumerable list of variables, and the symbols ‘A, ¢(’, ¢)".
By definition, (we follow the syntax of [Kri90]), a variable x is a (lambda) term, and if t, u
are terms, then Ax t, and (t)u are terms. Intuitively, Ax t denotes a unary function, whose
value on the object (denoted by) uis (Ax t)u. There is, however, the problem of defining
the equality of values, since two (syntactically) different terms may want to represent the
same value. Technically, we introduce conversion (or reduction) rules, and try to convert
(Ax t)u into a normal term w, that is, a term to which none of the ‘relevant’ conversion
rules may be applied. If this reduction is possible, at least in principle, we can say that the
value of (Ax t)u is its normal form w. Of course, a conversion process is a computation
process. Conversely, given a known computation process, we may consider the question of
representing it in the Lambda Calculus for studying its properties. In particular, since a
conversion strategy may be non-terminating, such representations allow us to represent non-
terminating computations. Now recall our discussion on Prolog. We said that we can define
Prolog through the ‘Prolog successor’ relation >, the notation ‘mg > 7’ meaning that the
proof 7, is the Prolog successor of mg. With the preceding discussion in mind, the analogy
is evident: ‘mg > 7;’ now is read: the lambda term mg is >-convertible into m;. This idea
led us to the Abstract Prolog Machine (APM). The APM is not concerned with questions
like memory, registers, or data representation. An APM state is a syntactic object, and
the only APM instruction is a conversion rule >. Even if at present we have not the full
details, we argue that coding the APM in the Lambda Calculus is only a matter of time. In
our view, however, for this representation to be truly useful, it must allow us to transform
the termination of Prolog into a normalisation problem. Without proof, we argue that it is
possible to define

. a conversion rule = on lambda terms,



1. a recursive function mapping anyv given Horn clause program P into a lambda term p,
and

1. a recursive function mapping any given query ¢ into a lambda term q

in such a way that the termination of the Prolog evaluation of @ with respect to P is
equivalent to the statement: > is a >-normalisation strategy for (p)q, that is, that we can
transform (p)q into a >-normal term by a finite number of >-reductions. More, we argue
that all the Cut-definable strategies may be represented in an analogous way. The theoretical
consequences of such representations are evident: such representations are tools for precisely
defining and studying evaluation strategies. In fact, we think that > must be some special
case of 3, or Bn conversion. For instance, > may be simply the left 3-conversion. If this is
done in this way, interesting consequences follow. For instance, [Kri90] presents type systems
for the Lambda Calculus. In these systems, a type expression is a syntactic object of the
form ' F t: A, where ' is a (possibly empty) context whose exact nature is irrelevant here,
t i1s a Lambda-term, and A is a type, a formula in a language which depends on the system.
A type system also includes rules, allowing us to construct type expressions. If I' - t: A
may be constructed in system S, then t is said of type A in the context I' in system S.
As is shown in [Kri90], the left 8 reduction of a term t is terminating if and only if t may
be typed in a special way in system Df), where special way is a certain syntactic condition.
This means that if Prolog may be represented as described above, for any program P and
query @, the Prolog evaluation of @ with respect to P is terminating iff p(q) may be typed
in a spectal way in DQ. This being done, the special typability in DQ becomes a formal tool
for guaranteeing the termination of Prolog.

Let us stop for a while and review the main ideas of the preceding discussion. The ability
of precisely specifying evaluation problems is certainly a step towards a more declarative
programming style, but the use of unpredictable evaluation strategies is clearly not a step in
the same direction. We need precise formal tools for defining and reasoning about evaluation
strategies. But the formalisms themselves (Proof theory, Lambda Calculus) are not enough.
We also need general principles for defining evaluation strategies. For instance, Prolog is
a top-down (backward) strategy, and there also exist bottom-up (forward) strategies. Let
us clarify these ideas for readers not used to them. Think a proof rule r as a (for the
purposes of this discussion) binary function. The natural use of such a rule is its forward
use: given Fy and Fy, we compute r(Fy, F1) = F,. This is clearly suggested by the notation
r(Fo, F1) = F,?, meaning that when the rule is applied, the known data are Fy and Fj,
while F3 is to be computed. Thus, the forward application of r is ‘from the axioms towards
the theorems’. The opposite strategy is also possible. This is suggested by the expression
r(Fo?, F\7) = F5. Here we start with a candidate theorem and try to construct a proof
backwards. Referring to the preceding equation, once we computed Fy and [} making this
equality to hold, our problem will be solved.once we verified that Fy and F are themselves
theorems. Interestingly enough, it is possible to precisely define complete ‘mixed’ evaluation
strategies, where the forward and backward paradigms coexist. More precisely, we argue
that given a program, a query, and an arbitrarily selected set of predicates, it is possible
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to define an evaluation strategy computing all demanded answers in such a way that the
selected predicates are evaluated top-down, while the others bottom-up. More, even if at
present we have not all details, we are firmly persuaded that these strategies can also be
represented in the Lambda Calculus following the ideas described above.

We said before that a Lambda Calculus representation of an evaluation strategy gives
us a precise formal definition of it, hence the possibility of precisely studying its properties
in a sophisticated formal setting like the Lambda Calculus. But there are also practical
implications. If we have defined conversion rules and term constructing functions in the
manner suggested above, then we have (implicitly or explicitly) identified a set of abstract
operations (an abstract instruction set) powerful enough for implementing mixed strategies,
in particular Prolog, and we have a compilation algorithm such that, given a program P,
and a specification of a strategy, generates machine code p which, feeded with the appro-
priate representation q of any given query @, is capable of implementing the evaluation
of the argument query ¢ with respect to the compiled program P following the specified
strategy. The Prolog languages (actual implementations of the Prolog strategy) are useful
programrming tools, but may be criticised for not clearly separating the specification (logic)
component from the operational (control) component. The previous discussion suggests the
possibility of explicitly separating both components through the precise definition of a Logic
Programming control language. In principle this appears to be a return to the good old
algorithmic approach, but all depends on how this idea is applied. Once we have precise
means for defining different evaluation strategies, we can dream of finding general results
concerning properties of strategies, results of the form ‘strategy s is sound, complete and
terminating on all the evaluation problems of the class C’. Since a program defines a class
of evaluation problems, with such knowledge at hand we have the possibility of developing
sophisticated Logic Programming compilers.

Let us explore this idea. Suppose that for all queries @ € D, the evaluation of @ with
respect to P following strategy s terminates. We can then define a function f such that for
all @ € D, f(Q) is the finite list of the (candidate) answers returned during this evaluation.
Suppose that we have two formulas D[z] and E{z] such that if

(V@) D[Q] — E[f(@)})

then

V@ € D, f(Q) contains only specified answers, and essentially all specified answers. (1.2)

That is, suppose that the validity of the above formula implies that strategy s is sound,
complete, and terminating on D. Suppose also that we can express the function f by a
lambda term t. Then we can dream of developing a formal system with the property that a
proof of the formal expression

F t: Va(D[z] = E[f(z)]) (1.3)



in this system imply (1.2). Such a system would be a tool for formally proving the soundness,
completeness, and termination of s on a well defined class of problems. Interestingly enough,
there already exists a good candidate for this kind of applications. It is the system AF,
presented in [Kri90]. Our description here will be only approximate. We simply intend to
convey the idea of using AF, in this manner.

AF; is a type system as described above. In this case, the types are formulas of second
order predicate calculus. AF, also consists in a certain number of formal (typing) rules.
Here we will write AF, + t : T for expressing that + t : T may be constructed with the
rules of AF,.

Certain formulas are said to define a data type, and the corresponding sets are said to be
data types. Suppose now that we have a function f : D — E, where the data types D and
E are defined by D[z], and E|[z], respectively. Then, following [Kri90] (again, this is only an
approximate statement), if we find a term t such that

AF, F t : Yz (Dlz] — E[f(z)]) (1.4)

then the term t defines an algorithm computing f on the domain D.

Each rule of AF; may be partitioned into two independent parts, the term part, and the
type part. Restricted to their type parts, the rules of AF, define a second order intuitionistic
proof system, such that if we have a proof of the type part of (1.4) in this system, then we can
transform this proof into a term (algorithm) t satisfying (1.4). Hence, if we are looking for
an algorithm computing f : D — F, it suffices to find an intuitionistic proof of the type of
(1.4), and transform this proof into an algorithm (lambda term) as suggested above. This is
a verification directed programming style, since instead of writing an algorithm, we construct
a proof of a certain specification in a certain formal system. This is a quite impressive result,
but its practical use in the short term is unlikely, since, at least for the moment, it appears
difficult to control the efficiency of the generated algorithm.

But AF,; can also be used as a verification system. We first write an algorithm t, and
next we try to prove (1.4). If we succeed, our algorithm is correct. Thus, expressing logic
programming evaluation strategies in the Lambda Calculus opens the possibility of using
AF, ( or some specialized version of it ) as a formal verification system. Of course, it
also opens the possibility of representing logic program evaluation strategies and functional
programs in a unified formal setting. In our view, this is a quite interesting, and, to our
knowledge, unexplored research direction. Its development obviously depends on our ability
of expressing logic program evaluation strategies in the Lambda Calculus. As we remarked
above, we are firmly persuaded that, at least for Prolog and the Cut-definable strategies,
this will be done in the near future.

These are the ideas underlying this work. We are well aware that some of our claims
above are highly speculative, but others are simply intuitive descriptions of precisely stated
and proved results. This is the subject of this report. Unfortunately, due to limitations in
time, we were not able to include full details. Hopefully, after reading this work, the reader
will agree with us in that the speculations above deserve serious consideration.



A final remark concerning this report. It seems to us that the interaction between the
Logic Programming community on one side, and the Proof Theory/Lambda Calculus com-
munities on the other side is still limited. It is possible then that researchers of one field be
unfamiliar with elementary notions of the other field. Since we address both communities, in
particular students and young researchers, we decided to start (almost) from scratch, trying
to make this report as self-contained as possible, in the limits of time and space we had to
respect.



Chapter 2

The Background

2.1 First Order Languages

In this chapter we present some basic definitions and results that we will need in what follows.
The reader is supposed to be familiar with the basics of first order predicate calculus. Here
we will simply recall some notions in order to fix our terminology and notation. We also
list some results for reference purposes. In general, we will not include proofs that may be
done in a few lines using preceding definitions and results and standard proof techniques,
like induction on terms and formulas.

A first order language (fol) is a set of symbols partitioned into two disjoint classes: the
logical symbols and the non-logical symbols, also called proper symbols. As usual, we will
suppose that the logical symbols are the same in all the languages we consider.

We take the logical symbols from among the following list: a certain number of connec-
tives, typically = (not), A (and), V (or), — (implies), the quantifiers ¥ (universal quantifier),
3 (existential quantifier), the auxiliary symbols left and right parentheses and comma, and
a denumerable set V of individual variables.

The non-logical symbols come in three disjoint classes: individual constants, function
symbols and predicate symbols. Each function and predicate symbol is associated a positive
integer, its arity. We suppose that a fol contains at least one predicate symbol.

When a fol is under consideration, we need to differentiate between two languages: the
fol we are considering, the object language, and the language we use in our discussion, here
english supplemented with some special signs. This is called the metalanguage. In order
to avoid confusion, the meaning of the special signs of the metalanguage must be precisely
defined. Here are some conventions we will follow, others will appear later. z,y,z (and
their subscripted variants) are signs of the metalanguage standing for variables of the object
language. They are metavariables ranging over the set of object language variables. a,b, ¢,
are metavariables ranging over the (individual) constants. f, g, represent function symbols,
P, q, represent predicate symbols.

With the symbols of a fol, we may form ezpressions, that is, finite sequences of symbols.



Two kinds of expressions will receive particular attention: the terms and the clauses.

A term is either a variable, or a constant, or an expression of the form f(¢1,...,t.), where
f is an n-ary function symbol and the ¢;’s are terms. We will use ¢, u, and v as metavariables
representing arbitrary terms of the language under discussion. The complezity of a term ¢,
#t, is the number of occurrences of function symbols in ¢. More precisely, if t is either a
variable or a constant, then #t = 0, and

#f(th--~7tn) =1+ z#t{.

A complex term is a term of positive complexity; it is then of the form f(¢;,...,¢,) and in
this case we say that f is its main function symbol. We write ¢t &~ u and say that t and u
are compatible iff they are complex terms with the same main function symbol. We denote
by var(t) the set of variables appearing in t. A term t is said to be closed iff var(t) = 0. If
T is a set of terms, var(T) is the set of variables appearing in some term of T, that is

var(T) = | var(t).

teT

For reasons that will be apparent below, our definition of clause is different from the one
normally used. However, it is equivalent in a sense explained later.

Definition 2.1 A clause is either an atom, that is, an expression of the form p(ty,....t,),
where p is an n-ary predicate symbol and the t;’s terms, or is an implication of the form

Ay = (A1 — ... = (A1 — Ap) .. ) (2.1)

where the A;’s are atoms and — s the usual implication symbol. A, is said to be the head
of clause (2.1), the head of an atom being the atom itself.

We use the letters A, B, C, D and their subscripted variants for representing atoms. The
full notation (2.1) is too heavy to be systematically used, so we will also represent such a
clause by the notation Ag...A,. Note that this is not a change in the definition of clause
but a metalanguage notational convention. The lowercase greek letters «, 3, 7, and 6,
possibly subscripted, will represent arbitrary clauses, while A — « and analogous notations
will represent arbitrary implications. The head of a will be denoted by a@. If a = Aq... Ay,
then for 7 = 0,...,n, o’ denotes the clause A4;... A,. The clauses o’ and only them will be
called right parts of a. Note that o = a, a” = &, and for j < n, o/ = A; — o?*!. As for
terms, var{a) represents the set of variables appearing in a. The same notation will be used
with other syntactic objects without further mention. We extend the compatibility relation
to clauses: we write 8~ & iff 3 and § are atoms on the same predicate. Applied to atoms,
the definition says that two atoms are compatible iff their predicates are the same.
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2.2 Substitutions

The notion of substitution will be essential in what follows.

Definition 2.2 A substitution is a total function 6 from the set of terms into the set of
terms satisfying the following properties:

t. for all constants ¢, cf = c,
it. for all complezx terms f(t1,...,tn), f(t1,...,ta)8 = f(t16,...,t.0).

The identity substitution, which maps each term onto itself, will be denoted by id. Two
substitutions are equal when they are equal as functions, that is 8 = £ iff for all terms ¢,
t0 = t€. Once we adopted the postfix notation for substitutions, it is natural to denote
by 6¢ the composition of 8 (first) and ¢ (second); in symbols, for all t, t8¢ = (t0)€. It is
immediate that the composition of substitutions is a substitution. By definition, #° = i,
and for k > 0, #* is the composition 6...6, k times. An idempotent substitution is a
substitution 6 satisfying 66 = 6. If T is a set of terms, 760 = {¢ | ¢t € T }. The following
statement precisely characterises the set of variables appearing in t6 :

var(td) = ) wvar(zd).

z € var(t)

Take, for exemple, f(z,g(y))8 = f(z8, g(yf)). Clearly, the variables in this term are those in
var(z8) and those in var(y6).

A substitution applied to a term only affects its variables, thus if ¢ is closed, t8 = ¢ for all
8. This property offers an intuitive justification for our terminology: if ¢ contains no variable,
no substitution is allowed to ‘enter’. We will also need to consider terms containing at least
one variable, that is, those that are not closed. We will find then convenient to choose a
short name for this kind of terms. By analogy, the choice imposes itself: a term ¢ is open iff

var(t) # 0.

We will be interested in talking about equality of substitutions on a given set V of
variables. By definition, §; = 6, on V iff for all € V, 26, = z6,. Since the image of ¢ under
0 depends only on the action of 8 on the variables of ¢, we get

Proposition 2.3 8; = 8; on var(t) if and only if t6, =t6,. O

As a consequence, § = id on var(t) iff t0 =t. Also, if ; =6, on V, and var(t) C V, then
t01 = t92

The reader used to the definition of substitution normally found in the Logic Programming
literature, may feel a little uncomfortable with the definition we presented above. For the
purposes of the following discussion, let us call ‘standard’ substitution, any function from a
finite set of variables into the set of terms, denoted by

[z1/t1,. ..y za/tn), (2.2)
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the notation telling us that the domain is {z;,...,z, }, and that the image of z; is ¢t;, for
each . Once introduced, such a partial function is extended to all terms by defining what it
means to ‘apply’ (2.2) to an arbitrary term. If this extension is a substitution, in our sense,
it is natural to identify the partial function with its extension. But for the identification
to be meaningful, we need to uniquely determine the substitution with which (2.2) is to be
identified. The following result ensures that there exists at least one such substitution.

Proposition 2.4 If fis a function mapping a set V of variables into the set of terms, then
f may be extended to a substitution. O

But the question of the unicity is still open. The following is an immediate consequence of
our definition of substitution.

Proposition 2.5 [f8, =0, on V then 6, =6,. O

Otherwise said, for two substitutions to be equal (on all terms), it suffices that they be equal
on the set of all variables. But then we have:

Corollary 2.6 A function from the set of all variables into the set of terms may be extended
to ezxactly one substitution. O

Simply observe that two substitutions extending such a function are equal on all variables,
hence they are equal. What is usually done with (2.2) is to first extend it to all variables
making it equal to the identity on the variables not in { z;,...,z, }, and then to extend this
new function to the set of all terms using the conditions of our definition. This extension is
then a substitution and, according to the last corollary, it is uniquely determined.

The previous results say that we may define a substitution simply by defining it on
all variables, possibly with the help of other substitutions. A definition schema we will find
relatively frequently is the following: given 8 and ¢ two substitutions and V a set of variables,
we define a new substitution ¢ by the condition

xf ifzeV.
1:¢—{ -

£ otherwise.

We will write this kind of definitions in the form: ¢ =8 | V + €.

The kernel of 6 is the set ker(8) = {z | z0 # z}. It is immediate that for all 4,
0 =6 | ker(8) + id. This equality clearly expresses the fact that 6 is completely determined
by its action on the set ker(8). It is also easy to convince himself that the substitutions that
may be obtained by extending a ‘standard’ substitution in the manner described above are
those of finite kernel. This readily implies that there are non-standard substitutions.

Corollary 2.7 i. Ifker(0) ={zy,...,zn}, then 8 = [21/246,... ,2,/2,0)].
ii. ker(id) = 0.
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. If0 =€ on V, then VN ker(8) =V N ker(€).
tw. Forall@ andV, 0|V +id=0 |V Nker(d)+ id.

v.0=ConV iff 0|l V+id=¢]V +id.
O

Note that the equality of substitutions on a set of variables is a ternary relation denoted
following the pattern: ‘6 R on V. Other relations will be defined and denoted analogously.
We adopt then the following convention: the notation ‘0 B¢’ will be used as an abbreviation
of ‘0 R¢ on V’, that is, on the set of all variables. With this convention, the notation ‘60 = &
has two meanings: that 6 and ¢ are equal on all terms, the usual meaning, and that they
are equal on the set of all variables, by the convention. However, we have seen that these
two statements are equivalent, so there is no ambiguity.

Proposition 2.8 8 =id on V iff ker(0)NV =0. O

Corollary 2.9 t0 =t iff ker(6)Nvar(t)=0. O

Now we may easily prove a known characterisation of the idempotent substitutions.
Proposition 2.10 8 is idempotent if and only if ker(6) Nvar(ker(8)6) =0.

Proof 1f 0 is idempotent, for all variables z, z06 = z0, and the last corollary implies
ker(8) Nvar(zf) = B. Conversely, if x & ker(8), trivially, 268 = 26, and if = € ker(8), by
the hypothesis, ker(8) N var(z8) = 0, which, with the last corollary, implies 60 = z6. O

The following is another useful property of the idempotent substitutions.
Proposition 2.11 If 8 is idempotent then, for all £, § < € if and only if 96 =¢. O

A special kind of substitutions is widely used in Logic Programming writings, namely,
the variable renamings.

Definition 2.12 A substitution 8 is said to be a variable renaming on the set Vy of variables
into the set Vy if and only if

i. forallz € Vo, 20 € Vi and
it. Va, € Vo, Vo, € Vo, if 21 # 22, then z,0 # x,0.

Trivially, id is a variable renaming on any set of variables. £2(V;) will denote the set of all
variable renamings on V5. A variable renaming on the set V will be called simply a variable
renaming. The following result says that variable renamings on a set have a kind of ‘partial
right inverse’.

Proposition 2.13 If 0 is a variable renaming on V, there exists a substitution ¢ such that

0 =1donV. O
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In some cases we may need to rename the variables in Vy without using any variable of
another set Vi. Trivially, if V] is finite, this is possible.

Proposition 2.14 Let V; be any set of variables and Vi a finite set of variables. Then, there
exists a variable renaming 8 on Vp into V\ V. O

In general, if V is a set of variables and 6 a substitution, the set V8 may contain arbitrary
terms. However, if 8 is a variable renaming on V, V§ is a set of variables and var(V ) = V4.

Proposition 2.15 The composition §€ s a variable renaming on V if and only if 6 is a
variable renaming on V, and £ is a variable renaming on V4. O

Proposition 2.16 If ¢ is a variable renaming on V, z; € V, and t; is an arbitrary term,
fori=1,...,n, then dlz1d/t1d,...,T,P/tnd) = [z1/t1,.-.,Za/ta]¢ on V. O

The following result generalises a preceding remark. We will use its corollary.

Proposition 2.17 Let T be a set of terms and 8 a substitution such thattd =t for allt € T.
Then § = 1d on var(T). O

Corollary 2.18 If£6,6, = € on V, then 6, € Q(var(VE)).

Proof Let T = V§£. The hypothesis implies that for all t € T, t6,0, = t. The proposition
now implies 6,0, = id on var(T). But id is a variable renaming, so according to Proposi-
tion 2.15, 6, is a variable renaming on var(T) = var(V¢). O

We are going to consider more special variable renamings by demanding a useful addi-
tional property. As we stated above, a substitution is a function from terms to terms; in
particular, it may be a bijection from the set of terms onto itself. For instance, id is a
bijective substitution. The following property is easily proved.

Proposition 2.19 A bijective substitution maps different variables onto different variables.
As a consequence, a bijective substitution ts a variable renaming on any set of variables. O

Q) will denote the set of all bijective substitutions. The convenience of using bijective sub-
stitutions is that if § € Q, then its inverse §~! exists and is obviously bijective. But it is not
immediately obvious that 6~! is itself a substitution. We must verify that this is the case,
but this is easily done.

Proposition 2.20 The inverse of a bijective substitution is a (bijective) substitution. O

In symbols, if § € Q, then §~! € Q. This implies, in particular, that if  is a bijective
substitution, 8~! is a variable renaming on any set of variables.

Bijective substitutions are a useful theoretical tool. For this reason, we prefer working
with them instead of with simple variable renamings on a given set. Thus, given 8§ € Q(V),
we would like to replace it by a bijective substitution ¢ with £ = 8 on V. Even if in general
this is not possible, the following proposition holds.
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Proposition 2.21 If V is finite and 6 1s a variable renaming on V, then there exists a
bijective substitution £ such thaté =60 on V. O

This implies that given a variable renaming on a finite set of variables, we can suppose that
it is a bijective substitution.

We define the subsumption relation between substitutions restricted to a particular set
of variables.

Definition 2.22 We write § < £ on V and say that 6 subsumes £ on V' if and only if there
ezists a substitution ¢ such that 8¢ =€ on V. We write § =€ on V and say that 6 is a
variant of £ on V if and only if there exists a variable renaming ¢ on var(V8) such that
0p =& on V.

Corollary 2.23 The following consequences follow.
L If0<EonV andE<BonV, thenf=¢ on V.
. If0 <€ onV and ¢ is a variable renaming, then 8¢ < £ on V.

Proof For i, the hypotheses imply the existence of ¢;, for 1 = 1,2, such that §p; = on V
and g, = 0 on V. But then fp,9; = 6 on V. By Corollary 2.18, ¢; is a variable renaming
on var(V#). Fom this remark, the equality 8¢, = £ on V and the preceding definition, we
get 8§ = £ on V. Concerning ii, and by hypothesis, there exists a ¢ such that o = on V. If
¢ is a variable renaming on var(V8), by Proposition 2.13, there exists a ¢’ such that ¢¢’ = id
on var(V 6). But then, (8¢)(¢'v) = idp = 8¢ = £ on V. By definition, ¢ < { on V. O

Definition 2.24 We write t < u and say that t subsumes u or that u is an instance of t
iff for some substitution 8, t0 = u. We say that t is a variant of u and write t = u iff there
exists § € Q(var(t)) such that td = u.

An immediate consequence of the definition is that ¢t = u iff there exists § € (2 such that
t = u. From this, proving that = is an equivalence relation on the set of terms is an easy
exercise. We note that if 6 = ¢ on V and t is a term such that var(t) C V, then t6 = ¢t£.

2.3 Unifiers

An equation is a formal expression ¢ < u, where ‘<’ is a symbol not appearing in the under-
lying language. The natural interpretation of this symbol is obviously the equality relation,
but we will not assign any particular meaning to it. It will only be a tool in the definition
of a unification system. Note that this convention implies that the equations are not atoms
and conversely. For the sake of notation, let £, F' and their subscripted variants denote
finite sets of equations. I'; A, A, Il will denote finite sequences of atoms and/or equations.
Al denotes the number of atoms and/or equations in A. The meaning of expressions of the
form ‘A#’ is obvious. In particular, if|[Al= 0, then A8 = A.
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Definition 2.25 A unifier of a set E of equations is a substitution 6 such that t0 = uf for
allt < u € E; unf(E) will denote the set of all unifiers of E. We say that E is unifiable iff
unf(E) # 0. If S is a set of substitutions, a principal member of S is a substitution § € S
such that for all £ € S, 8§ < €. A principal unifier’ of E is a principal member of unf(E).
We denote by pru(E) the set of all principal unifiers of E. When talking about unifiers and
principal unifiers, a list of equations is identified with the set containing the same equations.

When the set of equations is a singleton {¢ < u }, we prefer the lighter notations unf(t,u),
and pru(t,u) to unf({t < u}), and pru({t < u}) respectively.

It is easy to see that if 8 € unf(FE), then for any &£, 66 € unf(E). Also, if  and £ are
principal members of S, then § = £. In particular, two principal unifiers of a set of equations
are variants of one another. By definition, the set of principal unifiers of a set of equations
1s completely determined by the set of all its unifiers. This implies the following easy

Proposition 2.26 If unf(Ey) = unf(E,), then pru(Ep) = pru(E,y). O

The following is a kind of converse.

Proposition 2.27 pru(FEy) N pru(E;) # 0 implies unf(Eo) = unf(E;). O

Definition 2.28 Ift = f(t;,...,ts) and u = f(uy,...,u,), define x(t,u) to be the list
ty X up ...ty X uy”.

Ift and u are incompatible, x(t,u) is the empty list. For A and B atoms, x( A, B) is
defined analogously.

It is a simple exercise to verify the following

Corollary 2.29 i. Ift and u are compatible terms, then unf(t,u) = unf(ox<(t,u)). From
this and a previous proposition, pru(t,u) = pru(x(t,u)).

i. For allt, u and 0, x(t0,uf) = x(t,u)6.
ai. Ift = f(th,...,tn) and u = f(u1,...,uy), then var(x(t,u)) = var(t)U var(u), and
i+ Hu=2+ #t + Hu
=1

O

1Jsually called a most general unifier.
2Note that o is not the greek letter o.
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If t and u share no variable and for some v, t < v and u < v, then ¢ and u are unifiable.
Also, if z # t, then z and t are unifiable iff ¢ var(t).

A unification algorithm is a computable function unify(E) such that if E is unifiable,
then unify(E) is a principal unifier of £, and if E is not unifiable, then unify( F) is some value
encoding the fact that £ is not unifiable. Various unification algorithms are known. Trivially,
if E has a principal unifier, it also has a unifier. But the converse is also true. If unify(F)
is a unification algorithm and unf(E) # 0, then unify(E) € pru(E), hence pru(£) # 0. In
short, £ has a unifier iff it has a principal unifier. This i1s not evident from the definitions.
Also, the unifiability of a finite set E of equations is decidable: any unification algorithm
may be used for determining whether F is unifiable or not.

Below we present a unification proof system and proofs of its correctness and complete-
ness. The system gives rise to a unification algorithm which is essentially the one presented in
[AK91] as the general Warren Abstract Machine (WAM) [War83] unification algorithm. We
also present a detailed description of SUE, an abstract unification machine that we propose
as an alternative to the WAM unification fragment.

Even if unification algorithms and proofs appear elsewhere, the untrained reader may be
unfamiliar with them. Also, typical presentations fall into one of the two ‘extreme’ classes:
either an operational description of a practical algorithm but without justification, as in
[AK91], or an abstract description and proof of an algorithm not matching the algorithm we
want to use in practice, as in [Llo87]. Our presentation is mathematically precise and has
the additional merit of fitting almost perfectly with the algorithm in [AK91], so it will help
inexperienced readers to understand how the unifiers are stored and the unification operation
implemented in the WAM and in SUE. This section is rather technical, so the reader may
prefer to skip it on first reading. We note, however, that it is essential for the presentation
of our SLD-Resolution formalism.

2.3.1 A Unification System

Let E be a set of equations. A binding of z in F is a term ¢t such that z <t € F. If z has a
binding in E, it is bound in E; otherwise, it is unbound in E.

Definition 2.30 We write z <g z iff some binding of x in E contains z,; depth(z, E) ts the
least upper bound of the set of k € N for which there exists a sequence

T=T9 < T1 <g...<g Tg.

Equivalently, it is the least upper bound of the set of k € N for which there exists a variable
z such that x <% z. If this set has no finite upper bound, we write depth(z, E) = +oo.

It is immediate that depth(z, E) # 0 if and only if there exists a variable z such that z <z z,
which is equivalent to saying that z is bound to an open term in F. In particular, a variable
of positive <g-depth is bound in E. It follows that depth(x, E') = 0 iff either z is unbound in
E or all its bindings in E are closed terms. It is also easy to verify that if depth(z, F) is finite
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and = <g z, then depth(z, E) < depth(z, E). This implies that if ¢ is a binding of z, then for
all z € var(t), depth(z, E) < depth(z, E). Note also that if z <}, z, then depth(z, E) = +00,
where, as usual, <}, is the transitive closure of <g .

The notion of enwvironment will be fundamental in our presentation of the unification
system.

Definition 2.31 An environment is a finite set £ = {z; xt; | 1 <i<n} of equations
such that for all variables z € V, = has at most one binding in E, and depth(z, E) is finite.

If E is an environment, and F C E, then F is an environment. As a consequence, §§ is an
environment.

Corollary 2.32 Let E be an environment.
i. For all z, ¢ £F x. This implies that no variable is bound to itself in E.
1. The set of variables of positive <g-depth is finite.
2. If the binding of  in E 1s the open term t, then
depth(z, E) = max { depth(y, E) | y € var(t)} + 1.
In particular, this implies that for some y € var(t), depth(z, E) = depth(y, F) + 1.
a

If £ is an environment, we define depth(E) = max { depth(z,E) | = € V}. The previous
corollary implies that depth(FE) is finite. Now, if £ = {z; xt; | 1 < i< n}, we write o
as an abridged notation for the substitution [z,/t,...,2./t,]. Thus, if z is unbound in E,
zog = z, and if z is bound in E, zog is the unique binding of z in E. It follows that ker(oj)
is the set of variables bound in E. Note also that

Vz€ker(og) VzeV YkeN, r <k 2z iff z€var(zok). (2.3)

Proposition 2.33 Let E be an environment, z an arbitrary variable and m,n, two integers
both strictly greater than depth(z, E). Then 20g = zo}.

Proof Suppose that depth(z, E) = k, and that we have

for all j € NV, xa%‘“’” = zott. (2.4)
In such a case, if m and n are two integers greater than k, we have zof = zo&t! = zo}. It

suffices then to prove that for all z € V, (2.4) holds. This is done by induction on depth(z, E).
Base Case: depth(z,F) =0. If zis unbound in E, zoz = z. Hence, we have xa};'j =
t = zok. If z is bound to the closed term ¢,

zopt! = (zog)oy = tog =t = zoh.
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Inductive Step:  depth(z, E) = k > 0.  Letting ¢ be the binding of z in E, we have
xag“)“ = (a:o*E)og tak+J But for all z € var(t), depth(z, E) < k. We may then apply
the inductive hypothesis (I.H.) to all variables in var(t) and this implies tog'’ = tok. We

(k+1)+j — tafgﬂ k+1 O

finally get zog tok = zof

Corollary 2.34 If depth(E) = m, then for all j € N, o0 = om+1 O
Definition 2.35 Let depth(E) = m. We define of = ot
Corollary 2.36 i. Forallm,ne N, oBotol = of. In particular, o} is idempotent.

i. For all terms t, and all m,n € N, of unifies to} < to}. In particular, since all the
equations of E are of the form z < zog, of is a unifier of E.
O

We see then tha.t all environments are unifiable. According to our definition, for some k € N

we have 0} = o%, hence o&t! = o%. The following result shows that the converse is also true.

Proposition 2.37 [fo&* = ok on V, then of = ok on V.

Proof Taking depth(E) = m, we have o} = o5og*'. Suppose that for some j € N we

have already proved that of = a’gaE on V. Then by the hypothesis, we readily get of =

oktlol = okolon V. O

In particular, this implies that if to5t! = to%, then tof = tof. Consequently, in order to
E E E

compute tof, we may successively compute the values tok, for £ = 0,1,..., up to a point
where we see no change. But if to% is not modified by o, then all variables of tof must be
unbound in E. Recall that z is unbound in E if and only if z & ker(og).

Proposition 2.38 If E is an environment and t an arbitrary term, all variables in var(tof)
are unbound in E.

Proof We know that tofog = tof. It suffices then to apply Corollary 2.9. O
Proposition 2.39 ker(of) = ker(og).

Proof 1f z ¢ ker(cf), then z = zo}, hence, by the preceding proposition, z is unbound in
E, that is, z € ker(og). Conversely, and trivially, if z is unbound in E, z = zo}. O

From this result, Proposition 2.10, and the fact that ¢f is idempotent, we get

Corollary 2.40 ker(og) N var(ker(og)of) = 0, for all environments E. O

Examples

i. op = id and for all z € V, depth(z,0) = 0. This implies depth(@) = 0 and o7 = id.
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i fE={zxa}, op =[z/a], depth(E) =0 and o} = [z/a].

ii. Let £ = {zq < f(z1), 1 X 22, T3 X z; }. We have then og = [zo/f(21), 21/22, T3/ T1]
and depth(E) = 2. Thus, zoof = f(z2)

O

Proposition 2.41 Let E be an environment. Then 8 € unf(E) if and only if 0 = 8.

Proof Take 6 € unf(E). We will prove that for all z € V, zotf = z6 by induction on
depth(z, E). In the proof we will use the fact that, 8, by hypothesis, and o£, by a previous
corollary, are unifiers of E.

Base Case: depth(z,E) =0. If zis unbound in E, we trivially get zo£8 = z6. If z is
bound to the closed term t, we have

:L‘O’ga = tO’EO = t0 = z8. (2.5)

Inductive Step: depth(z,E) > 0. Iftis the binding of z in E, applying the [.H. to the
variables of t we get taf8 = t0. But then, the equalities in (2.5) also hold in this case. O

Corollary 2.42 For all environments E, of is an idempotent principal unifier of E. O

The following corollary gives us the central idea of the unification system presented below.

Corollary 2.43 If Fy is an arbitrary set of equations and E, an environment such that
unf(E,) = unf(Ey), then aa is an idempotent principal unifier of Ey.

Proof The hypotheses imply that pru(E,) = pru(Ep). From the last corollary, we conclude
that of € pru(Ep). O

Hence, for computing an idempotent principal unifier of a finite set Ey of equations it suffices
to transform FEj into an environment F, with the same unifiers as Fy. Note, however, that
if Ey is not unifiable, no such environment exists.

In the Logic Programming literature we frequently find the notion of ‘dereferencing’ a
term with respect to the ‘current’ environment. This operation is made precise by the
function é defined below.

Definition 2.44 Let E be an environment, and t an arbitrary term. We define

tof if for all k € N, tok e V.
§5(t,E) =

tok otherwise.

where ko is the least k € N such that taf is not a variable.

We say that 6(t, E) is the dereferenced value of t in E. Note that §(t, E) is always of the
form to}, hence 6(¢, E)of = tof.
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Corollary 2.45 i. The following is the usual operational definition of the deveferencing
operation. Ift is a constant or a complex term, or a variable unbound in E, then

5(t, E) =t. Ift is a variable bound in F, then 6(t,E) = §(tog, E).
u. If #tof =0, then §(t,E) =tot. If #6(t,E) =0, then §(t, F) = tof.
i [f ftof > 0, then 6(t, E) = tog. If #6(t, E) > 0, then §(t, E) = tof.

Proof For i, if t is a constant or complex term, since to% = ¢, 0 is the least integer k such
that tof is not a variable. From the definition, §(t, E£) = to% = t. If t is a variable unbound
in E, for all k€ NV, tok =t. Thus, tof is a variable for all k € . Now we apply the
definition of 6. If ¢ is a variable bound in E, we apply induction on the depth of ¢t in E.

For i, suppose #6(t, F) = 0. If §(t, F) is a variable, we must be in the first case of the
definition of é, hence §(¢, E) = tof, and if §(, E) is a constant, we have tof = §(¢, E)of =
§(t, E). Conversely, if #tof = 0, since §(¢, £) < tok, #6(t, E) = 0, and the preceding argu-
ment applies. .

Concerning i, recall the equality §(¢, E)of = tof, and note that by ii, #tat > 0 if and
only if #6(¢, F)> 0. O

Exemple Let £ = { 20 < f(z1), 21 X 22, z3 X 71 }. We have then: 6(zo, E) = f(z1),
O(z3, F) =2,. O

For the sake of conciseness, we introduce the following predicates.

d,(t,u,E): #tof =0, and uof = tof.

O, (t,u, E) : tof €V \ var(ucl).

O;3(t,u, E): tof ¢V and Pu(u,t, E).

y(t,u,E) : tof ~uof.

Os(t,u, E) : 09ty E).

The following are immediate consequences of these definitions.

Corollary 2.46 i. Foralll <1< j <4, if ®,(t,u,E), then not ®;(t,u, E).
i. Oi(t,u, E) iff 6(t,F) is either a variable or a constant and é(u, E) = §(¢, E).
ii. ®y(t,u, E) iff 8(¢,E) is a variable, and §(1, E) € var(uay).

. ©4(t,u, E) iff 6(t, FE) and 6(u, E) are compatible terms.
O

Proposition 2.47 If to} and uof are unifiable, then for some i =1,...,4 &;(t,u, E).
Equivalently, if ®5(t,u, E), then tof and uo} are not unifiable.
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Proof We simply consider the different possibilities for tof and uog. If to} is a variable,

since uc} is unifiable with it, we must have either that uo} = tof, hence ®,(¢, u, E), or that

uof is a term not containing to}, hence ®,(¢, u, E). The rest is analogous. O

Proposition 2.48 If ¢ is a variable renaming on var(tof) U var(uc}), vof = toté, and
wof = uoke, then for alli=1,...,5, ®:(t,u, E) if and only if ®;(v,w, F).

Proof First, let us note that it is enough to prove the following
Claim : For all t,u,v,w,E, F and ¢ € Q satisfying the hypothesis of this proposition, and
foralli=1,...,4,

®,(t,u, E) implies ®;(v,w, F). (2.6)

Assuming the claim and the hypothesis of the proposition, if ¢ € Q, we get tot = vofte?,

and uof = wot¢™', hence, by the claim, and for: = 1,...,4, ®;(v,w, F) implies ®;(t, u, E).

Therefore, if the claim holds as is, it also holds replacing ‘implies’ by ‘iff’ in (2.6). It is also

easy to verify that if the claim holds in this new form, it remains valid replacing ‘2 = 1,...,4’
by G=1,...,5.

If ®,(t,u, E), then #tof =0, and uot = tof. Hence, since ¢ is a variable renaming,
#vof = #tof =0, and wot = uoté = tofp = vof. This shows that &, (v, w, F) is true.

F E F E E F

If ®,(t,u, E), then tof € V \ var(uo}), and since ¢ is a variable renaming,

vaf = totd € V\ var(uocté) =V \ var(wof),
hence ®; (v, w, F') holds. The rest is analogous. O
Corollary 2.49 For all j,k € N, ®;(¢t,u, E) if and only if @i(taé,uag, E). O

We will call equational goal any expression of the form A F E, where A is a finite
sequence of equations, and E a list of equations such that the corresponding set is an envi-
ronment. By definition, a goal A F Fisequalto A v Eiff A=A, and F and F contain
the same equations, independently of their order. The empty goals are those of the form
F E. A permutation of A + E is any goal of the form A + E, where A is a permutation
of A. A unifier of a goal is a unifier of all the equations appearing in the goal. Note the
following characterization.

Proposition 2.50 Let A + FE be an equational goal. Then 8 is a unifier of A = FE iff 8
is a unifier of A, and 6 = o).

Proof Easy. Simply recall that by Proposition 2.41, 8 is a unifier of E iff § = ¢£6. O

We will call U the system consisting of the unification rules of Table 2.1. Note that by
Corollary 2.46, at most one rule of U can be applied to any given goal. Each pair of goals

Ag + Ey

A B 20
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The Equation Elimination Rule (ee)

A E

txu F .
A F E with &, (t,u,E).
The Left Binding Rule (1b)

Atxu +F E
A F tof xuof E

with ®(t,u,E), keN.

The Right Binding Rule (rb)

A txu + FE
A + wuof xtoy E

with ®3(t,u,E), kEN.

The Structure Decomposition Rule (sd)

Atxu + F
A x(6(t,EYok,6(u,E)ol) + E

with ®4(t,u,E), j keN.

Table 2.1: The Unification Rules

satisfying the conditions defining rule r is said to be an instance of r. Ay + Ej is the
antecedent of this instance, while A; + FE, is the conclusion. A rule is simply the set of all
its instances. The complezity of a proof in U {or any other system) is the number of rule
applications it contains. Note that the rules other than ee have integer parameters, and
that, as a consequence, these rules may contain various instances with the same antecedent.
For example, here we have two instances of 1b.

txfly) F yxa txfly) + yxa
Foexfly) y<a Foz2x fla) y<a

However, each rule of U contains only a finite number of instances with the same antecedent.
See Figure 2.1 for a more complex example. Note that {z/g(a),y/a] is a unifier of the first
goal of this exemple, and that if 8 is another such unifier, then 8 = [z/g(a),y/a]b.

We must ensure that our rules are well defined, and for this it will be enough to show
that if (2.7) is a candidate rule instance, then F, is an environment. This is obvious for all
the instances of ee, and sd. For those of lb, and rb, we need some further results.

Proposition 2.51 If for some k € N, z € var(tok) \ ker(o}), then z € var(tof).
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f(b,9(y),y) < f(b,z,0a)
bxbglyyxz yxa
bxbgly)xz

bxb

T 7T T
<
)

Figure 2.1: An example proof in U.

Proof From Corollary 2.36, tofto}t = tof. Therefore,

var(tog) = |J  var(zof).
z€ va.r(to'z‘;)

By hypothesis, z € var(tof). From this and the previous equality we get that var(zo}f) is
contained in var(to}). But, by hypothesis, z is unbound in E, which implies 2ot = z. From
this and the previous remark we conclude z € var(tof). O

Proposition 2.52 Let E be an environment,  a variable unbound in E, and u a term such
that z € var(uot). Take an arbitrary k € N and define

F=EU{zxuok}

Then F is an environment and o} = of[z/uc}). In particular, the statement holds if we
take a k € N making uok = 6(u, E).

Proof Clearly, F is finite and associates at most one binding to each variable. Therefore,
proving that F' is an environment reduces to proving that all variables are of finite <g-depth.
Suppose we have an infinite sequence

Tog <p T < ... <fp ZTp <f ... (28)

It is obvious that if y < 2z and y # z, then y <g z; so, if for all n, z, # r, we would
have depth(zo, E) = 400, which is impossible. Then, = appears somewhere in the sequence.
Without losing generality, we may suppose that o = z. The same argument leads us to
conclude that there exists a n € A such that r,,; = z. Taking the least such n, we have
the following situation:

r<pz; and z; <g 23 <g...<E Tp4 = <. (2.9)

From the first condition in (2.9), z; appears in the binding of z in F, which is uot. We

have then z, € var(uot). Besides, the second condition in (2.9), and (2.3) imply that

z € var(z,0%). Consequently, we have = € var(uaff”).
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By hypothesis, z is unbound in E, so applying Proposition 2.51, we get = € var(ucy),
which contradicts the hypotheses. We conclude then that there is no infinite sequence like
(2.8) and so, all variables are of finite <g-depth. This proves that F is an environment. We
now prove that for all variables z, z0f = zof[z/uct].

Base Case: depth(z,F)=0. Suppose first that z is unbound in F. We have then
zot = z. But under this hypothesis, z is also unbound in F and is different from z. This
implies zof[z/uck] = 2.

If the binding of z in F is the closed term t, zof = tof =t. lf 2 #z, then 2 xt€ E
and we get

zoflz/uok] = tok(z/uct] = t.

If z =, then t = uof. Sincet is supposed to be a closed term, we have
uof =uokot =tof =t.
Now, recalling that by hypothesis 2 = z is unbound in E, we conclude
zoflz/uot] = z[z/uck]) = uof =1t.

Inductive Step: depth(z,F) > 0. We first consider the subcase z # z. By the case
hypothesis, z is bound to an open term t and, from z # z, we must have z <t € E. This
means that both o} and of unify 2z < t. Since we may apply the I.LH. to the variables of ¢,
we have

20t = tof = tofz/uoct] = zok[z/uct].

If, on the other side, z = z, the binding of z = z in F is uo% and we may apply the LH. on
the variables of this term. This gives

uokot = uokok(z/uof).

But usko} = uof and from the hypothesis that = & var(ucf) we get

uokot(z/uot] = uok.

The previous equalities imply zoF = uoko} = uof. On the other hand, since z =z is
unbound in E we have zof[z/ucf] = usf and the proposition is proved. O

Consequently, if E is an environment, k € M, and t, u are terms such that ®,(¢,u, E), making
z = to} in the above proposition, we get that £ U {tof < uo% } is an environment. For the
same reason, if ®3(¢,u, E), then EU {uck < tog} is an environment. This shows that lb
and rb are well defined.

It is clear that an equational goal A F E encodes both a ‘partial unifier’ and a list of
equations waiting to be unified. At first sight, we may think that these are, respectively, oz
and A, but a careful analysis of the conditions ®;(¢,u, F) shows that the partial unifier is
of and that the list of ‘suspended’ equations is Acf.
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If ®,(t,u, E) holds, tof = uof. If, during the unification process, we pick t < u up and
discover that ®;(¢,u, E) holds, we are implicitly selecting the suspended equation tof < uog
and discovering that the two sides of the equation contain either the same variable or the
same constant. Such an equation is already unified so we may simply eliminate it. This is
what ee diligently does.

If ®,(t,u, E) holds, tof is a variable not appearing in uof. Under these conditions,
[tok/uof] is a principal unifier of the selected equation tof < uof. It is quite natural to
guess that the new partial unifier is the result of composing [to}t/uck] after the current
partial unifier, that is, that the new partial unifier is of [tof/ucf]. Proposition 2.52 tells
us that adding the equation tof < uck to the current environment is a (highly efficient!)
way of storing this new partial unifier.

If ®4(t,u, E) holds, 6(t, E) and é6(u, E) are compatible terms,
6(t,F) = f(t1,...,tn) and 8(u,E)= f(uy,...,un),

say. In this case, . ' ,
tor = 6(t,E)okot = f(tiok,... twok)ot,
E ECE E EJOE

uof = 6(u,E)ofof = f(ui0k,...,u.08)0k.

sd replaces t < u by {t;af,; =< u;0f } without modifying the current partial unifier. This
amounts to replacing to} < uok by « (tok,uog ) in the list of suspended equations. This
shows that U takes a goal A F E as an encoded representation of the list Acf. of equations.
The key point, however, is that U tries not only to determine whether this list is unifiable
or not, but also, it tries to compute a unifier. The purpose of the environment in the goal is
precisely to ‘store’ the computed substitution.

When applied to a goal A F FE, all the rules of U ‘reduce’ the rightmost equation of A.
However, it is more or less clear that nothing essential is modified if we choose an equation
other than the rightmost. In order to formalise this idea, instead of modifying the rules of
U, we will introduce the following notion.

Definition 2.53 An exchange rule is a unary rule X on goals such that

i If
Ao F E,
AL F E

is an instance of X, then A, + E, is a permutation of Ay + E,.

it. For all goals Ay + E, X contains at least one instance

Ao F E

AT E (2.10)



According to ¢, an exchange rule X only allows us to permute goals, while i1 ensures that
X allows us to permute all goals. But this does not mean that X allows us to get all
permutations of all goals in one rule application. This is why we talk about exchange rules.
The convenience of adopting this definition will be clarified later. The full exchange rule
is the exchange rule containing all the instances of the form (2.10) for all goals Aq F E,
and all permutations A; F F of the former. From now on, except when explicitly stated
otherwise, ‘X’ will denote an arbitrary exchange rule.

Suppose S is a deduction system acting on goals. We will denote by S the rule (and
the single-rule system) obtained ‘merging’ all the instances of X with all the instances of the
rules of §, when this is possible. More preciely,

Ag F Ey

A E (240

is an instance of S¥ iff there exists an instance

AO - EO

A ¥+ Eq
of X such that

A+ E,

A FOE
is an instance of a rule of S. Ay F Ey 1s reducible in S iff there exists an instance of a rule
of S of the form (2.11); otherwise, it is irreducible. Given a proof

A E
: (2.12)
AFF
in §, A F Fis its conclusion, while the interior goal occurrences are the goal occurrences
other than the conclusion. (2.12) is mazimal iff A F E is irreducible; it is a refutation iff

A + Eis an empty goal. Trivially, all refutations in UX are maximal, but the converse fails.
For instance, a < b - is maximal.

Our next task will be to show that U¥ is sound. More precisely, we want to show that if
(2.12) is a proof in UX, then A F F has the same unifiers than A + E. Clearly, it suffices
to show the

Proposition 2.54 All the rules of U preserve unifiers.

Proof

At E

Case ee with &, (t.u,E).

<xu F
AFFE

Suppose # is a unifier of A + E. Proposition 2.50 implies § = o£8, and from ®;(¢,u, E),
we get t0 = to}0 = uo}8 = uf. The rest is immediate.

27



Case b A txu v E ith & E).keN
Se A '_ tagxuo’g E wit 2(!,‘“, ). € .

Let us write F = EU {tot < uof }. The reader may convince himself that in order to prove

that the two goals in the above rule instance have the same unifiers, it suffices to prove that
for all 6,

e § =00 and t6 = uf implies toff =uokf, and

e 6 = o0 implies t0 = uf.
For the first claim, if the hypothesis is true, we immediately get

0F0 = t0 = uf = uotd = uokotd = uoké.
Suppose now 8 = o£6. By hypothesis, ®,(t,u, E), hence
tof is a variable not in uog. : (2.13)
Making z = to} in Proposition 2.52 we get
0 = 0f8 = ok[tof /uatll.

Thus, on the one hand,
t = tok[tof /uot)d = uolts,

and on the other hand, recalling (2.13),

This proves the second claim above. Hence, the case lb is proved. The proof for rb is
analogous.

A txu + F
Case sd A with ®4(t,w,E), j,kEN.

x(6(t, E)og,6(u, E)of) + E

By Corollary 2.29,  (6(t, E)o’, 6(u, E)a% ) has the same unifiers as (¢, E)o} x 8(u, E)ok
Therefore, it suffices to prove that for all 6

o if 8 =028, then 0 =uf if and only if (¢, E)oL0 = 6(u, E)okd.

But this is easy, because if § = 0£0, we get
t0 = totd = (¢, E)ot0 = 6(t, E) EO'EO o(¢, E)

and similarly, u6 = é(u, E)ok8. O
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In particular, this implies that if

x(A.B) F E

FOF
is a refutation in UX, then o} is a principal unifier of (A4, B)U E.

The completeness of UX may be stated as follows. If A F FE is unifiable, then there
exists a refutation

A+ E
FF
in UX. We will see not only that this is true, but also that if A + E is unifiable, then all
maximal proofs in U¥ extending A + E are refutations.

Proposition 2.55 All non-empty and unifiable goals are reducible in UX. Equivalently,
only the empty goals are both unifiable and irreducible in UX.

Proof Suppose that A + FE is non-empty and unifiable, choose an arbitrary instance

A+ E
Atxu+ F

of X, and let # be a unifier of A ¢t x u + E. By Proposition 2.50, § = c£6, hence
toff =10 = uf = uo}o,

which shows that tof and uof are unifiable. By Proposition 2.47, A ¢ < u F E is reducible
inU. O

Corollary 2.56 Let
A+ F
: (2.14)
AFF
be a mazimal proof in UX. Then (2.14) is a refutation iff A + E is unifiable.

Proof If (2.14) is a refutation, by the soundness of UX, o} is a principal unifier of A + E.
Conversely, if A + E is unifiable, by the soundness of UX and the hypothesis of maximality,
A + F is both unifiable and irreducible. By the preceding proposition, A + F'is empty. O

This corollary suggests the following mechanism for defining a unification algorithm.
Given A + E, construct a maximal proof (2.14). Once this has been done, if |Al= 0, of
is an idempotent principal unifier of A + E, and if [Al > 0, A + E is not unifiable. The
natural procedure for implementing this idea is as follows. We start with A + FE. After
having constructed all the proofs of complexity m, and assuming that there are only a finite
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number of them, if one of them is maximal, we stop, otherwise, we construct all the proofs
of complexity m + 1, (there are only a finite number of them), and continue the process. If
there exists a maximal proof, we will certainly be able to find it, but at this point we are
not guaranteed that this is is the case for all the equational goals. This is essentially the
problem of termination of the preceding algorithm.

Consider the set of all triples of non-negative integers (n,m,r) with the lexicographic
ordering, that is: (n;,my,7r;) < (no, Mo, 7o) iff either n; < ng, or ny = ng and m; < my, or
ny = ng and m; = mgy and r; < ro. We mention without proof that there exists no infinite
sequence of triples strictly decreasing in this partial order.

Definition 2.57 The level of the equational goal A + E is the triple (n,m,r) of natural
numbers, where

e n is the cardinality of var(Act), that is, the number of variables in Aok, not counting
repetitions. Note that according to Proposition 2.38, all these variables are unbound in

E.
e m =3 #vof + #wok, where the sum is on all the equation occurrences v < w of A.
o r=IAl

Trivially, the level of a goal does not depend on the order of the equations. Thus, two
permutations are of the same level.

Proposition 2.58 Let
Ao F FEy
AR o O

be an instance of the rule r of U, and let (n;,m;,7;) be the corresponding levels, 1 = 0, 1.

(2.15)

i. If ris ee, then ny < mng, my = mg, and r; < 7.
it. If rislb, orrb, then n; < ny.
wi. If ris sd, then n; = ng, and m; < my.

Proof
A txu F

Case ee with &, (t,u,E).

AFE

Since all the variables appearing in Ao} also appear in Aot tof < uot, we have n; < n,.
Trivially, mg = m; + #tof + #uocf, and by &,(¢,u, E), #tot + #uocf = 0. Therefore,
my = mg. T < 1o is self-evident.

A txu + F

Case 1b A F tagxuog E

with ®2(t,u,E),keN.

30



Let us write E; = E U {tof < uof }. We first show that
var(Acg ) C var(Acg) U var(uc}). (2.16)
By Proposition 2.52, o, = ok[tof/ucf]. Take now an equation v X w € A. We have
var(vag, ) = var(vog|tof/uog]) C var(vef) U var(uog) C var(Ack) U var(uck). (2.17)
Since the same inclusion holds for var(wof ), (2.16) is verified, hence n, < no. But

®,(t, u, F) implies
tof € var(Aot) U var(tof) U var(uok),

and since tof is bound in E, it does not appear in Acj . Thus, ny < ne.

A txu + FE
Aoc(&(t,E)a};,&(u,E)af;) FE

Case sd with ®4(t.u.E),j kEN.

By hypothesis, tof = uof, and by Corollary 2.29,
< (8(t, E)ok, 8(u, E)ok Yot = x (6(t, E)ohof,6(u, E)okot ) = < (tof,uot).  (2.18)
Hence, by Corollary 2.29,
var(o< (8(t, E)ok, §(u, E)ok )ot) = var(tot) U var(uo).
This readily implies n; = ng. Finally, again by Corollary 2.29, we have

S oot + #uot < ok + #uok,
where the sum is on the equations of (2.18). This entails m; < mg. O

Corollary 2.59 Any instance (2.15) of a rule of UX may be extended to a mazimal proof
in UX.

Proof By induction on the level of A; + FE; using the above proposition, and the fact that
two permutations are of the same level. O

Note the difference between the statement of this corollary, and the following one: all
goals may be extended to a maximal proof in UX. The latter only ensures that the proce-
dure described above will terminate, while the former ensures that the following optimised
algorithm is enough. For a given goal, suppose we have already constructed one proof of
complexity m. If this proof is maximal, we are done. Otherwise, we arbitrarily choose one
extension of complexity m + 1, and continue the process. A further optimisation is still
possible. The conclusion of a proof contains enough information for determining whether
the proof is maximal or not, and if not, to construct an extension. Hence in the preceding
algorithm, instead of remembering the full proof, it suffices to store its conclusion.
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Here we have a more operational description. Let s be a stack of equations, and let ()
denote the empty stack. For t and u compatible terms, let oc(t,u) = s denote the result
of pushing onto s all the equations in o ( ¢,u ) in some unspecified order. Suppose that @ is
a function defined on all the triples (¢, u, ) with values in [1, 5] such that ®(¢t,u, F) =7 iff
®i(t,u, E). Also, let bind(t,u,E) = EU {t < u}. In the algorithm below we make the rule
Ib functional. For this we choose the parameter k such that uok = §(u, E), and analogously
for rb, and sd. We are left with the following widely known unification algorithm.

unify(s, E)
begin .
if (s={() ) return(E);
t < u:= pop(s);
t=46(t,E); u=é(u,FE)
case ( ®(t,u,E)) of
1: return unify(s, £);
2:  .return unify(s, bind(t,u, E));
3: return unify(s, bind(u,t, E));
4: return unify(x(t,u) = s, E);
5 return (L);
esac
end

Table 2.2: A Unification Algorithm

Note that here we are testing the conditions ®; after dereferencing. According to Corol-

lary 2.49, this is correct. We end this section with additional simple properties of environ-
ments.

Proposition 2.60 If z is bound in E, then for all j € N, var(xag) Cuvar(E). O
The proof may be easily done by induction on depth(z, E).
Proposition 2.61 If Ey C Ey, then 0§, = o} ot .

Proof Proposition 2.41 implies that for all 8 € unf(FEy), 0 = UEOG. But the same result and
the hypothesis imply o} € unf(E;) C unf(E,). O

Proposition 2.62 of = of implies unf(E) = unf(F). O

This follows immediately from Proposition 2.27.
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2.3.2 An Abstract Unification Machine
Introduction

Unification is a fundamental operation in Logic Programming. According to some authors,
[Mai90], [MD], it accounts for between 50% and 80% of Prolog’s execution time. It is then
natural to look for efficient implementation techniques.

For some time, the WAM has monopolized the market of abstract Prolog architectures.
However, after some years of experience, researchers arrived at a deeper understanding of
the unification operation and realized that the WAM unification fragment suffers from some
flaws. Alternative approaches have then been developed. SUE is such an alternative. We
present here a detailed account of it, and describe an algorithm for generating what we call
the ‘canonical’ SUE code for a term or a PROLOG clause head. The canonical code of a
term contains exactly one abstract instruction per term symbol, not counting parentheses
and commas and is optimal in write mode. It corresponds to a depth-first traversal of the
compiled term, instead of breath-first traversal as in the typical WAM code. The proposed
architecture includes a certain number of substructure pointers S; specialized to a given
subterm ‘depth’ (this is made precise below), and instructions specialized to symbol ‘posi-
tions’ and depths. Finally, the canonical SUE code does not need temporary registers for
storing structure arguments. This is made possible through the use of multiple substructure
pointers.

The Proposed Architecture

In what follows, a (SUE) word is either a memory word or a register. All words are the
same size. The registers are: H, the Heap pointer, E, the environment pointer, M, the mode
register, a certain number of substructure pointers S;, of argument registers A;, and a stack,
the Pushdown List. Of course, there is also a Program Counter, or Program Pointer, but we
do not need to make explicit reference to it.

We introduce now some terminology and notation, and make some comments on data
representation. In general, we will write terms using neither parentheses nor commas. By
definition, size(f) = arity(f) + 1, for all functors f. The size of a term is the sum of the
sizes of its functor occurrences.

A value is a sequence of binary digits of the same length as a SUE word. We use values
for specifying SUE word contents. As the WAM, SUE uses tagged values for representing
terms. A tagged value is a value partitioned into two fields: the tag field and what we
call the secondary field (sfield). The contents of the tag field indicates what kind of term
a given value represents. If the tag contents is ctag, (respectively, vtag, stag, ltag,) then
the represented term is an individual constant® (respectively a variable, a structured term,
a list). Lists are but a special case of structured terms, but for efficiency reasons, it is
convenient to add a tag for them, store them in a special way and add some instructions to

3also called atom elsewhere,
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the architecture. However, once the basic principles are understood, these additions may be
easily done, so we will not treat them in a special way. The reader is referred to the WAM
literature.

We assume that at compile time each constant is associated a uniquely determined ctag-
ged value in such a way that two constants are equal if and only if so are their respective
values. From now on, then, we may use the same letter, typically, a, b, ¢, for representing
both an individual constant and its associated value. The context will clearly indicate
what the exact meaning is. Similarly, each functor is associated a value allowing SUE to
differentiate between different functors, but we also require that the value associated to f
encode the size of f. As for constants, we will use the same letter for denoting a functor
and its associated value.

SUE represents variables through values of the form vtag(k), with tag vtag and sfield k.
The secondary field contains a memory address, the binding address of variable vtag(k). The
tagged value contained in the memory word at address k, m{k|, is the binding of vtag(k).
If the (current) binding of vtag(k) is vtag(k) itself, then the variable vtag(k) is said to be
(currently) unbound.

Structured terms may be arbitrarily long. For this reason, a value is in general not enough
for storing all the information necessary to their representation. A term ft;...¢, will be
stored in the form

f k

val(ty) | k1

val(t,) | k+n

where val(t;) is a value representing ¢, in the current memory state. In this situation, the
tagged value stag(k) is a tagged value representing ft,...1,.

At run time the memory state encodes a substitution. But a variable may be bound to
another variable, so SUE must differentiate between the current binding of a variable and
the term associated to this variable by the current substitution. For exemple, in the memory
state

f 0

vtag(3)
b
a
stag(0)

the binding of vtag(1l) is vtag(3), but the term associated to vtag(l) is a, the binding of
vtag(3). This implies that the term assigned to vtag(4) is f a b. SUE needs then to dereference
a tagged value with respect to the current state. This is as in the unification system U. A
tagged value is said to be dereferenced if it equals its dereferenced value. Table 2.3 lists the
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instruction mnemonics. The d postfix in the m- and mt- instructions denote integers 1, 2,. . .,
up to a certain number. This is discussed below.

r The h-family The m-family l The mt-family | The t-family l
hfunct f,A; | mfunctd fk | mtfunctd fk | tfunct fk
hconst c¢,A; | mconstd ¢k | mtconstd ck | tconst ¢k

hvarfo ?,A; | mvarfod :k | mtvarfod ¢,k | tvarfo ik

hvarnfo :,A; | mvarnfod ¢,k | mtvarnfodi,k | tvarnfo ¢k

Table 2.3: Instruction Mnemonics

A Compilation Algorithm

For compiling a structured term ¢t = ft,...t,, we need to determine the position of each
symbol occurrence in ft; ...t,, the depth and the offset of each symbol occurrencein t; ... ¢,.
First, note that a functor occurrence g in t is followed by m = arity(g) terms uy ... un,. We
say that gu;...u,, is the term occurrence determined by this occurrence of g¢.

We say that u is in m-position® in t iff for some 7, 1 < i < n, u is t;, or, for some i,
1 <1< n,uisin m-position in ¢;; u is in t-position® in ¢ iff u is ¢, or u is in t-position in t,;
u is in mi-position in t iff for some term occurrence v in m-position in t, u is In t-position in
v. For the sake of regularity, we say that u is in h-position® in ¢t iff u is t itself.

By definition, a simple term is in h-position in itself, but it is neither in m- nor in mt-
nor in t-position in itself. It follows that a subterm occurrence in ¢ is, in ¢, in exactly one
of the four defined positions. A functor occurrence f is said to be in x-position in t iff the
term occurrence determined by f is in x-position in ¢t. See below for an example.

Let u be a term occurrence in ¢, ...t,. If, for some :, 1 <17 < n, uist;, the depth of u
intisl. Letnow 1 <1 <n, t; = gu;...un, and u a proper subterm occurrence in t;. For
defining the depth of u in ¢t we need to differentiate the cases 1 < n, and i = n. If z < n, the
depth of u in t equals the depth of w in ¢; plus 1. If : = n, the depth of u in ¢ equals the
depth of u in t; = t,. As a consequence, the depth of a term in t-position is 1. From this
and the definition of depth, the depth of all the t,’s in the list [¢1,...,t,] is 1. An analogous
remark holds for any right-sided structure.

Given a term occurrence u in ;. ..t,, there exists a uniquely determined integer j and
a uniquely determined term occurrence gu ... u; U4y ... Uy 10 fty...t,, m = arity(g),
such that u is the j-th argument of this term occurrence. By definition, the offset of the
term occurrence u in fty...%, is the number

1-1

— (size(g) — 5 + 2 size(u;)). (2.19)

1=1

‘middle-position
Sterminal-position
Shead-p osition
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Given a symbol occurrence s in ¢, ...¢,, if s is a simple term, the depth and the offset of s
in t are already defined; if s is a functor occurrence, the depth (respectively, the offset) of s
in ¢, is the depth (respectively, the offset) in ¢ of the subterm occurrence determined by s.

Suppose size(f) = 4, size(g) = 3 and size(h) = 2. In 2.20 we give a structured term, and
the positions, depths and offsets of all the symbol occurrences, when they are defined.

f h Yo b g a h Y

g a
h m m mt mt m t m ¢
2

9
1 2 2 1 1 1 1 1 (2:20)
3 -2 -1 -1 -7 —6 -2 —1 -1
We may now show how to compile a clause head p(ty,...,t,) whose variables, if any, are
Ys,..., Y, for some m. From this convention, the reader familiar with the WAM will

correctly infer that in the algorithm described below, all variables are considered permanent.
FFurther research is needed for the definition of non-trivial register allocation algorithms for
temporary variables.

Here, the value representing variable Y; will be vtag(e + i), where e is the contents of
register E during unification. We will not justify this. The reader is referred to the WAM
literature for a more detailed discussion. Note that E is not modified by the instructions of
the proposed architecture.

Let now ¢; be an arbitrary head argument. The following rules define the canonical SUE
code for t;. Recall that A; is an argument register.

e If t; is the constant c, its canonical code is hconst c,A;.

e If t; is Y;, and this is the first occurrence of Y; in the compiled head, starting from the
left, the code for ¢; is hvarfo 1,A;.

e If t; is Yi and this is not the first occurrence of Y; in the compiled head, the code for
t; is hvarnfo 1,A;.

¢ Suppose now that ¢; is structured. We translate each symbol occurrence in ¢; into a
uniquely determined instruction.

If f is the functor in h-position in {;, it is translated into hfunct f,A;.

Consider now a symbol occurrence s other than the first in ¢;. Suppose that s is in
x-position in tj, where x- is either m-, or mt-. Suppose that the depth (respectively,
offset) of s in t; is d (respectively, k).

If s is an occurrence of ¢, its canonical code is xconstd c,k. If s is an occurrence of Y;
and this is the first occurrence of Y; in the compiled head, s is translated into xvarfod
t,k. If s is an occurrence of Y; and this is not the first occurrence of Y;, s is translated
into xvarnfod :,k. If s is an occurrence of the functor g, it is translated into xfunctd
g.k.

If s is in t-position, the rules are analogous, except that we may ignore its depth, which
is uniquely determined.
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At this point, the meanings of the instruction mnemonics should be clear. For instance,
hfunct stands for ‘functor occurrence in head position’, mvarfol stands for *first occurrence
of a variable in m-position at depth 1°, etc.

Assuming that (2.20) is the 7-th argument of the compiled head, according to the previous
rules, its canonical code is the following.

hfunct fiA;
mfunctl g¢,-3
mconst2 a,—2
mtfunct2 A, -1
mtvarfo2 0, -1
mconstl b, -7
tfunct g,—6
mconstl a,—2
tfunct h,—1
tvarnfo 0,—1

Low Level Operations

For the specification of our instructions, we need value specifiers, word specifiers, and a cer-
tain number of low level operations. If ¢ and f denote a constant and a functor, respectively,
we use ¢, f and size(f) as value specifiers, their meaning being clear from previous conven-
tions. Integers are also value specifiers. We use addressing modes both as value specifiers
and as word specifiers. They are listed in Table 2.4, where r denotes the contents of register
R, and s the sfield of r. The value denoted by an addressing mode is the contents of the
specified word. The addressing modes other than the first are the memory word specifiers;
they specify a memory word through its address. Note that some addressing modes produce
side-effects.

I—/{ddressing Mode | Specified Word | Side Effects
R R none
(R) m|r] none
(R+k) m(r+k| none
(R)++ mr] Rer+1
R] m(s] none
[R]++ m(s] Re—s+1

Table 2.4: Addressing Modes

Table 2.5 lists the operations we will use. In this table, v, v; (respectively, w,w;) denote
value (respectively, word) specifiers.
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Basic Operations
move v,w inc v,w | tststruct v,
mvvar wy,w, | dec v,w | tst_const w,l
mvstr fiw deref v,w | continue
compare v1,v2 | unify vy, v2 | fail

Table 2.5: Low Level Operations

We will not precisely specify the fail operation. Readers familiar with the WAM may
fill in the details. Another possibility is to think it as a halt operation. This will be enough
for our purposes. The first argument w; of mvvar must be a memory word specifier; if, at
run time, it returns address &, say, then mvvar moves vtag(k) into wp. If H = A, mvstr moves
stag(h) into w, moves f into m[h], and increments H of size(f). This will be clarified below.
deref stores the dereferenced value of v into w. unify is a general unification algorithm. It
tries to unify its arguments in the current memory state. If this is not possible, SUE fail’s;
otherwise, control continues at the next low level operation. unify is the only instruction
allowed access to the Pushdown List and it is responsible for its management. continue
marks the end of a SUE instruction.

compare compares its arguments. If they are equal, control continues at the next low
level operation; otherwise, SUE fail’s. tst_struct analyzes the tag of v; if it is vtag, control
continues at the next operation; if it is stag, control continues at the label [; otherwise, a
failure occurs. tst_const is analogous. Note that none of the instructions mentioned in this
paragraph dereferences its value argument(s).

Execution Modes

In the following discussion, we suppose size(f) = 3 and size(g) = 2. According to our defi-
nition, if f gab is the first argument of a clause head, its canonical code is

hfunct fiAy
mfunctl g¢g,-2
"mtconst2 a,—1
tconst b, -3

(2.21)

We suppose that at run time, when control arrives at the hfunct instruction above, A; will
contain a dereferenced value, so, if it is a variable, it is unbound. The hfunct instruction of
(2.21) will determine the kind of term the contents of A, represents, and will react according
to the result of this analysis. Three essentially different situations may arrive.

The first possibility is that A, contain an unbound variable. For instance, our machine
state may be the following.
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vtag(ko) | ko
Ay vtag(ko) :

H — k

For unifying f g a b with vtag(ko) it suffices to construct a representation of the compiled term,
store it at m{k,], modify H appropriately and bind vtag(ko) to the constructed representation,
that is stag(k;). We want then that our code (2.21) produce the following transformation.

stag(ki) | &
vtag(ko) | ko f "
: = stag(k, + 3)
H — ks b
g
a
H — ky+5

The hfunct instruction will fire the process with the transformation

stag(ky) | ko

vtag( ko) ko

= f f

H — ki +3

and will execute set_wmode (i.e: move 1,M), declaring SUE to be in write mode. The
following instructions, finding themselves in write mode, will complete the creation of the
compiled term.

This reveals the meaning of the offset of a symbol occurrence in a structured term. In
write mode, SUE represents structures in a canonical way, and in this representation, a
structured term ¢ occupies size(t) contiguous memory words. The creation of such a rep-
resentation starts with an hfunct or an zfunctd instruction which, among other things,
writes the functor at the memory word pointed at by H, and reserves space for the values
representing the arguments (recall the operation mvstr). The following symbols, (i.e. in-
structions), knowing their own offsets, will be able to write themselves at the appropriate
place. This clearly shows why the offsets are negative integers.
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A second possibility is that (2.21) start running in a state like this.

f ko
stag(ko + 3)
Ay: | staglko) | b

g ko+3
vtag(ko + 4)

In this case, SUE must traverse the arguments of the incoming structure, trying to unify
them with the arguments of the compiled term. The hfunct instruction will set_rmode
(i.e: move O,M), declaring SUE to be in read mode and will leave S; pointing at the first
depth-1 incoming argument, that is, S; = k¢ + 1. mfunctl, a depth-1 instruction, starting
in read mode, will analyze the dereferenced value of the value pointed at by S;, here, a
structure with the expected functor g. It will then leave S; = kg + 4 pointing at the first
depth-2 argument, and S, = k¢ + 2 pointing at the next depth-1 argument. mtconst2, a
depth-2 instruction, will find its corresponding argument through S,, and tconst, a depth-1
instruction, through S;. If we guarantee that S; will not be modified by mtconst2, its
saving/unsaving is unecessary.

Another subcase is possible here. mfunctl may find S; pointing at an unbound variable.
It must then bind this variable, write the functor g on top of the Heap, reserve space for
the argument list, and set_wmode. mtconst2, starting in write mode, must complete the
creation of the substructure, and must pop_wmode (dec 1,M), for putting SUE back in read
mode.

In general, an xfunct instruction starting in read mode, may leave either in read or in
write mode. In the first (respectively, second) case, we say it runs in rr-mode (respectively,
rw-mode). It may also run in ww-mode, as we saw in the first case analyzed above, but it
will never run in wr-mode. If a substructure starts in write mode, its surrounding structure
is writing itself onto the Heap, in which case the substructure must participate in this task,
hence it must also run in write mode.

The third possibility is that (2.21) start running with an incoming argument which is
either a constant or a structured term with main functor other that f. In this case the
unification is impossible, so SUE must fail.

Design Principles
Consider a compiled term occurrence ¢t in m-position and at depth d in a head argument,
e UL U U e Uy (2.22)

If ¢ starts running in read mode with Sy = s, it must try to unify its current instance’ with
the term represented by the value in m{s]. If it succeeds, it must leave SUE in read mode

it may contain variables currently bound
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with Sy = s + 1, for allowing u;+1, which is also at depth d, to start in the appropriate state.
But ¢t may be structured, and some portions of it may run in write mode. It seems convenient
to include a stack of mode flags for managing the possible mode changes. By convention,
the current mode is the mode on top of the mode stack. Suppose now that our ¢t above is
structured, t = ft;...t,. When entered in read mode, f must decide whether ¢ must run in
read or write mode. In the first (respectively, second) case, it will push an R (respectively,
a W) onto the mode stack. The arguments t,,...,t,_;, all of which are in m-position, will
leave the mode stack as they found it, and t,, which 1s is mt-position, will pop the mode
stack. But if a structured term runs in write mode, the same holds for its substructures.
This implies that the contents of the mode stack will necessarily be W... WR. .. R, where
the top is on the left. This allows us to apply the following optimization rules: a functor in
m-position running in rr-mode, will not modify the mode stack, and a term in mt-position
starting in read mode will not pop the mode stack. With some thought, we realize that we
may replace the mode stack with an integer variable storing the number of W’s on top of the
replaced mode stack. This is precisely the role of the register M. Therefore, M = 0 means
that SUE is in read mode, M > 0 that it is in write mode. With our canonical code, M
cannot take negative values. Saying that a functor runs in rw-mode means, in fact, that it
starts with M = 0 and executes set_wmode.

A slight difficulty appears, however. Suppose that t is f(g(a, h(b)), c), and that we follow
the rules mentioned above. If f runs in rr-mode and ¢ in rw-mode, at a we will have M = 1;
a is in m-position, so it will not modify M, A will push_wmode (i.e. inc 1,M), and b will
pop-wmode, leaving M = 1. This violates our conventions: g(a, k(b)) is in m-position, hence
it must leave M as it found it, M = 0 in this case. The solution is simple: a functor in
mt-position, as h above, running in ww-mode, must not push_wmode.

The reader familiar with the WAM has certainly remarked various differences between
SUE and WAM. SUE prefers the depth-first traversal of structured terms to the breath-first
traversal of the typical WAM code. In write mode, SUE uses H-relative addressing, which is
allowed by the compile-time computation of offsets. In a sense, the depth-first traversal of
structures forces us to introduce the stack of mode flags for the correct management of mode
changes. Finally, SUE provides itself with substructure pointers and instructions specialized
on a given depth. It ensures that a depth-d’ instruction, d' > d, will not modify Sy, which
makes unnecessary the saving and unsaving of substructure pointers.

According to [Mai88], Prolog programmers do not use deeply nested structures, except,
possibly, right-sided ones, like lists, which, with our definition of depth, are not very deep.
For practical purposes, then, a limited number of registers Sy and of instructions xxxd are
enough.

The Instructions

Most instructions are specified on the next page. This is followed by hints for those not
appearing there.
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hfunct fyA; mvarnfod read 1,k
tst_structA;,, [0 unify (Sa)++, (E+1)
mvstr [ [Aj] continue
set_wmode :
continue mvarnfod_write ¢, k

10: compare f,[A;]++ move (E+i), (H+k)
move A;, S continue
set_rmode
continue mtfunctd read f, k

deref (Sa), Sa

mfunctd_read f,k tst_structSy, (3
deref (Sa)++,Sa41 mvstr f,[S4]
tst_structSyy, (1 set_wmode
mvstr fy[Sa+] continue
set_wmode 13:  compare  f,[S4]++
continue continue

11:  compare  f,[Suy1]++
continue mtfunctd_write f k

mvstr f, (H+k)
mfunctd_write f k continue
mvstr [, (H+k)
push_wmode mtconstd_read ¢,k
continue deref (S4), 54
tst_const Sy, /4
mconstd_read ¢,k move ¢, [Sd]
deref (Sa)++, 5441 continue
tst.const Sat1, (2 l4:  compare ¢,Sy4
move ¢ {Sa+1] continue
continue

12 compare ¢,Sqyy mtconstd_write ¢, k

continue move ¢, (H+k)
. pop-wmode
mconstd_write c,k continue
move ¢, (H+k)
continue

mvarfod_read 1,k
move (Sa)++, (E+1)
continue

mvarfod_write
nvvar
mvvar
continue

ik
(H+K), (H+k)
(H+k), (E+i)



Instructions corresponding to variable occurrences in mt-position are analogous to the
corresponding version of mtconst. tfunct is like mtfunctl. tconst_read is like mt-
constl_read.

tconst_write c, k&
move ¢, (H+k)

continue

Variable occurrences in t-position are treated similarly.

We do not include trailing, which is irrelevant to the unification proper. Note that each
instruction 7 of the m-, mt- and t- families, has two codes: i_read and i_write, executed when
i is entered in read and write mode, respectively. The h-family corresponds, roughly, to the
WAM get family with differences discussed below. Each instruction transfers control to the
instruction following it, that is, there are no jumps.

Note that simple term occurrences in t-position differ from the corresponding mt-versions
in that the write code of the former does not include pop_wmode. This is a slight optimization
allowed by the fact that the h-instructions are mode independent.

How to Use It

Some authors argue that a language for implementing unification must include ‘enough’ low
level operations for allowing a smart compiler to generate optimized code, when additional
static information is available. Following this proposal, we consider that the instructions of
Table 2.5, or some variants of them, are part of the architecture; in particular, the deref
instruction.

When we discussed execution modes, we remarked that our canonical code expects deref-
erenced arguments. But argument registers are loaded at well defined places. The compiler
may then generate specialized instruction sequences guaranteeing that this convention will
be respected. In the WAM, the argument registers are loaded by the instructions of the put
family; but the structure, list, constant and variable members of the family, all put
dereferenced values, while a put_value may be replaced by a move or a deref, depending
on the compiler’s ability to determine whether the moved value will be dereferenced or not
at run time. At worst, the canonical code of each clause head argument may be preceded by
an appropriate deref instruction.

It is useful to compare the efficiency of an ideal hardware implementation of SUE with
that of the PLM, [Dob90], a loosely coupled coprocessor implementation of the WAM.

We note that mode testing in the PLM takes no time. If an instruction has different
read and write codes, the microroutines implementing them are stored at different micros-
tore addresses. At run time, when such an instruction is read, the microengine uses both
the instruction opcode and the processor state (mode flag) for computing the appropriate
microstore entry point.

It is sometines argued that the WAM is ineflicient because of its intensive mode testing.
The PLM shows that the criticism does not apply to a well designed hardware implementa-
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tion. Of course, the same remark holds for our proposal. This explains why we have specified
separately the read and write codes of our mode-sensitive instructions.

The typical WAM code includes one instruction, a unify_variable, per embedded func-
tor occurrence, without counterpart in our canonical code. Consider, for instance, a clause
head with fga as first argument.

WAM code SUE code
getstructure fAl hfunct f{ Al
unify variable Al tfunct g,-1
get_structure g,Al tconst a,-1

unify constant a

Note that mvstr f,w writes two memory words and increments H. We argue that on a Data
Path similar to that of the PLM, incrementing H may be done in parallel with the second
memory write. With this in mind, we may safely say that hfunct is not less efficient than
get _structure. In write mode, unify variable initializes to unbound a variable in memory
and loads A; with this unbound, and so, dereferenced, variable. Among other things, the
following get_structure dereferences the already dereferenced incoming variable and trails
it. Even after the addition, where needed, of trailing in our instructions, none of these
operations are executed by our code above. In fact, in write mode our code is optimal
in the following sense. A structured term t executed in write mode must write at least
size(t) memory words for constructing the term representation, plus one word for binding
the incoming variable, plus one word per variable occurrence in t which is a first occurrence
in the compiled head. Our code writes exactly this number of memory words, which is not
the case of the WAM code. This has already been noted in [MD]. Our code also executes
a set_wmode and some push_wmode/pop.wmode, but on a specialized processor, this may be
done in parallel with the memory writes. Our code is similar to that in [MD]. However,
according to the compilation rules suggested there, each embedded functor generates two
instructions, a push.structure and a push_functor. Our code seems more appropriate
for a specialized processor: it takes less instructions, executes the same number of memory
writes and does not include jumps at the macroinstruction level.

A similar analysis leads us to argue that our xfunctd in read mode are comparable to
get_structure in read mode. But our code does not need unify variable.

We must note that even if our code typically includes less instructions than the corre-
sponding WAM code, it may occupy more space. This is due to the offset argument in the
m-, mt-, and t- families of instructions. Note, however, that this offset is bounded by the
size of the compiled head argument and so, in practice, a byte should be enough for storing
it.

A compiler generating code for a general purpose machine could use our instructions as
intermediate language. In this case, however, the criticism concerning mode testing applies.
It is better to follow the suggestions of [Mai90}, [MD] and [Van89] of explicitly separating
the read and write codes. Given a head argument, we write two copies of its canonical code,
but in the first (respectively, the second) copy, we systematically replace each mode-sensitive
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instruction by its read (respectively, write) code, with minor modifications. This is better
understood through an exemple. Consider the term f(g(a), h(foo)). Our modified code is

hfunct f,A;,wal
ral: mfunctl read g,wal _alist
mtconst2_read a
ra2: tfunct_read h,wa2_alist
tconst_read foo
jump end
wal: mfunct_write g,-2
wal_alist: mtconst_write a,-1,ra2
wa2: tfunct_write h,-3
wa2_alist: tconst_write foo,-1

end:

No read code needs the offset argument, and no write code needs the depth postfix, so we
simply eliminate them. We add a label argument to hfunct; in its code, we replace the
first continue by jump label and we delete set_rmode and the last continue. We also
add a label argument to mtconst_write and replace its continue by a jump to label
if M= 0. The resulting code is quite close to the one proposed in [MD], except that we
treat arguments in their natural order, which is not necessarily better.

Related Works

Our main source on the WAM is [AK91]. [GLLO88] is also good but less detailed. [Dob90]
discusses the PLM. It gives a good idea of the actual cost of the various low level operations
executed during unification. [Van89], [Mai90] and [MD] present alternatives to the typical
WAM code. They discuss the problem of mode testing on general purpose machines and
propose solutions. [Mai90] treats the compiled term depth-first, as we do, instead of breath-
first, as the typical WAM code does. In write mode his code uses the S register for writing
the argument list of structured terms; but then he is forced to saving/unsaving S in write
mode, which makes his code non-optimal. Our code is freed from this flaw through the
use of H-relative addressing, as in [Van89]. Our register M is similar to the L register of
[MD]. However, the authors give no general compilation algorithm, and in their exemples,
the problematic case of a functor in mt-position is not treated. They propose to modify the
order of structure arguments. They argue that this may lead to a more efficient code in some
cases. However, some results of the next section suggest that when the incoming arguments
are unifiable with the compiled head, the number of unification steps is independent of the
order of the arguments. This seems a debatable question. We know no other proposal where
instructions and substructure pointers are specialized to a given depth.
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2.3.3 Optimisation Issues

At each rule application (unification step) in system U¥*, we have different choices at our
disposal: what equation we will try to reduce next, that is, essentially, which exchange
rule we allow ourselves to use, and eventually, what value(s) we will assign to the integer
parameter(s) in the construction of the new environment. In this section we will explore how
these different choices may affect the efficiency of the whole process. We will also consider
the question of whether certain operations executed in the general algorithm may be safely
eliminated.

It is easy to give examples of different maximal proofs of different complexities extending
a given goal. For instance
axb bxb F
axb F

is maximal in U, while if
axb bxb F
bxb axb F

is the only instance of X with a <& bx<b I in the antecedent, then a xb bxb F is
maximal in UX, Thus, at least when the unification is to fail, the choice of the equation to
reduce, that is, of the exchange rule, may affect the maximality of the proof, hence the final
number of unification steps.

For the purposes of the following discussion, let us denote by X, the full exchange rule.
It is easy to see that®

JUx = U,

where the union is on all the exchange rules X. For a given goal A + E| consider now the
set of all the instances

AFE

X
nrFr €U

It is easily seen that this set is finite, since there exists only a finite number of permutations
A+ E of A b E, and for each of them, eash rule of U contains only a finite number of
instances

A+ E
InrF

Using this remark, and by induction on the level of A F E, we see that the set of all the
proofs

AFE

A+ F
(for a fixed goal A + E) which are maximal in some system U¥ is finite, which implies
that among them there exists one of minimal complexity. For the purposes of the following

8Recall that a rule is the set of all its instances.
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discussion, let us say that such a proof is optimal. It is easy to define an optimal-proof-
generating algorithm. Given any equational goal, we list all the maximal proofs extending
it, and choose one of minimal complexity. This means that we have an algorithm which,
given an equational goal, defines a unification strategy taking the least possible number of
unification steps for this goal. The algorithm given above is too ineflicient to be used in
practice, but the fact that such an algorithm erists is in itself an interesting property. This
suggests us to consider the following problem. Does there exists an ‘efficient’ optimal-proof-
generating algorithm? At present, we have no answer to this question.

As the example above shows, if a goal is not unifiable, there may exist various maximal
proofs of different complexities extending it. Interestingly enough, if the goal is unifiable
and satisfies an additional syntactic condition, all the maximal proofs extending it are of
the same complexity. This means that during the unification of such goals, the choice of the
equation to reduce has no effect on the final number of unification steps.

Proposition 2.63 Let A + E be unifiable, and suppose that for all variables =, and all
equations t X u of A, #zof = #t = #u =0. Then all refutations of A ¥ E are of com-
plezity |AL

Proof By induction on |Al. Simply note that neither rb, nor sd can be applied to such
goals, and that ee, and lb preserve the condition of the hypothesis. O

Note that the condition of the proposition is decidable, since the statement: ‘for all z € V,
#z0t = 0’ is equivalent to “for all z € ker(og), #zxof =0’

This statement is of limited applicability due to the severe syntactic restrictions of the
hypothesis, but it supports our belief that an analogous statement holds for all the unifiable
goals. More precisely, we conjecture that if A + E is unifiable, then all its refutations on all
the systems UX are of the same complexity. Otherwise said, if a goal is unifiable, the choice
of the equation to reduce does not affect the number of unification steps. Several examples
that we have tried have this property, and as we mentioned above, the last proposition 1s
also an indication in this sense. Another indication is the result we want to show next, which
says that all mazimal proofs in U ezxtending any given goal are of the same complezity. In
order to prove this claim, we are naturally lead to apply induction on proofs. Suppose then
that we have two instances of a rule of U.

AFE AFE
Ao}'F() Ali_Fl

We quickly realise that we cannot inductively apply the statement we are willing to prove
since Ag F Fp and A; F F) are different goals. The solution we will adopt is as follows.
We will define an equivalence relation such that Ag + Fy and A; + F) are in this relation,
and instead of proving the claim above, we will show that if two goals are in this relation,
then all their maximal proofs in U are of the same complexity, and their conclusions are
equivalent.
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Definition 2.64 A + FE subsumes A + F on V iff there exists a substitution ¢ such that
of =otp onV, and Aot = Acte. (2.23)
A F F is avariant of A = E on V iff there exists a variable renaming ¢ on
var(VogE) U var(Act), (2.24)
such that (2.23) holds.

Corollary 2.65 t. If A F F isawvariant of A F FE on V, then the latter subsumes the
former on V.

. If A F E subsumes A F F on some set, and the latter is unifiable, then so is the
former. As a consequence, if two goals are variants of each other, then either both of
them, or none of them is unifiable.

ut. If two goals subsume each other on some set, then they are variants on this set.

iv. The relation of being variants on a fized set is an equivalence relation.

Proof We will only consider parts it and iv. Concerning i, suppose that A F E subsumes
A+ F on V, that ¢ satisfies (2.23), and that 8 is a unifier of A F F. We will show that
ot #0 is a unifier of A + E.

Trivially, o ¢8 is a unifier of E. Also, since 8 is a unifier of F', we have § = 00, and from
(2.23) we get Aotpd = Aokl = Af. Since 6 is a unifier of A, all the equation occurrences
in A§ are of the form t < t. Hence o0 is a unifier of A.

Concerning iv, let V be an arbitrary set of variables. Taking ¢ = id in the above def-
inition, we readily get that all goals are variants of themselves on V. For the symmetry,
suppose that we have a variable renaming ¢ on (2.24), such that (2.23) holds. Then there
exists a € such that ¢€ = id on (2.24), which implies that ¢ is a variable renaming on
var(Vot o) U var(Acté). But according to (2.23), this set is var(Vog) U var(Acf), and we
have of = 0f¢f = otf on V, and Acf = Aottt = AotE, which shows that A - Eis a
variant of A + F on V. The rest is left to the reader. O

Note that by part i, for any two variants we have that either they are both refutable in U,
or none of them is refutable in U. However, if they are both refutable, at this point we are
unable to compare the lengths of their refutations.

Proposition 2.66 Let V be an arbitrary set of variables, and suppose that A v < w + F is
a variant of At <xu + E onV. Then foralli=1,...,5, ®;(t,u, FE) iff ;(v,w, F). Asa
consequence, a rule of U can be applied to At < u + E iff it can be appliedto A v <xw F F.

Proof By hypothesis, there exists a variable renaming ¢ on a set containing var(tof) and
var(uof) such that, among other things, vof = tok¢, and wof = uof ¢, which allows us to
apply Proposition 2.48. O
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Proposition 2.67 Let V be a set of variables, Ao v x w + Fy a variant of Aot xu + Ey
on V, let r be an arbitrary rule of U, and let

Dot =xu F Ey Nv=xw F Fy
Ay FOE) A FF (2.25)
be two instances of r. Then Ay &+ Fy is a variant of Ay F Ey on V.
Proof By hypothesis, there exists a variable renaming ¢ on
var(Vog, ) U var(Aoog,) U var(tog, ) U var(uog,) (2.26)
such that
ot =ohdonV, Aok =20t ¢, vok =tofé, wok =uoct ¢ (2.27)

If r is ee, using (2.26), and (2.27), we can easily show that the conclusions of the instances
in (2.25) are variants on V. Suppose now that r is Ib, that the corresponding instances are

Aot?—(u}"Eo AoUX‘LUP‘FO (228)
Ao F tof < uog Eo Ao F vof <X wof, Fo '

and denote by F,, and F) the environments in the left and right conclusions respectively.

We know that
Ugl = o'go[tago/uago]’ Ul'tl = 0’;‘:0 ['UO'FO/U)U;’O].
From (2.26), (2.27), and Proposition 2.16, we get the following equalities on V.
of, = of vok Jwol | = of dltof b/uck ¢] = ok [tof Juck b = ok &,
and

Aoa;;1 = Aoa;,to [va}o/wa}O] = AOUEO¢[WEO¢/UUEO ¢ = AOUEO[WEO/UO'EOW = Aoaglq&.

This shows that the conclusions of (2.28) are variants on V. Finally, suppose that r is sd,
and that our instances are

Aotxu}_Eo onxw}-Fo
Ao o (8(t, Eo)ol ,6(u, Eo)og) + Eg Ao < (6(v, Fo)o ,6(w, Fo)opl ) F Fy

From (2.27) we get

§(v, Fo)apoapo =vof =tog ¢ =6(t, EO)UEOUEOdB,
and similarly,
8(w, Fo)oR o, = &(u, Eo)og,ot, 9.
Hence, by Corollary 2.29
o (6(v, Fo)og, 6(w, Fo)og o, = o (8(t, Eo)og,, 6(u, Eo)o ok, 6.
From this equality, (2.26), (2.27), and Corollary 2.29, we conclude that the conclusions of

the above instances of sd are variants on V. O
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Corollary 2.68 IfA + E and A & F are variants on V, then all the mazimal proofs in
U extending A F E and all the mazrimal proofs in U extending A + F are of the same
complezity. In particular, all the mazimal proofs in U extending A + E are of the same
complezity.

Proof By induction on m € N, we show that if we have a maximal proof in U of complexity
m extending A F F, then all maximal proofs in U extending A - F are of complexity m.
We use Proposition 2.66, and the above proposition. O

The number of unification steps certainly affects the efficiency of the unification process,
but the testing of the conditions ®; for selecting the rule to apply must also be taken into
account. Note that ®(¢,u, E) may be written in the form: tof € V and tot ¢ var(uc}).
The operational implementation of the second condition is usually termed ‘the occur-check’,
and has been recognised as a relatively expensive operation. This has given rise to works on
occur-check elimination.

We define the rule 1b™ like Ib, except that instead of demanding ®,(t,u, ), we simply
demand tof € V, that is, Ib™ is 1b without the occur-check. rb~ is defined analogously. Let
U~ be the system consisting of the rules ee, Ib™, rb™, and sd.

It is evident that 1b C 1b™, but the converse fails, since

z =< f(z) F
Foozx f(z)

is an instance of lb™. The example above shows that U~ allows us to ‘unifv’ non-unifiable
goals. This rises the question of characterising the set of all the goals for which U~ 1s a
correct unification system. Here we will define a proper subset of this set.

A term is said to be linear iff no variable has multiple occurrences in it. It is immediate
that if f(¢,,...,¢;) is linear, the same holds for the ¢,’s. Now, given a list A of equations,
we define what does it mean for z to have a left (or right) occurrence in A, and for A to be
left-linear.

Definition 2.69 If|Al= 0, then no variable has either a left or a right occurrence in A,
and A s left-linear. x has a left (right) occurrence in A t X u iff either x has a left (right)
occurrence in A, or z € var(t) (r € var(u)). A t < u is left-inear {ff A is left-linear, t is
linear, and no variable of t has a left occurrence in A.

Consider now the following conditions on the arbitrary goal A + FE.
a. A is left-linear.
b. If £ has a left occurrence in A, then z is unbound in F.

¢. If = has a right occurrence in A, then neither z, nor the variables in zog have a left
occurrence in A.



Proposition 2.70 Suppose that the goal A t <X u = E satisfies the conditions a-c above.

Then
Atxu F FE

A+ F

is an instance of a rule of U iff it is an instance of a rule of U~. Also, if (2.29) is an instance
of a rule of U, then A + F satisfies a-c.

(2.29)

Proof Note that by ¢
no variable in uo} has a left occurrence in A t < u. (2.30)
From this and b, we get
var(t) N var(uot) =0, and tof =t. (2.31)

The first statement of our claim is trivial if (2.29) is an instance of ee, or sd. In order to
prove that (2.29) is in Ib iff it is in Ib~, we need to show that tof € V \ var(ucf) iff tot € V,
but this is immediate from (2.31). The case of rb is similar.

Suppose now that (2.29) is an instance of lb, and that A - Fis A F t <xuock E. By
the hypothesis a, A is left linear. By b, if z has a left occurrence in A, then z is unbound in
E, and by a, z # t, hence z is unbound in F. Finally, suppose that = has a right occurrence

in A. Then
var(zof) = var(zok(t/uck]) C var(zok) U var(uc}).

From this inclusion, the hypothesis ¢, and (2.30), we conclude that no variable of zof has a
left occurrence in A. O

Corollary 2.71 If A + FE satisfies a-c, then any mazimal proof
AR E
xFF
in U is a mazimal proof in U™, and conversely. O
This shows that U™ is a sound and complete unification system on the set of all the goals
satisfying a-c. Note, however, that z < z * is unifiable, it may be unified by U~, but it

does not satisfy condition ¢. This means that the set of goals satisfying conditions a-¢ is a
proper subset of the goals that may be unified by U~.

2.3.4 More on Unifiers

When working with unifiers, it is useful to have additional properties at hand. For in-
stance, we have already seen that if 8 € unf(FE), for any substitution £ we trivially have
6¢ € unf(F). Otherwise said, the set of unifiers of an arbitrary set E of equations is closed
under composition with arbitrary substitutions. The set of principal unifiers of F is closed
under composition with bijective substitutions.
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Proposition 2.72 If 6 € pru(E) and ¢ is a bijective substitution, then both 6¢ € pru(E)
and ¢80 € pru(E¢) hold. O

In fact, the first part of the previous statement holds in a slightly more general form.
Proposition 2.73 If 6 € pru(E) and ¢ is a variable renaming, then 8¢ € pru(E).
Proof By hypothesis, if £ is a unifier of £, § < €. Hence, by Corollary 2.23.17, ¢ < €. O

The following two results give necessary conditions for & to be a principal unifier of a set
of equations. Both properties are, in some sense, merged in the corollary following them, so
they may be safely ignored by the hurried reader.

Proposition 2.74 Suppose that 0 € unf(E) and that zo is a variable not appearing in E.
Then the following two conditions hold:

i. If £o8 is not a variable, then there exists a £ € unf(E) such that 6 £ €.

it. If 208 is a variable and for some y € var(E) we have 28 € var(yf), then there exists

a € € unf(E) such that § £ €.

Proof Take a variable renaming ¢ such that for all variables z, z¢p # zo. As a consequence,
for all terms ¢, zo & var(ty). Define now £ to be the substitution £ = id | {zo} + 6p. Ob-
viously, £ € unf(FE).

According to the hypothesis of part 7, 208 is not a variable. Hence none of its instances
is a variable. This implies that for any substitution @, 98¢ # 2o = zo€. Therefore, there
exists no ¢ such that ¢ = £.

Considering now part iz, let us suppose that 8¢ = £. By hypothesis, we have o8 € var(y0)
and since z¢ = xof, we have

zo = 2o0¢ € var(ylo).
Under the current hypotheses, y8¢ = y&, so we have zq € var(y€). By hypothesis, y # z¢ and
so, by the definition of ¢, yé = y0¢ and we conclude that zo € var(yfp). This contradicts
the choice of . O

Proposition 2.75 Let 0 € unf(F), z, and z, two different variables not appearing in E
and suppose that £,0 = z,6. Then there exists a £ € unf(FE) such that § £ €.

Proof The hypotheses imply that for all ¢, 2,04 = z20¢. Defining £ = id | {1, z2} + 0,
we get £ € unf(F) and z;£ = z;, for 1 = 1,2. If £ = ¢ were true for some ¢, we would get

Ty = Ilé = $10¢ = 2,20¢ = l‘gé = I,,
which is a contradiction. O

Corollary 2.76 If 0 € pru(E), then 0 is a variable renaming on the set of variables not
appearing in E and if ¢ is such a variable, 20 ¢ var(Ef). O

Exemple: At first sight, § = [2/2,y/2] may seem a principal unifier of f(z) =< f(y), but
the corollary tells us that this is not the case, because 28 = z appears in f(2)0 = f(z). This
conclusion is confirmed by the fact that § does not subsume the unifier {z/y]. O
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2.4 Representability

Environments are syntactic tools for representing and computing substitutions. For § and V
given, the question arises of whether there exists an environment F such that of = 6 on V.
More general, we will need conditions ensuring that given 8, V, and E, there exists an
environment F O E such that (7;E = 002 1V + ag. This and related questions are at the
heart of this section.

Definition 2.77 We say that the environment E is normal iff of = op.
Proposition 2.78 The following conditions are equivalent for all environments E.
. E is normal.
w. og is idempotent.
it1. ker(og) N var(ker(og)og) = 8.

Proof For all environments E, o7 is idempotent, hence 7 implies 7. The converse follows
easily from Proposition 2.37. The equivalence of it and i follows from Proposition 2.10. O

Corollary 2.79 If FE is normal and F C E, F is normal.

Proof 1f FE is normal, it satisfies condition #i above, and this implies that any F C FE
satisfies the same condition, hence is normal. O

We write £ | V={2xt | z€V}, and E" = {2 X z0f | z € ker(og)}, for E an envi-
ronment.

Corollary 2.80 i. If E is normal, oy, =of LV + id.

ii. E™ is normal and agn = az.
0O

Definition 2.81 We say that the environment E represents § on V iff of =0 on V. 6 is
representable on V iff there exists an environment representing 6 on V.

Note that by the above corollary, § is representable on V' if and only if it is representable
on V by a normal environment. Following an already stated convention, ‘F represents 6’
and ‘6 is representable’ mean that E represents # on V, and that 8 is representable on V,
respectively.

Proposition 2.82 8 is representable on V if and only if § | V + id is representable.

Proof If E is a normal environment representing 8 on V, we have of = 6 on V, and by
Corollary 2.7 and Corollary 2.80,

OlV+id=cf |V +id=ofy.

The converse follows easily. O
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Corollary 2.83 0 is representable if and only if it is representable on ker(0).

Proof For all 8, § =0 | ker(6) + id. Hence, according to the preceding proposition, 6 is
representable on ker(8) iff § = 6 | ker(6) + id is representable. O

The following statement gives us a general mechanism for extending an environment, and
precisely characterises the substitution represented by the result.

Proposition 2.84 Let Ey be an environment, V = {z1,...,z, } a finite set of variables,
and 8 a substitution such that

i. VNwvar(Ve) =0, and
it. all variables in V U var(V8) are unbound in Ey.

Then
E1=E0U{:L’,'X:I:,‘0 | lSiSn}

is an environment, and of, = of [z:1/210,. .., z,/z.0].
Proof Define Fy = FEy, and for 1 < 3 < n,
Fi=FEU{z;xz0 | 1<:<35}.
We prove by induction on j < n that if F} is an environment with
0}?} =of [z1/z10,.. ., 2;/x,0], (2.32)
then Fj4, is also an environment with
OF . = 0g e /210, .z /2410, (2.33)

From i, z;4, and all the variables in var(z;,16) are unbound in Ey, and so, using 7 and the
definition of F;, we deduce that ;4 and all the variables in var(z;4,0) are unbound in Fj.
In particular, this implies

xj+1¢90§] =z;410. (2.34)

Thus, under the current hypotheses, z;4, is unbound in F) and
z;41 & var(zj4100F,).

Making £ = Fj, z = zj41, u = z;418, and k = 0 in Proposition 2.52, we get that Fj;; is an

environment with
+

OFmn = UE [zj41/25416],
where, in this last equality, we used (2.34). But now, from (2.32) and condition ¢ above, we
may conclude (2.33). O

For the sake of notation, let us write
Ry(6,V) : V Nker(d) is finite.
R2(0,V) : (VY ker(0)) Nwvar((V Nker(6))8) = 0.
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Theorem 2.85 If Ri(6,.V), Ry(0,V), and V Nvar(E) =0, then there exists an environ-
ment F 2 E such that of = 00f |V + of.

Proof Write W = V Nker(6), and £ = of | W + of. It is not difficult to verify that
E=00f |V + of. For all z € W, we have var(zf) = var(zbot) C var(zh)U var(E).
Hence

var(W¢) C var(W@) U var(E).

Claim : W Nvar(W§E) =0, and all variables in W U var(W¢) are unbound in E.
R2(6,V) says that W N var(W8) = 0, while V N var(E) = 0 implies W N var(E) = 0. These
observations and the above inclusion imply W N var(W¢) = 0.

Since W N var(E) = 0, all variables in W are unbound in F, while Proposition 2.38
ensures that the same holds for those in var(W¢) = var(Wéo}).

By Ri1(6,V), we may write W = {z,,...,z,}. Now, the above claim and Proposi-
tion 2.84 imply that F = EU{z;, x z;6 | 1 <7< n}is an environment, with

ot = of[zi/Ti&,. .. T/ TRE].

If z € W, z is unbound in F, and for some i, x = z;. Therefore,

zoF =z /2&, .. 2] TRl] = 7€ = €.

If z ¢ W and z is bound in F, it is bound in E, and by Proposition 2.60, var(zot) C var(E).
But we have already remarked that W and var(E) are disjoint, hence var(zof) N W = 0.
This implies

zof = zotlzi/zi&, ... 20 /T0l] = ot = zE.

If z ¢ W and z is unbound in F, it is unbound in E. Thus zof =z = zof = z£. O

Corollary 2.86 If V is finite, and V Nwvar(VO) = @ = V Nvar(E), then there exists an
environment F D E such that o = 00f |V + of.

Proof V finite implies R;(6,V), and V Nvar(V4) = @ implies R(d, V). This means that
we may apply the preceding proposition. O

Corollary 2.87 If V is finite, VNvar(VO) = 0 = VNuar(E), and all the variables in
var(V0) are unbound in E, then there exists an F 2 E such that of =8 |V + of.

Proof We simply apply the preceding corollary, taking into account that under the current
hypotheses, 8t =6 on V. O

The-following statement gives a necessary and sufficient condition for 8 to be representable

on V.
Proposition 2.88 6 is representable on V iff both R(0,V) and R,(6,V) hold.
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Proof By Proposition 2.82, 8 is representable on V iff 8 | V + id is representable. If

Ry(6,V) and R,(0,V), we may apply the last theorem with £ = ), which gives us an en-

vironment o} = fof | V 4+ of. Now we simply recall that of = id. Conversely, suppose

of =0V + id. Hence,

V Nker(8) =V Nker(af) C ker(af) = ker(or).
This inclusion readily implies Ry (6, V), and with Corollary 2.40, it implies Ry(6, V). O
Making V = V in this proposition, we get
Corollary 2.89 0 is representable iff ker(8) is finite and ker(8) N var(ker(6)8) = 0. O
For instance, [z/f(z)] is not representable.

Proposition 2.90 If V is finite and of < 8 on V, there exzists and environment F D E
such that ot =9 on V. .

Proof By hypothesis, there exists a ¢ such that 0£é = 8 on V. Choose a variable renaming
é into V\(var(E)U V). Trivially, ¢ =6 on V. Defining W = (var(E) U V)\ker(og),
we readily get that W N var(W¢¢) = @, and that all variables in W U var(W¢g) are un-
bound in E. By Proposition 2.84, F = FU{z <X zé¢ | = € W} is an environment, with
of =otépon V. O

Corollary 2.91 IfV is finite, for all 8, there ezists an environment F such that of = 6 on
V.

Proof By the proposition, since o5 = id < § on V, there exists an F' such that ot =6 on
V.D

2.5 Semantics

The classical mechanism for assigning truth values to formulas is the notion of interpretation
of a given first order language®.

Definition 2.92 An interpretation of a first order language is a pair (U,I), where U is a
non-empty set, called the universe of the interpretation, and I is a function on the non-logical
symbols of the language satisfying the conditions:

e for every constant ¢, I(c) € U,
o for every n-ary function symbol f, I(f) is an n-ary function from U into itself,

o for every n-ary predicate symbol p, I(p) is an n-ary relation in U.

%also called model of the language.
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By an abuse of notation, given an interpretation (U/,T), we will also use ‘I’ for denoting the
interpretation itself.

Intuitively, a term acts as a name of an individual or object of the universe we are talking
about. Given an interpretation (U,I), this is clearly seen in the case of a constant ¢, which
names the object Z(c). However, an interpretation assigns no meaning to the variables, so
we cannot talk about the object named by a term containing variables. This gap is filled in
by the notion of valuation.

Definition 2.93 Gliven an interpretation I, a valuation in T is a function v from the vari-
ables of the language into the universe of I.

Given an interpretation Z and a valuation v in Z, we have enough information for deter-
mining the meaning of any term t. If we let both the term ¢ and the interpretation I fixed
and let the valuations vary, we get a function defined on the set of all valuations in I, that
we denote by t7. Its value on the valuation v, tY(v), is the object of the universe represented
by t if we interpret the proper symbols of ¢ according to Z and its variables according to v.
This is made precise as follows.

Definition 2.94 Let T be an interpretation and v a valuation in I. Then
e for all constants c, ' (v) = I(c),
o for all variables z, z¥(v) = v(a),
e for all complex terms f(t1,...,tn), flt1,.. . 1) (v) = T(HEE (W), ... tE(v)).

It is immediate that the value tZ(v) depends only on the values of v on the variables of t.
Thus if for all z € var(t), vi(z) = va(z), then tI(v;) = t¥(v,). As an immediate corollary, if
t is closed, tT is a constant, that is, for all vy, v, tT(v1) = tZ(v2).

The assignement of truth values to formulas is done in a similar way. Given an atom
p(ty,...,t,), we want it to be true if the n-tuple of objects denoted by (t,,...,t,) is in
the relation denoted by p. But for identifying the n-tuple of objects denoted by (¢,,...,%,)
we need not only an interpretation but also a valuation. So, given T and v, we want that
p(t1,...,t,) be true iff (¢f(v),...,tZ(v)) € I(p). We express this by saying that v satisfies
p(t1,...,t,) in I;in symbols, I,v | p(ty,...,t,). The definition is extended to more com-
plex formulas taking into account the intuitive meanings of the connectives and quantifiers
of the language.

The notion of satisfaction formalises the notion of truth of a formula for a given assigne-
ment of meanings to its proper symbols and free variables. The notion of model of a formula
makes precise the idea of the formula being true independently of the meanings of its free
variables. By definition, T is a model of &, written 7 |= a, if and only if for all valuations
v, IT,v &= a.

A universal closure of a, written V(«), is any formula (Vz,)... (Vz,)(a), where z4,. .., z,
is any list of variables containing all the variables having a free occurrence in a. The
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existential closures of a, 3(a) are defined analogously. It may be proved that T |= o if
and only if Z | V(a). Otherwise said, a formula and its universal closures have the same
models. Another simple property we will need is the following: given a clause a = Ay. .. Ay,
7 E o« if and only if for all valuations v, the following condition holds:

if forall ;0<7<n, Z,v  A;, then ZI,v = A,. (2.35)
An immediate consequence of this is that

Tk Ag...A, ifandonlyif T = Ay... A, A, (2.36)

in—l
where A;,,..., A, _, 1s any permutation of Ao,...,A._;.

A model of a set A of formulas is a model of all the formulas in A. A formula a is said
to be a logical consequence of the set A of formulas iff all models of A are also models of a.

This will be denoted by A &= <.

We end this section with some technicalities that we will need in what follows. The
Herbrand Universe of a language is the set of all its closed terms. Of course, for it to be
non-empty, the language must contain at least one constant. If the Herbrand Universe is not
empty, a set A of closed atoms uniquely determines a. Herbrand interpretation I as follows:
the universe of 7 is the Herbrand Universe and the interpretation function is defined:

e for all constants ¢, Z(c) = c,
o for all closed terms f(t1,...,tn), Z(f)(t1,..-,tn) = f(t1,...,tn),
e for all closed atoms p(t1,...,tn), (t1,...,tx) € I(p) it  p(ti,...,t,) € A

Thus, the universe and the interpretation of constant and function symbols of a Herbrand
interpretation are uniquely determined by the language and that of the predicates is deter-
mined by the given set A of closed atoms. This idea may be naturally generalized taking
arbitrary terms, not only closed ones.

Definition 2.95 A set A of arbitrary atoms defines an interpretation I in the following
way: the universe of T is the set of all terms and the interpretation function is defined

e for all constants ¢, I(c) = c,
o for all terms f(t1,...,tn), Z(F)(t1,---,tn) = f(t1,.. . tn),
e for all atoms p(t1,...,ta), (t1,---,tn) €Z(p) ff plt1,...,1t:) € A

By definition, a valuation in such an interpretation is a function from the variables into the
set of all terms. But previous remarks ensure that such a function may be identified with the
unique substitution extending it. We leave to the reader the task of verifying the following
result.

o
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Proposition 2.96 Let A be an arbitrary set of atorns and T the interpretation determined
by A according to Definition 2.95. Then

o for any term t and substitution 0, t¥(8) = 10,
e for any atom A and substitution 8, Z,0 = A iff Afc€ A,
o for any atom A, T = A iff all instances of A are in A.

2.6 Programs and Evaluators

Definition 2.97 A program is a finite set of clauses. A query is a conjunction of atoms.
An answer for query @ in program P is a substitution 0 such that P E Q0. ans(Q.P) will
denote the set of all answers for Q in P.

Intuitively, a program P states what is accepted as true. If the query @ is closed, asking @)
to P amounts to asking whether @ is true under the hypotheses P. Things are a little trickier
if @ contains variables. In this case, asking ) amounts to asking for those assignements of
values to the variables of ) making it true under the hypotheses P.

As was the case for substitutions, there are some differences between the notions we
defined above and corresponding ones usually found in the literature. In order to discuss
their relationship, let us recall some definitions from [L1087], using the terminology we find
there. A definite program clause is a formula V(=AoV ...V ~A,_; V A,)!°, with n > 0; a
definite goal is a formula Y(=AoV ...V —A,); a definite program is a finite set of definite
program clauses; given a definite program P and definite goal G = V(=ApV ...V —A,), an
answer for P U {G} is a substitution 8 such that ker(8) C var(G), where var(G) denotes
the union of all the var(A;)’s; a correct answer for PU { G} is an answer § for PU { G}
such that

P = V(AN ... N Ap)D).

With our definition of model, a clause Y(=AqV ...V 2A,_; V A,) has the same models as
AoV ...V=A,_1 V A,. Recalling that ~AV B and A — B have the same models, we see
that ~Ag V...V =A,_; V A, has the same models as

Ao — (A — ... —= (A1 — AR) .. 0).

We can then safely say that our definition of clause is essentially the same as the standard
one and the same holds for programs. In particular, we see that with the definition of model
presented here, we may get rid of the universal quantifier in the object language. In [Ll0o87)

10Recall that the A;’s are atoms.
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it is needed because there the notion of model is restricted to closed formulas. Interest-
ingly enough, in standard writings the universal quantifier disappears by a metalanguage
notational convention: a clause V(~Ap V...V =A,_1 V A,) is written A, « Aq,..., An_1.

Consider now a goal G = V(-ApV ...V -A,). We know that
P = V((AoA...ANA)0) iff P E (AoA...A A8

It follows that 6 is an answer for PU { G} iff it is an answer for the query AgA... A Ap
in P. Otherwise said, the query Ag A ... A A, and the goal G determine the same answers.
Therefore, in this sense, they may be identified. Note, however, that these formulas have
no common model. By our previous comments, V(—=Ag V ...V —A,) has the same models as
V(=(Ao A ... A A,)), hence the same models as ~(Ap A ... A A,). '

We know that if 8 is an answer for V(=ApV ...V ~A,), then P | (Ao A ... A A,)f and
so, P = 3(Ao A...A A,). This shows that no model of P is a model of ~3(Ag A ... A 4,);
but this formula has the same models as the goal Y(-AqV ...V -A,;). We see then that
a goal asks for those substitutions refuting it under the hypetheses P. This seems a rather
contrieved way of conceptualizing the notion of answer, but may be justified as follows. Goals
are used for defining SLD-Resolution and the SLD-computed answers for PU {G}. This
being done, the completeness of SLD-Resolution takes the form: for every correct answer
§ for PU { G}, there exists a computed answer £ with £ < 8 on var(G). In our view, this
shows that the standard approach adopts an unnatural definition of answer for allowing a
natural statement of the completeness of SLD-Resolution. This is quite acceptable if we
plan to restrict ourselves to this formalism. But our work is essentially based on a different
formalism, so we preferred to define the notion of answer as we did before, which seems
more natural to us. Note, in passing, that with the standard definition of answer, it is quite
natural to consider SLD-Resolution as a refutation formalism. We will see that a different
but also appropriate interpretation is possible.

It seems conceptually useful to give an abstract characterization of answer computing al-
gorithms before considering answer computing formalisms. We will be interested in complete
algorithms, that is, those capable of computing all answers we need. So, defining complete
evaluators amounts to defining ‘how many’ answers we need. The definition of answer places
no restrictions on the action of an answer on the variables not appearing in the given query
@. This means that two answers #; and 8, equal on var(Q) may be seen as one and the
same.

Definition 2.98 A complete program evaluator is a function eval(Q,P) such that, given Q
and P, eval(Q,P) is a set of answers for Q in P satisfying

V0, € ans(Q,P), 36, € eval(Q,P) such that §; = 6, on var(Q).

With this definition, a complete evaluator gives esentially ‘all’ answers. From a purely ab-
stract point of view, this is perhaps the most natural definition, but practical considerations
will lead us to replace it with a more appropriate one.
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Once we agreed on what complete evaluators are, the natural step is to develop formal
tools for representing them, or, equivalently, for computing answers. By far, the formal
mechanism most widely used for this purpose is SLD-Resolution. Later we will see that
other simple formal deductive systems are also appropriate to this purpose. There we will
find useful to use atoms as a syntactic encoding of answers.

Definition 2.99 Given P and Q = AqgA ... N A, let x,...z,,, where m may be 0, be a list
containing all variables in Q) in an arbitrary order and without repetitions. We choose an
m-ary predicate symbol @ appearing neither in P nor in @ and an arbitrary permutation
A, ... A, of the atoms in Q. Now we define P + Q) to be the program

P+Q:PU{A{o...A,’n@(itl,...,xm)}. (237)
According to (2.36), if A,,,..., A;._, is any other permutation, the programs
PU{Aj...A;,@x;,...,2n)} and PU{A;...Ai,@(z1,...,2m)}

have the same models. Thus, the statement ‘7 & P+ @’ is unambiguous, even if the
program denoted by ‘P + @’ is not uniquely determined. Now, proving the following result
is a standard exercise.

Proposition 2.100 The substitution

(21/t1, .+, Zm/tm] (2.38)

is an answer for Q) in P if and only if

P+Q k= Q... tm). (2.39)
O

Knowing @(t;,...,tn) is not enough for constructing (2.38); we also need to know var(Q)
and the correspondence between variables and terms. We obtain all this information with
the atom @(zi,...,z,), the head of the clause added to P in (2.37) for constructing P + Q.
Therefore, for computing the answer (2.38) it suffices to being able to compute the atom
(2.39) having @(z1,...,2,) at hand. From now on, then, the atom (2.39) will be identified
with the corresponding substitution (2.38) and will also be called answer.
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Chapter 3

To Answers through Proofs

3.1 Basic Proof Systems

It is a known fact that there exist sound and complete first order proof systems, that is,
proof systems F satisfying the property:

AE a if and only if AF a, (3.1)

for any set A of first order formulas and a a formula. With such a system at hand, the
following corollary holds.

Corollary 3.1 Ifvar(Q) ={z1,...,2m }, then [z1/t1,...,Tm/tm] is an answer for Q in P
ifand only if P+ Q + Q(t4,...,tm).

Proof According to Proposition 2.100, [z1/t1,...,Zm/tm] is an answer for @ in P if and
onlyif P+ Q E @(t,...,tm), hence if our system satisfies (3.1), the preceding statement
is equivalent to P + Q + Q@(ty,...,tn). O

If we define Th(A) ={a | A+ a}, and Q(A) = { @(t1,...,tm) | @Q(t1,...,tm) € A},
for A a set of formulas in the language of P + @, according to Definition 2.98, the function
eval(Q,P) = @Q(Th(P + @)) is a complete evaluator. This means that, in principle, any
sound and complete first order proof system may be used as a formal mechanism for defining
complete logic program evaluators. Practical considerations, however, suggest us to eliminate
those deduction rules and formulas that are not needed to our purposes. For this, we note
that the proof of Corollary 3.1 shows that for the validity of the result it suffices to have
a system F acting on Horn clauses and satisfying the soundness and completeness property
(3.1) for A a program and a an atom. A first possibility is to use the system SMP, whose
rules are the following:

The Substitution Rule (S)



for B an arbitrary clause and § an arbitrary substitution,

Modus Ponens (MP)

for B — (3 an arbitrary implication.

SMP is a restriction of system HCC defined in []. We will write A Fg,,p o for expressing
that a is provable in A by a finite number of applications of S and MP. Thgpp(A) will
denote the set

Thsmp(A)={a | A tsyp a}.

Similar notations will be used with other systems introduced below. The soundness of SMP,
that is,

Abgyp o impliess A E aq,

is easily established. The following theorem is the main result in our proof of the kind of
completeness we are interested in here. The idea of the proof is essentially the same as that
used in [] for proving the completeness of HCC.

Theorem 3.2 For any set A of clauses, there exists an interpretation I such that
. I E A,
i. for all atoms A, if T |= A then A bgyp A

Proof Let B={A | A Fsyp A}, and let T be the interpretation determined by B ac-
cording to Definition 2.95. We recall that in such an interpretation we may identify a
valuation with the unique substitution extending it. For proving part ¢, we need to prove

that for all € A, 7 k& «a, that is,
for all a € A, and for all substitutions §, 7,0 & «.

Take then a = Ag... A, € A, and 6 an arbitrary substitution. According to (2.35), it suffices
to prove that for all 8,

if forallj,0<j7<n, I,0 & A;, then ZI,6 E A,.

But from Proposition 2.96, for all j < n, Z,6 = A; if and only if 4,0 € B, that is, if and
only if A Fgyp A;6. It suffices then to prove that for all substitutions 4, if

forall j <n, A bFgyp Al (3.2)

then
A Foyp Al (3.3)
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We supposed Ag... A, € A, thus an application of S gives
A Foyp (Ao... AL

But then, if (3.2) holds, n applications of MP give (3.3).
For part i, if T = A, by Proposition 2.96, all instances of A are in B. In particular,
A € B. Recalling the definition of B, this means that A gy p A. O

Corollary 3.3 (Completeness of SMP) For all sets A of clauses and all atoms A, if
A E A, then A by p A. Otherwise said, SMP is capable of proving all atomic logical
consequences of any given set of clauses.

Proof For A given, take 7 an interpretation satisfying conditions ¢ and # of the theorem.
By part i, T | A. Thus,if A = A, we also have T = A. Now, A tgp A follows from
part 2. O

Since all the programs denoted by P + @ have the same models, the statement ‘P + Q Fgpp A’
is unambiguous. More precisely, all the programs represented by the notation P + @ prove
the same atoms in SMP.

Corollary 3.4 eval(@Q,P) = Q(Thspp(P + Q)) is a complete evaluator. O

Other similar systems may be used. A sequent is an expression I' A, where I' and
A are finite, possibly empty sequences of formulas. The intuitionistic sequents are those
containing at most one formula to the right of the turnstyle symbol F. In particular, the
intuitionistic sequents containing only atoms are of one of the two forms

AO---An—l F An, or AO--~An—l [ s

that is, Horn clauses with a different syntax. We are allowed to identify the sequent
Ao... A1 F A, with the clause Ag... A, and the sequent Ag...A,_; F with Lloyd’s
definite goal V(=Aq V ...V =A,_1). Consequently, we will freely mix these notations.

A sequent calculus is a set of formal rules acting on sequents. Typical examples of such
rules, as given in {?], are the left ezchange rule,

'GHA - A
' HGA F A

and the CUT rule,
' v+ G A AG F 11

A+ AI

Swapping the premises of this rule, if [T'| = |Al= 0, and II is a sequence containing exactly
one formula H, we get the following special case of the CUT

AG +F H G
A+ H
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Taking into account the sequent representation of clauses and the evident similarities between
MP and this restricted version of the CUT, we may be tempted to identify both rules.
However, the identification is not completely satisfactory. For instance, if A, B and C are
three different atoms, Modus Ponens may be applied in the form

A— (B—C) A
B—-C
while we cannot apply the CUT
AB F C F A
7

However, we are not particularly interested in identifying MP with a restricted version of
the CUT, but in defining formal systems for computing atomic logical consequences of sets
of clauses, and in this sense, replacing MP with a restricted form of the CUT is possible.
Let us denote by S&C the system whose rules are:

The Substitution Rule (on sequents)

A F A
A Al
The (Restricted) CUT
F A A AFr B
A+ B

It is not difficult to prove that given a set A of sequents of the form Ap...A,_) F A,, the
sequent - A is S&C-provable in A iff b A is a logical consequence of 4. This means that
S& C proves essentially the same atoms as SMP does, even if this is not true for all clauses.
Consequently, S& C could also be used for defining complete logic program evaluators. There
1s still another possibility, namely, the system HCC mentioned above.

We have seen that at least three quite similar but strictly speaking different formal
deductive systems can be used as the formal base for the development of conceptually simple
and complete logic program evaluators. Unfortunately, none of them is of practical utility.
Any actual implementation of @Q(Thsyp(P + @Q)) must generate, sooner or later, all SMP-
theorems of P + (), set which is ‘almost always’ infinite. A similar remark holds for the other
systems we saw above. Clearly, the responsible for this annoying situation is the Substitution
Rule, which allows us to generate all instances of a clause already generated. However, we
should not blame our poor systems for this; they only do what we demanded them to do. By
the very definition of answer, if @(t,,...,t,) is an answer, so are all of its instances. This
means that with our current definition of completeness, we want our evaluators to generate
all the instances of the answers they generate. For practical purposes, then, our current
notion of completeness is inappropriate. A complete evaluator should characterise the set
of all answers, but not necessarily through the computation of all of them.
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Definition 3.5 A sufficiently rich (s.7.) set of answers for Q in P is a set A of answers for
Q in P such that for any answer @(t4,...,t,,), there exists @(uq,...,um) € A satisfying

@uys -+ tum) < @(t1,- -y tm).

From now on, a complete evaluator will be a function eval(Q,P) such that, for all Q and P,
eval(Q,P) is a sufficiently rich set of answers for @ in P.

This means that we will content ourselves with the computation of a sufficiently rich set
of answers. The obvious idea behind this decision is that once we computed an answer
@(uyy...,um), if @(t1,...,tm) is an instance of it, since we already know that it is an
answer, its computation gives us no additional information. Note that the definition of s.r.
set of answers does not depend on any particular formal system.

Of course, SMP is complete in this new sense, but now we are not only interested in the
theoretical property of completeness but also in the computational property of termination.
For this reason, and recalling our previous discussion, we must reject rule S. But MP
alone is not sufficiently powerful for generating all atomic logical consequences of a program.
Consider the example P + Q:

p(z,y) (3.4)
p(f(z),y) — @(z,y) '

It is easy to see that P + Q Fgpp @(z,y), which implies that @(z,y) is an answer for @
in P. Therefore, a complete evaluator must generate some variant of @(z,y). It is evident,
however, that this cannot be done with MP alone.

The situation is then the following: SMP is complete, but too powerful from a compu-
tational point of view, while MP alone is incomplete. It is natural to try an intermediate
solution: given B — B and A, we try first to find two ‘simple’ substitutions §; and 8, such
that B, = Af,. If we find such substitutions, we construct the following deduction:

B-p 9 A

— 62
Bgl — 691 A02
B6:
This may be expressed by the rule
B—3 A
— (3.5)
pé
where, for some bijective substitution ¢ satisfying
var(B — B) N var(Ad) = 0, (3.6)

6 € pru(B,Ad). The use of the variable renaming ¢ satisfying (3.6) is necessary for the
completeness of the rule; otherwise, it cannot be applied to our previous example (3.4).
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Intuitively, the soundness of the rule is suggested by the following argument: we have
seen that we identify A with its universal closure (Vz;)...(Vz,)(A) from the semantical
point of view. But bound variables have no actual identity, in the sense that we identify
the previous universal closure with (Vzy)...(Vz,)(A[z1/21,-..,2x/2x]), and, as we remarked
above, we identify this with A[z,/21,...,2./2,). So, for us, using A or Afz;/z1,...,2./24]
is quite the same thing.

As was defined, the rule is not functional, in the sense that the conclusion is not uniquely
determined by the premises. However, we have the following

Proposition 3.6 Let B — 3, A, ¢; € Q and 0; € pru(B,Ad;) be given, with
var(B — ()N var(Ag¢;) = 0,

fori=0,1. Then 36y = 36,.

Proof Define & =0, | var(B — ) + é5'$16,. Then

Bty = BO, = A$16; = (Ado)dg $10, = (Ago)ty.

From the hypotheses, 8y < &, which implies 86y < 3&;. This and the definition of ¢; imply
BBy < B6,. Since the roles of 63 and 8, are symmetric, 86, < #68;y also holds, and we are
done. O

Even if this proposition is valid, we will find it convenient to make our rule functional
through the introduction of the notion of normal clause. In passing, this will eliminate the
need for the variable renaming we mentioned before, and will simplify the metamathematical
treatement of our rule.

We suppose that the set V of all variables is partitioned into two disjoint and denumerable
sets V, and V; that we suppose given by infinite sequences. We say that an atom is normal
iff for each of its variable occurrences, either the corresponding variable appears to the left
of this occurrence, or it is the first variable in V, not appearing to the left. The normal
implications are defined analogously, but using variables from V;. The normal programs are
those all of whose clauses are normal. Trivially, if B —  and A are normal, they share no
variable.

Example Suppose that zo and z; are the first two variables in V,. Then p(a,zo) and
p(zo, f(z1)) are normal atoms, whereas p(f(z1), o) is not. O

It is easy to see that if = 6 and both clauses are normal, then they are equal. Also, for
any clause f, there exists a normal clause § such that 8 = 6. This implies that each clause
B has exactly one variant which is a normal clause, denoted by 3. We conclude that 8 = 6

if and only if B = 6.
Definition 3.7 (The Rule UMP)

B—-p A
B9
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where B — 8 and A are normal clauses and 8 € pru(B,A).

Note that if § € pru(B,A), we can always find a £ € Q such that 86¢ = B6. By Proposi-
tion 2.72, 8¢ € pru(B,A). Thus we could have defined the rule UMP in the form:

B—- g A
B8

where B — 3, A and 36 are normal clauses and § € pru(B,A). We may then write a rule
application in this last form in which case we are implicitly assuming that 36 is normal.

Rule UMP allows us to think a normal clause as a partial function on normal clauses.
For an implication B — 3, the domain of the associated function, dom{(B — ), is the set
of normal atoms A unifiable with B. The image of such an atom A, written (B — 3)(A),
is 86, with 6 € pru(B,A). Atoms may be given an analogous interpretation. Under these
conventions,

(B — B)(4) = (A)(B — B).

Also, we may write a rule application in the form

B—-p A
(B — B)(A)

The reader familiar with logic program and database evaluation strategies, has certainly
recognized rule UMP as the basic rule used by bottom up evaluation strategies with an
unusual syntax. In these contexts, however, the rule is treated in an informal way.

In general, P Fy,p o does not imply that « is normal, but if P is normal, so is a. From
now on, except when explicitly stated otherwise, we agree in that ‘program’ means ‘normal
program’. This convention also applies to programs of the form P + Q.

It is easily seen that if P Fypp a, then P gy p a. Hence the soundness of UMP
follows from that of SMP. The completeness of UMP follows from the following

Proposition 3.8 For all programs P, and clauses a, if P Fgpp «, then there exists a
such that P Fypyp B and B < c.

Proof By induction on the SMP-proofs. We only consider the Inductive Step over the
application of MP. The rest is left to the reader. Suppose we have an SMP-proof

Dé D
S

and assume, as [.H., that there exist B — 8, A, &, £; such that
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¢ (B—B)o=D—, AL = D.

The second condition and the fact that B — [ and A share no variable imply that we may
suppose &y = &;. Therefore, there exists a § € pru(B,A) such that

B —p A
26

is a correct application of UMP. Thus P Fypp B8. But & is a unifier of B and A, hence
6 < &. From this and the equality 3§, = 6, we conclude 86 < 8§y = 6. O

Corollary 3.9 (Completeness of UMP) For any atom A and any set A of clauses, if
A | A, then there exists B such that B < A and A Fyyp B.

Proof Immediate from the completeness of SMP, and the previous proposition. O
Corollary 3.10 eval(Q,P) = Q(Thupmp(P + Q)) is a complete evaluator.

Proof W @(t,,...,t,) is an answer, by Proposition 2.100, and the previous corollary, there
exists an @(uy,...,un) such that

P+Q Fump @ur, ... um)
and @(uy, ..., un) < @(ty,...,tn). O

Forany P+ @, Thump(P + Q) C Thsmp(P + Q), thus any evaluator implementing the
computation of @(Thypp(P + @)) has better chances of stopping than one implementing
Q(Thsmp(P + @)). However, we cannot be satisfied with this. Consider the following

example P + Q:
p(z) — p(f(z))
p(y) (3.7)
p(z) — Q(x)

where we suppose that z (respectively y) is the first variable in V; (respectively V,). It is not
difficult to verify that Thymp(P + Q) contains all the atoms of the form p(f*(y)), for all
k € N, and so, it is infinite, even if there exists a finite s.r. set of answers, namely, { @(y) }.
In general, then, we should try to compute not the whole Thyayp(P + @) but a smaller set
A of clauses, provided we are guaranteed that A contains enough answers.

Definition 3.11 A saturated extension of a program P is a set A of clauses satisfying:
i. PC AC Thymp(P).

1. For every implication B — 8 € A and every atom A€ A, if A is in the domain of
B — (3, then there exists a clause 6 € A such that 6§ < (B — B)(A).
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Clearly, for all P, Thymp(P) is a saturated extension of P, but there may exist a smaller
one. In example (3.7), (P + Q)U {@(y)} is a finite saturated extension of P + @, even
if Thymp(P + Q) is infinite. The following proposition implies that computing saturated
extensions is enough to our purposes.

Proposition 3.12 If A is a saturated exztension of P, then for all B € Thypp(P), there
ezxists a § € A such that 6 < 3.

Proof By induction on the UMP-proofs in P. The proposition trivially holds for 8 € P.
Suppose now we have an UMP-proof

D—é C
60

with 6 € pru(D,C). By LLH., there exist B — §, A € A, and a substitution ¢ such that
(B—-pB)Et=D—$ and Al =C.

We have then B{f = D8 = CH = AL, which means that €6 € unf(B,A). There exists then
a ¢ € pru(B,A) such that

(B > B)(A) = By < BE0 = 6.
Since A is saturated, there exists an o € A such that a < (B — 5)(A) < §6. O

Corollary 3.13 If A is a saturated eztension of P + @, then Q(.A) is a sufficiently rich set
of answers for Q) in P.

Proof A C Thymp(P + @), so all the members of @(A) are answers for ¢ in P. On
the other hand, if @(¢y,...,tn) i1s an answer for  in P, by Corollary 3.10 there exists
@(uy,...,Un) such that @(uy,...,up) < @(ty,...,t,) and

P+Q Fupmp @uy,...,um).
Now the previous proposition implies that there exists @(vy,...,v,,) € A such that

@(vy,y ..y Um) L @uy, ..y Uy) S @y, .. ty).

O

We may then conclude that if saturate(P) is any function returning a saturated extension
of P, Q(saturate(P + @)) is a complete evaluator.
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3.2 SLD-Resolution

3.2.1 Introduction

We have already remarked that SLD-Resolution is usually considered a refutation formalism.
Here we will see that another view is possible. More precisely, we argue that SLD-Resolution
may be seen as a backwards SMP-proof constructing mechanism. Let us clarify this idea.

Suppose we are given a program P, an atomic query B, and are asked to compute all the
answers for B in P. We must then find those substitutions 8 such that P = B6. We know
that SMP is capable of proving all atomic logical consequences of P, so our problem may be
stated as follows: given P and B, find those pairs (7, 8) such that 7 is an SMP-proof of B¢
in P. The naive solution, that of generating all pairs (7, 8) and rejecting those that are not
useful for us, is in general non-terminating. We will then try to reduce the number of pairs
we need to construct. However, if we want that our procedure return enough answers, this
reduction cannot be done arbitrarily.

An idea we may explore is the following: we will try to identify a special kind of proofs
such that, if a clause is provable, then it has a special proof. This being done, our problem
will be reduced to the generation of those pairs (7,8) where 7 is a special proof. For fixing
ideas, consider the following program P,

p(z,9(y))
p(z,z) — p(f(z),z2)

and the following two SMP-proofs of p(f(a),g(b)) in P.

p(z,2) — p(f(z),2)
p(z,9(y)) — p(f(z),9(¥))  p(z.9(y))
p(f(z),9(y))
p(f(a),9(y))
p(f(a), 9(b))

p(a, 9( )) = p(f(a),g(b))  pla,g(b))
p(f(a),g(b))

The structure of the second proof is simpler that that of the first, thus more appealing
from a computational point of view. Interestingly enough, the first proof may be transformed
into the second through the application of the following rules:
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e Two consecutive applications of S may be merged into one.

B
—a— g
30 =

¢ An application of MP and one of S following it may be swapped over as follows:

B—8 B B— 3 B
B = BO — (6 Bo
Bo 30

These rules allow us to transformm any SMP-proof into a proof of the same clause from
the same axioms, but where S is only applied to axioms, if applied at all. More formally,
define A® to be the set of all the clauses of the form af, where a € A and 6 is an arbitrary
substitution, that is, AT is the set of all the instances of all the clauses in A. Also, define A=
to be the set of clauses a¢ with o € A and ¢ € Q, that is, A= is the set of all the variants
of all the clauses in A. Let us also write A F¥;p o for expressing that « is provable in A
with an MP-proof of complexity m. More precisely,

o AFYp o ifandonlyif ac€ A
AFM, BB  AFT, B

.A F‘m?""“ [3

The reader may verify the following
Proposition 3.14 Let A be any set of clauses.

i. If A% FRp a, then forall 6, A¥ F3p of.

ii. Foralla, A Fgyp a ifand onlyif A® Fyp a.
a

Part ¢ says that if a is MP-provable in A% with a proof of complexity m, the same holds
for all the instances of a. This implies that rule S is unnecessary for the generation of the
SMP-theorems of A®. Part i says that the MP-theorems of .A” are exactly the same as the
SMP-theorems of .A. With this in mind, we can state our computational problem as follows:
given P and B, find those pairs (7, 0) such that 7 is an MP-proof of Bf in P=.

For the purposes of the following discussion, let us say that = is atomic iff the theorem
proved by =, th(r), is an atom. It is easy to see that an MP-proof in a set A of clauses is of



the form

where @ = Ap... A, € Aand j < n!. Inthefigure, we do not suppose that the 4;’s belong to
A; only that they are MP-provable in A. We do not make explicit their proofs simply because
we are not interested in analyzing them. We say that such a proof is based on a. Thus, an
atomic MP-proof in A is either an atom A € A, or, for some clause a = Ao ... A, € A with
n > 0, it is a proof of the form

QO Ao

This means that if = is an atomic MP-proof in A not reducing to an atom, there exists an
implication a € A such that 7 is based on « and th(w) = &. In particular, if 7 is an atomic
MP-proof in P%, there exist an a € P, and a substitution ¢ such that 7 is based on ayp, and
th(r) = ay. More, suppose that 7 is an MP-proof of Bf in P¥. The previous discussion
tells us that there exist an « € P, and a substitution ¢ such that = is based on ay, and
B8 = th(r) = ap. Take now a bijective substitution ¢ such that var(B)N var(ag) = 0.
Trivially, 8 = a¢ € P=, r is based on

ap = (ad)$™'p = B¢

and B¢~1¢ = BH. Consider now the substitution { = 6 | var(B) + ¢~ 'p. From the previous
discussion, we deduce that B = B = 3¢, and that 7 is based on B(. We have then the
following

Fact If 8 is an answer for B in P, there exist a formula 8 € P=, and a pair («, ) such that
var(B) N var(B) = 0, = is an MP-proof in P* based on ¢, and § = ¢ on var(B). O

Only for the purposes of the following discussion, let us introduce the following terminology:
we say that (7, 8) is useful for B iff there exists an o € P= such that

var(B) N var(a) = 0,

'Recall that for j < n, o/ = 4; - o'+ and a” =& = A,.
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and 7 is an MP-proof in P* of Bf = af based on af. The previous Fact now says that if §
is an answer for B in P, there exists a pair (7, £) useful for B in P with § = € on var(B). If
we are only interested in determining the action of an answer on the variables of the query,
our computational problem may be stated as follows: given P and B, compute all useful
pairs for B in P. We need then an algorithm for generating useful pairs for B in P.

By definition, if (7, 8) is useful for B in P, there exist an a € P, and a ¢ € § such that
var(B) Nvar(a¢) = 0, and 7 is based on agf. This observation leads us to the following
algorithm:

for all a € P
for all ¢ € Q
if var(B) N var(ag) =0
generate all useful pairs
(7,8) for B in P, with

7w based on a¢f.

The algorithm is clearly non-termiﬁating due to the loop on all ¢ € 2. Fortunately, as we
are going to see below, the following simplified version is enough to our purposes.

for all a € P
choose one arbitrary ¢ € Q with var(B) N var(ad) = 0;
generate all useful pairs for B
in P whose proofs are based
on some tnstance of a¢.

This may be justified as follows. We are only interested in computing answers for B, so, if
(70, 60) and (my,60,) are two useful pairs for B with 8, = 8y on var(B), once we computed
(7o, 80), the computation of (7, 6;) becomes useless.

Proposition 3.15 Leta € P and ¢; € Q with var(B) N var(a¢;) = 0, fori = 0,1. If (x,6,)
is a useful pair for B with  based on a¢,0y, then there exists 6y such that 8y = 6, on var(B),
7 1is based on agefy, and (7,00) is useful for B in P.

Proof Define 8y = ¢5 160 | var(age) + ;. It is immediate that 8, = 6, on var(B). Also,
(ado)bo = (ado)(dy ' ¢101) = ap61,
which implies that = is based on a¢eby. Finally, and by hypothesis, B8, = a$160,. Hence
Bl = B8, = &$16, = adobo.
This implies that (7, 8) is useful for B. O

Suppose then that we fixed a € P, and ¢¢ € 2, with a¢o sharing no variable with B, and
suppose that we have an algorithm generating all the useful pairs (7, 8p) for B, with 7 based
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on a¢ebfy. Now, the proposition tells us that choosing a different ¢; € ! with a¢, sharing
no variable with B, and computing useful pairs (7, 6;) based on a¢;8; will give us no new
answer.

Let then o € P, ¢ € Q with var(B) N var(ag) = 0. If (7,0) is a useful pair for B with
7 based on a¢f, then from the definition of useful pair, we get that B = a¢8; therefore B
and a¢ are unifiable. Reversing the argument, we get the following

Fact If a¢ and B are not unifiable, then there exists no useful pair for B based on an
instance of ad¢.

This means that, in our algorithm, before trying to construct any useful pair (7, 8) with
7 based on a¢f, we should try to unify B with &¢. If the unification fails, the previous
Fact tells us that we may let both « and ¢ drop and try another clause o' € P and another
substitution ¢’ € Q; no answer will be lost.

Suppose now that for « and ¢ as before, we have computed a unifier 8 of B and a¢. If
there exists a useful pair (r,6) with = based on a¢f, by the definition of useful pair, we
must have

PE b, BS. (3.8)

However, the sole fact that § is a unifier of B and &¢, does not imply (3.8), hence does not
imply that there exists a useful pair for B based on a¢f. Take, for instance, the program P

q(y) — p(y)
q(a)

and B = p(z). Choosing a = q(y) — p(y) and ¢ = id, we have that § = [z/y] is a unifier of
B and a¢, but
P¥ typ BO = p(y)

does not hold. Note, however, that

g(a) = pla)  q(a)
pla)

is an MP-proof in P¥, but not of B6 = p(y), but of an instance of it. The moral of the tale
is that given § € unf(B,a¢), even if there may not exist useful pairs (7,8) with = based on
adl, there may exist useful pairs (r,8p) with = based on a¢fyp, for some ¢. So, once we
computed the unifier § as before, in order to give our algorithm more chances of succeeding,
instead of trying to construct useful pairs (7,6), we should try to construct useful pairs
(7, 8¢), for some . Let us see how.

Suppose then that P and B are given, that we have chosen an a € P= sharing no variable
with B, and that we computed an unifier 8, € unf(B,a). We will try to define a formal
process for constructing useful pairs for B of the form (7, 8;p) based on af;p, for some ¢.
For fixing ideas, suppose that a = AgA;As.
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Our first step may be to construct the pair

0002 A002
0102 A102 ) 92 (39)

0202

Under the current hypotheses, we have the following facts:
e %0, € P%. In particular, a®f, is MP-provable in PZ%.
e The object on the left of (3.9) is an MP-proof in P® U { Apd;, A,6, }.
o Bl = o*0,.

From this we conclude that if the proof on the left of (3.9) is an MP-proof in P¥, then (3.9)
is a useful pair for B. Unfortunately, at this point we are unable to guarantee that the A;6,’s
are MP-provable in PZ. In order to explicitly represent this state of affairs, we may write

a092 A002 ?
0192 A102 ? 3 02 (310)
0202

It is almost obvious what our next step should be: we should try to construct a useful pair
for A16,. If such a pair exists, and we are smart enough, after some time we will come
back with a useful pair (71, 6,) for A,8,, hence we will be guaranteed that A,0,6, = th(m,)
is MP-provable in P¥. In general, we cannot replace A,8, with A,6,8, and its proof 7, in
(3.10) because this would result in a wrong application of MP. However, we may replace the
whole pair (3.10) with

000201 A00201 ?
010201 A10201 y 0201 (311)

020201

where we do not represent the proof m;. Note that the process is sound. From B, = a?6,,
we get B0, = o6,0,. Therefore, if the proof in (3.11) is an MP-proof in P%, (3.11) is a
useful pair for B. Repeating the process with Agf26,, and with some chance, we will end
with
a%6,6,0, Ao820,0,
a16,6,6, A1020,60, , 020160 (3.12)
a?0,60,8,

a useful pair for B.
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The previous discussion clearly suggests another formal representation of this process.
For instance,

QO AO ?

ol A7, 6, (3.13)

is a sufficiently accurate representation of (3.10); after all, both representations contain
the same amount of information. Furthermore, if we use environments for representing
substitutions, (3.12), say, may be represented by

ao Ao
o Ay, Ko (3.14)
ol
provided that O’EO = 0,6,0,. If this is the case, ogo is an answer for B in P.
If we are only interested in computing this Ep, that is, the answer, the proof in (3.14) is of
no use for us, so we may safely delete it. However, in the analogous representations of (3.10)
and (3.11), we must keep enough information for reconstructing the atoms whose provability
is not guaranteed at each point. This leads us to representing the process (3.10)-(3.12) by
the formal expression
Ao Ay +  E;
Ao + E)

where, among other things, we suppose 022 =0, € unf(B,Az), which makes Ag 4; + E; a
sufficiently accurate representation of (3.10). In this expression, A; represents the atomic
query A,UE?, i =0,1. Recalling that id = o, our representation principles lead us to rep-
resenting B by B + 0.

We also need the formal rule allowing us to mimic the process described before, but now

this is (almost) self-evident: it must be something like

Ay AL F A, BF 0
Ao Ay H E,

where, as we remarked before, ogz € unf(As,Bof). The experienced reader has certainly
recognized this rule as the SLD-Resolution Rule, modulo some technicalities.

3.2.2 The Resolution Rules

Definition 3.16 We will call goal any expression of the form A + E, where A is a finite
sequence of atoms and/or equations, and E is as in Definition 2.37. The equality between
goals is defined in the obvious way.
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The previous discussion suggests us to consider the goal Ag...A, F E as an encoded
representation of some MP-proof in

PEXU{Aigt | 0<i<n},

for some P, proof that we are trying to extend into a proof in P¥. We will see that it may
also be seen as an encoded representation of the sequent Aoof o Anag .

Definition 3.17 (The GSLD-Resolution Rule)
By...Bi_y F Bx AAF Eg
ABy...Byy F E

(3.15)

with the following provisos:

e By...By_, + Bj shares no variable with A A + Ey.
L] E() g El.
e 0f € unf(By,Acg,).

The restrictions in the definition merit some comments. The obvious idea behind the cal-
culus is that given P, and a query @ = Ao A ... AN A,, we will try to transform the goal
Ag...A, + Qinto a goal F E such that o} is an answer for @ in P. The second proviso
in the definition ensures that if a variable of @ is bound during the process, we will be able
to find its binding in the resulting environment E. Also, by Proposition 2.61, 0§, = o 0%,
which implies ago < of . We see then that the formalism computes more and more instan-
tiated substitutions. This is precisely what our discussion in the introduction suggested us
to do. Note also that the equality o = of of implies

of, € unf(Bx,Act)) if and only if of € unf(Bi,A) (3.16)
and also
of, € unf(By,Ack) if and only if o}, € unf(Biog,,Acf,). (3.17)

This shows that the third condition in Definition 3.17 could have been expressed as on the
right of (3.16), or of (3.17). It seems to us, however, that the most natural statement of this
condition is precisely that of Definition 3.17, which clearly suggests that the rule application
is a first step towards the construction of a useful pair for Aoj;, based on some instance of
Bo...Br.1 F By

The previous remarks also show that the rule application (3.15) may be seen as an
encoded representation of the following deduction using CUT and the Substitution Rule.

BO‘HBk—l }" Bk AO'EO AO‘EO [
Boo}, ... Bi_10f, + Biof, Act Aok F
BoO’E] ...Bk_]O'El AO’E1 -

AcE Boof, ... Broiof, F

78



where the double line represents an application of the full exchange rule. However, the SLD-
Rule intends to be an answer-computing formalism. This is why we store the computed
substitution in the goal’s environment.

The GSLD-Rule is the General SLD-Resolution Rule. According to our definition, in
each rule instance, the clause and the goal in the antecedent share no variable, while the
environment in the conclusion encodes an arbitrary unifier of the clause head and the right-
most goal atom. We define the UGSLD (Unrestricted GSLD) Rule to be like the GSLD-Rule,
except that now we allow that the clause and the goal in the antecedent share variables. We
will see that the UGSLD Rule is sound and complete.

The SLD-Rule must be defined in such a way that the environment in the conclusion of
each rule instance encode a principal unifier of the clause head and the rightmost goal atom.
More precisely, (3.15) is an instance of SLD iff By ~ A, and

O((Bk,A) - Eo

FE

is a refutation in UX, where we recall that the notation By ~ A means that the correspond-
ing atoms are compatible, that is, their predicates are equal. With this definition, we are
allowed to use an arbitrary unification algorithm at each SLD Resolution step. But we may
want (or need) to impose particular restrictions on it. For instance, we may choose a fixed
deterministic unification algorithm and restrict ourselves to using this fixed algorithm in all
applications of the SLD-Rule. We will see that even with this restriction the SLD-Rule is a
sufficiently powerful answer computing formalism. In our discussion of SLD-Resolution, we
will adopt the following

Definition 3.18 A unification algorithm is a ternary computable function u( A, B, E)
such that if A~ B and x( A, B)U E is unifiable, then F = u( A, B, E) is an environment

such that
x(B,A) F E

FF
is a refutation in some system UX. Otherwise, u( A, B, E) = L, where L is some object
different from all environments.

The SLD-Resolution Rule determinded by u is defined as in Definition 3.17 replacing the last
two provisos with

o Ey=u(Br,A, Ey) # L.
Hence, strictly speaking, with our definitions, there exist multiple SLD-Rules. For instance,

Fop(z)  ply) F Foplz)  ply) +
Fzxy Fyxze
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are instances of different SLD-Rules. For simplicity, however, the expression ‘the SLD-Rule’
will mean ‘an arbitrary SLD-Rule’.

In our definition of the SLD-Rule, the role of the unification algorithm is to hide the
internals of the unification process, but, since a unification algorithm is a relatively complex
operation, our rules are ‘high-level’ rules. Another possibility is to define a ‘low-level’ system,
capable of internally and explicitly representing the unification process. The system SLDS
is the low level SLD-Resolution system consisting of the rules of U, supplemented with

The Atom Decomposition Rule (ad)

r v C A A+ E
AT «(C,A) F E

provided C' &~ A, and I' + C share no variable with A A + E.

Consider a fixed SLD-Rule. Since U is a complete unification system, any instance (3.15) of
SLD may be transformed into a proof

By...Bx_1 + By AALF E
ABo...Bk_lo((Bk,A) . Eo

(3.18)

ABy...Bey b E

in SLDS, where ) is a proof in U. The converse is not true, that is, there exist SLDS proofs
(3.18) such that (3.15) is not an instance of the chosen SLD-Rule. However, under these
conditions, (3.15) is an instance of GSLD.

Examples

1. This is an instance of SLD.

2. This is an instance of GSLD, but not of SLD.

F p(z) +
F b

p(a)
TXayx
3. This is an instance of UGSLD, but not of GSLD.

F p(z) pla) F zx<a
Frzxa
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In what follows, we will need to deal with the different systems we defined above. In order
to avoid confusion, it will be convenient to identify them clearly once and for all. System U
is the unification system of Table 2.1. The UGSLD (respectively, the GSLD, SLD) system
is the system consisting only of the corresponding rule, while system SLDS consists of the
unification rules plus the Atom Decomposition Rule. If S is one of these systems, and X an
exchange rule, we already know how to define S*.

We will call SLD-theory any set AU G, where A is a set of clauses, and G is a set of
goals. Given such a theory, it is easily seen that once we started a proof in one of the
systems defined above with a goal A + FE as axiom, all other goals appearing in the proof
are provable in AU {A F FE}? in the same system.

Given a program P and a query Q = Ao A ... A A,, we may think that for computing all
answers we need, it suffices to consider the proofs in P, Ag... A, F 0. In general, however,
this is not the case. Consider the program P = {p(z)} and the query p(f(z)). Clearly, id
is an answer for p(f(z)) in P, but we will find no UGSLD instance of the form

Fop(z)  p(f(z)) F

?

simply because p(z) and p(f(z)) are not unifiable. However, taking + p(y) € P=, we get

Fop(y)  p(f(z)) F
oy < f(z)

and a?yxf(r)} = id on var(p(f(z))). Given a program P and a goal A A + Ej, we must take
aclause By... By, F By € P= such that, at least, var(Bj) and var(AoZ;o) are disjoint, but
things are more tricky than this.

Consider the program {p(z)} and the goal p(f(y)) + z =< a. For applying one of the
above rules in the form

Fople)  p(f(y)) Fzxa
- El

we need that p(z) and p(f(y))a?xxa} = p(f(y))[z/a] = p(f(y)) be unifiable, which is the case.

However, we will find no environment E; such that {z < a} C E,, and

of, € unf(p(z),p(f(y))lz/a]). (3.19)
This is because, as was remarked in (3.17), (3.19) is equivalent to
of, € wnf(p(z)(z/a],p(f(y))lz/a]) = 0.

The obvious problem here is that we took a clause F p(z) with a variable bound in the
goal’s environment { z < a }. In other cases, however, violating this condition does not hurt,

2from now on, written 4, A + E.
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as the following trivial example shows.

F p(x) p(z) F zxa

F zx<a

3.2.3 Soundness

The UGSLD* system is sound if any UGSLDX-computed answer is an answer. This is
precisely stated in Corollary 3.20 below.

Proposition 3.19 If
Ao... A F Eg

(3.20)

By...Bi_y F E,
is a proofin UGSLD*, then

P = (NZhBi = N=o Aok,
In particular, if (3.20) is a refutation,
P # A?:O A{UE] .

Proof By induction on the complexity of the given proof. If the given proof is of complexity
0, the result is immediate. Suppose we have a proof

Ao... A, F Ey
Dy...D._y F D, Co...Ck F E
Cjo . .Cjk_]Do .o D,_l }- E}
where Cj, ...C}, is a permutation of Co,...,Ck, and
Dot = Cj0f,. (3.21)

We want to prove
P E ((AZo Ci) ANNZDi) = N'=o Ai)oE,,

under the inductive hypothesis
Pl (NooCi = ANlag Ai)oi. (3.22)
Note that of < of,, hence from (3.22)

P | (NooCi = Nzo Ai )0, (3.23)
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Take then a model Z of P, and a valuation v such that
Iv | (NS Cioh, ) AN Diok, ). (3.24)
Since Dy ... D, is a clause of P=, we have
Pk (Do...D,)of,.

According to (3.24), I,v | AIZy, Diog,, and by hypothesis T is a model of P. Hence
I,v & D.o} . But by (3.21), D.of = Cj,0f , which means that (3.24) implies

I,v & /\f‘=0 Cjiagl.

From this and (3.23), Z,v | Al_q Aicg,. O

Corollary 3.20 If (3.20) is a refutation in UGSLDX, then o}, is an answer for
(Ao A...AAn)og,

in P. In particular, if Ey = 0, agl ts an answer for AgAN...NA, in P. O

3.2.4 Structural Results

In this section we will consider structural properties of the deductions in the systems con-
sidered here. The reader will find no difficulty in verifying these results.
Our first observation is that if we have a proof

JAV ol
A F OB

A, - E,
then Eo g E1 g Eg.
Let us say that the length of the goal A + E and of the clause A + D is |Al The
following statement says that if = is a proof in UGSLD, there exists a well-defined relation

between the complexity of =, the length of the conclusion, the length of the goal axiom, and
the lengths of the clauses appearing in the proof.

Proposition 3.21 Consider a proof

Hof‘Bo A0}"E0
A FOE)

Hn—l i‘ Bn—l An—l !'— En—-l
A, b E,

in UGSLD of complexity n. Then n + (A, = Aol + T2 1T, O
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In particular, if the proof is a refutation, IA,|= 0, and we get

Corollary 3.22 The complezity of any refutation of Ao & Fo is greater than or equal to
[Aol. O

An application of UGSLD deletes at most one atom from the current goal. Therefore, it is
clear that if |Al > 0, a refutation
AANAF E

(3.25)

F E;
in UGSLD must contain at least one interior goal occurrence of the form A + E,. But an
application of UGSLD may also introduce new atom occurrences, hence (3.25) may contain
multiple goal occurrences of this form. A simple structural condition uniquely determines

the ‘first’ of such occurrences. Let us call prefixr of A F E any prefix of A, the proper
prefixes being the prefixes other than A.

Proposition 3.23 Suppose that|Al > 0, and that (3.25) is a refutation of complezity m in
UGSLD (respectively, GSLD, SLD). Then there exist two uniquely determined subproofs =,
72 of (3.25)

AANAF E A F E;

™ T2

AF E, (e
of positive complexities m, and mq, such that m = my; + m2, and A is a proper prefizx of all
the intertor goal occurrences of ;. O

3.2.5 Operations on Proofs
Proposition 3.24 If in an instance of UGSLD (respectively, GSLD)

r+-=o=C A ALV Ey
AT F E

(3.26)

we replace Eq with an environment Fy C Ey, we obtain another instance of UGSLD (respec-
tively, GSLD). O

Note, however, that the statement does not hold for SLD. If (3.26) is an instance of SLD,
we have

og, € pru(ex (C,A)U Ey). (3.27)

If the replacement of Ey with Fy yields another instance of SLD, we also have

o, € pru(x(C,A)U Fy). (3.28)
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But two sets of equations with a common principal unifier have the same unifiers, hence

(3.27), and (3.28) imply
unf(x (C,A)U Fg) = unf(x (C,A) U Ey). (3.29)

Therefore, if the above proposition holds for SLD, (3.29) holds for C' and A arbitrary com-
patible atoms, Eg an arbitrary environment, and Fp an arbitrary subset of Ey. It is easily
seen, however, that this last statement is not true, hence the proposition fails for SLD. As a
counter-example, consider the following instance of SLD.

F p(a) pla) F 2 xa
Fzrzxa

Replacing the environment in the antecedent by the empty environment, we get

+ pla) pla) +

F zxa

which is an instance of GSLD. but not of SLD.
Proposition 3.25 Suppose that

r-2c< A AV Ey
AT+ E

(3.30)

ts an instance of UGSLD (respectively, GSLD). Then for all environments E; 2 E;, the
replacement of Fy by E; in (3.30) yields an instance of UGSLD (respectively, GSLD). O

It is clear that this statement fails for SLD. The next few statements deal with the deletion
and addition of prefixes in all the goal occurrences of a proof.

Proposition 3.26 If

r+¢C AANAF Ey
AATFE (3.31)
is an instance of UGSLD (respectively, GSLD, SLD), then
r+¢C AAF E
ATF E (3.32)

is an instance of UGSLD (respectively, GSLD, SLD). Conversely, if (3.32) is an instance of
UGSLD (respectively, GSLD, SLD), and A shares no variables with T' = C, then (3.31) is
an tnstance of UGSLD (respectively, GSLD, SLD). If A shares variables with T + C, then
(3.31) is an instance of UGSLD, but not of GSLD. O

This statement may be extended to arbitrary proofs in the obvious way. This is left to the
reader.
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Corollary 3.27 IfIAl > 0, and there ezists a refutation of complexity m in UGSLD (re-
spectively, GSLD, SLD)
A AF E

F E,
then there exists a refutation
Al FE
FE;
in UGSLD (respectively, GSLD, SLD) of complexity 0 < m; <m, and Eq € £, C E;. O
This statement easily generalizes to the following

Corollary 3.28 If we are given a refutation © in UGSLD (respectively, GSLD, SLD)

Ag... A, F Ey
s : (3.33)
- E)

of complexity m, then for each 1 < n, we can construct a refutation =,

Ai b Fiq
: (3.34)

—

in UGSLD (respectively, GSLD, SLD) of complezity m;, with m = L., m;,

Eo=FonCFR,C...CHCF=E,
and var(r) = ULq var(w;). O
A restricted form of converse is also true.

Corollary 3.29 If for each 1 < n we are given the refutation m; of (3.34) of complexity m;,
then we can construct a refutation © in UGSLD of the form (3.33) of complexity ¥7_, m,
with By = Fry1, By = Fy, and var(w) = UL, var(m;).

Proof For each ¢ < n, by Proposition 3.26, from (3.34) we can construct a proof

AO...Ai F 1:‘{+1

Ag...Ainy F F

in UGSLD. Next, we construct (3.33) in the obvious way. O
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Note, however, that we can only ensure that the resulting proof is UGSLD, even if the
given proofs were SLD. The following example clearly shows why the ‘SLDness’ may be lost.
Applying the method described above to the two SLD-proofs

Fop(z) ply) b Fogla) gz)F yxz
Fyxz Frzxa yx=z

we get a proof in UGSLD, which is not GSLD.

F p(z) q(z) p(y) F
F q(a) g(z) Fyxz
Frxa yxz

Definition 3.30 An instance of UGSLD

Ir'C AAF E
AT F E

is said to be elementaty iff Fo = F;. The elementary proofs and refutations are defined in
the obvious way.

Proposition 3.31 If o} unifies all the equations in A, and
A+ E
HF
is a refutation in U, then FF = E.

Proof Since the rules ee and sd do not modify the environment, it suffices to show that
under the current hypotheses, the rules Ib and rb cannot be applied.

Suppose that ¢ < u is the rightmost equation of A. By hypothesis, tof = uof. If tof is
a variable, then it appears in uo} = tof, hence ®,(t,u, E) does not hold, and 1b cannot be
applied. The case of rb is analogous. O

Corollary 3.32 If of unifies the atoms C and A, then for any unification algorithm u,
E=pC,A,E). O

This implies that an elementary instance of GSLD is also an elementary instance of SLD.

Examples

i. An elementary instance of GSLD.

F p(a) p(z) F zxa




ii. An elementary instance of UGSLD, not of GSLD.

F op(x) p(z) F rxa

Frtxa

a

The next statement shows how to transform an arbitrary proof into an elementary one.

Proposition 3.33 Let 7 be the proof
Ag F Ey

Ay BB,

in UGSLD. If we replace all the environment occurrences in © with an environment E, such
that o} < agz, then we obtain an elementary proof A in UGSLD (obviously of the same
complexity). Moreover, if E; 2 E,, we also have var()) = var(n) U var(E;). O

The following result follows easily from Corollary 3.28 and Corollary 3.29.

Corollary 3.34 Ay... A, F E has an elementary refutation © of complezity m in UGSLD
iff for each 1 < n, there exists an elementary refutation n; of A; + E of complexity m; in
UGSLD, with m = £*_ym;, and var(n) = U, var(m;). O

This readily entails the following corollary, which, intuitively speaking, says that if we are
trying to construct an elementary refutation in UGSLD, then the choice of the atom to
reduce is irrelevant.

Corollary 3.35 If A + E has an elementary refutation © of complexity m in UGSLD,
then for any permutation A of A, A + E has an elementary refutation A of complezity m
in UGSLD, with var(\) = var(r). O

3.2.6 Equivalence of the Resolution Rules

Trivially, a proof in SLD (respectively, GSLD), is also a proof in GSLD (respectively,
UGSLD). The converse does not hold, but if we restrict ourselves to refutations, then a
form of converse holds. Our first task will be to show that for all refutations 7 in UGSLD,
there exists a refutation #* in GSLD computing essentially the same answer. To this end,
suppose we have fixed a theory

PE, AO }‘- Eo. (335)
We will need the following definition.

Definition 3.36 A renaming system is a family R = {¢; | j € N} of variable renamings
such that, writing V; = V¢,, the following conditions hold.
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. {V; | 7 € N} is a partition® of V.
ii. The set nuc(R) = {z € Vo | zdo = x} is denumerable.

It is not difficult to see that given any set V' of variables such that V \ V' is infinite, there
exists a renaming system R such that V C nuc(R).
Once we fixed the theory {3.35), let us choose a renaming system R such that

var(Ag) U var(Ey) C nuc(R). (3.36)

If v is a proof of Ag... A, F E;in (3.35), for each atom occurrence A, in the conclusion of r,
we will be interested in determining which rule application introduced this atom occurrence.
This will be formalized through the notion of depth of each atom occurrence in the conclusion
of 7.

Definition 3.37 All atom occurrences in Ny are of depth 0 in Ao + Eg. Suppose now that
7 1is the proof

Bo...Bi_y, v By ng AA ‘}— E, (3.37)
ABo...Bk_l I_ EI

of complerity m. Fach atom occurring in A in the conclusion of m is, in ©, of the same
depth as the corresponding occurrence in the conclusion of n;. All the B;’s are of depth m
mn T,

The following notations will be useful in the proof of the next proposition. If 7 is the proof
(3.37), we will denote by V(=) the set var(Ag). For 0 < 3 < m, Vj(7r) will denote the set

of variables of the clause used in the j-the rule application in 7. If 7 is the proof (3.37), we
define

e(r)={z2¢; <z | 0<j<m,and z € V(n)},

and if 7 reduces to Ay + Ey, e(7) = 0.

Several remarks are in order. If the atom occurrence A in the conclusion of 7 is of depth
J, then var(A) C Vj(r). Also, referring to (3.37), Vi(7) = V;(m,), for all 7 < m.

Consider now a positive jo < m, and 29 € V(7). Since R is a renaming system,
2095, € V3, hence 2095, & Vo. Also. if the pair (51, 21) is different from (Jo, 20), then z18;, # z0¢;, -
This implies that there exists a substitution 8 such that

ViVz, 0<jy<m, and z € Vj(x) implies 2¢;0 = z. (3.38)
Finally, note that if 7 is the proof (3.37), then

e(ms) C e(m). (3.39)

3Note that since ¢; is a variable renaming, V; is a denumerable set of variables.
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Proposition 3.38 [fn is a UGSLD-proofofCo...C, = Ey of complexity m in (3.35), and
var(m) C nuc(R), then there exists « GSLD-proofn= of Do ... D, + Fy in (3.35) such that
1. F] = El U 6(71’).

11. a}l = UE; on V.

ite. For eacht < n, if C; s of depth j in w, then D; = Ci¢;.

=

. 7" is of complezity m, and var(r*) C ULy V;.

Proof 1If 7 is of complexity 0, it suffices to take #* = 7. Suppose now that = is (3.37), and
that (the rightmost) A in the conclusion of 7, is of depth j in 7. By the I.H., there exists
a GSLD-proof =} of complexity m — 1

Ao F Ey

T Ao, v F;

with Fy = E; U e(m2), and var(7;) C UTG' V;. Defining Fi as in i above, and recalling (3.39),
we readily get F; C F}.
Consider now theset V = {z¢; | 0 <j < m, z € Vj(x)}, and take a 0 satisfying (3.38).
Thus, e(mr) = {z <26 | = € V }. Note that by the choice of R, and the hypotheses on .
var(VO) U var(E,) C var(z) C nuc(R) C Vg,

and by a previous remark, if z € V, then z € V. By Corollary 2.86, F} is an environinent,
and
of, =bof |V + of . (3.40)
Since VN Vo =10, of =of on Vo, which is 7. (3.38), and (3.40) imply that for all j,
0 <j <m,and z € Vj(r),
z¢;0f = z0F,. (3.41)

We have chosen the renaming system R such that
Vo(m) = var(Ag) € nuc(R) C Vo.

Consequently, since ¢o = id on nuc(R), (3.41) also holds for j = 0, and z € V,(x).
But by (3.37), o, unifies By and A, var(Bi) C Vin(7), and since we supposed that A is
of depth j in my, var(A) C V,(x). Thus. from (3.41), we get

+ + ¥ g4
Bk¢ma.1-‘; = BkUEl = A0E1 - A(pjaﬂ’

Consequently,

BOd’m s Bk—l¢7n t Bk¢m " { II A¢j i N
HBOO’m...Bk_l(P'nI }- Fl

1s a proof 7* as demanded. O
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Corollary 3.39 If r is a UGSLD-refutation in (3.35) of conclusion b E, and complexity
m, then for any finite set V of variables such that var(n) C V, there ezists a GSLD-refutation
in (3.35) of conclusion + Fy and complezity m, with of, = of on'V.

Proof Choose a renaming system R such that V C nuc(R) and apply the proposition. We
get a GSLD-refutation of conclusion F Fj, and a}*} = agl on Vg 2D nuc(R) 2 V. O

We may then safely say that any UGSLD-computable answer is also GSLD-computable.
This is another indication of the soundness of UGSLD. Our next step will be to show that
any GSLD-computable answer is subsumed by an SLD-computable answer.

Proposition 3.40 Suppose that

FOP_CO AOAO}_EO
Ag To F Fy

is an instance of GSLD, that Ay, Ay F E, subsumes Ao Ao - Eo on V, and that 'y F C;
is a variant of I'o = Cg sharing variables neither with V', nor with Ay Ay & E,. Then there
erists an environment Fy such that

Fli-Cl AlAl}_El
A}Fl [ F]

(3.42)

is an instance of SLD, and if Fy s any such environment, then A, [y F F subsumes

Ao Fo I Fo on V.
Proof By hypothesis, there exists a substitution g such that
of, =0k wo onV, and (Ao Av)oh = (A1 Ar)oE o, (3.43)

and a variable renaming ¢ such that I'gv¢ F Coé is I'1 = C,. Hence, there exists also a ¢
such that ¢f = id. Let W be the set of variables of I'y + Cj. Define

0=Eof LW + of oot (3.44)

By hypothesis,
Com Ao, and of, € unf(x(Co, Ag) U Ey). (3.45)

The definition of §, and the hypothesis that I'y = C) shares no variable with either V| or
A] Al + E1 y lmply that

0 = of wook on V, and on the variables of Ay A; F Ej. (3.46)

Hence, o < 0 on var(E,;), which readily implies that 6 is a unifier of Ey. Also, by (3.44),
(3.46), and recalling that Ey C Fy,

Ci0 = (Cog) (€t ) = Coof, = Avof, = Aooh of = Aiof oot = Asf.
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We have then that
Cix= A, and 0 € unf(x(Cy,A1)U Ey). (3.47)

Consequently, there exists an environment F) such that
of, € pru(«(Cy, A1) U Ey).

For any such environment, (3.42) is an instance of SLD. Also, by (3.47), there exists a ¢,
such that of ¢ = 6. Recalling (3.46), and (3.43), we see that the following equalities hold

on V.

o — 0 = gt + _ ot gt = o
orw1 =0 = 0f @00, = 0f,0F, = OF,.

Also, for the same reasons,
A10§1<p1 =00 = Alagl 9900}0 = AOJEOU;CO = Agof,
and
[yof o1 =T18 = (Tod) (o) = Too .
This proves that A; 'y F Fy subsumes A¢g [y - Fpon V. O

Corollary 3.41 [f there exists a GSLD-refutation

Ao B Ey
: (3.48)

F Fo
of complexity m, then for any goal Ay + E; subsuming Ao F Ey on V, there exists an

SLD-refutation
A, FE;

F R

of complezity m, with U}l < o}o on'V. O

Corollary 3.42 If there exists a GSLD-refutation (3.48) of complezity m, then for any set

V' of varzables with var(Ag) C V, and any environment E, such that O'E] < an on V', there

exists an SLD-refutation

Ag F Ey
FF
of complezity m, with of, < of on V 2 var(Lo).

Proof By hypothesis, there exists a o such that JE} wo = o, on V. Trivially, we also have
AOO’EI Wo = AOUEO. We may then apply the preceding corollary, making A, = Ay, O
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3.2.7 Completeness

Proposition 3.43 Let A A + E be a goal. V' a finite set of variables, and suppose that for
some m € N
P= FYp Aok

Then there exists a clause B = By ... B, € P=, a substitution 8, and an environment I such
that

i. Bif = Ao},
1i. All variables in 36 are unbound in F.
itt. 3 shares no variable with A A v E, 36, V.
iv. There exists an MP-proof of By6 = Aok in PT of complexity m based on 36.
v. ECF, and of =6 | var(3) + of.

By...Bi_; - B AAFE
i, o Ao k GSLD.

ABO"‘B)\‘—I }— F

Proof By hypothesis, there exists a clause ~ = Cy...Cy € P, a substitution £, and an MP-
proof

~0¢ Cof
v Cié

: (3.49)

v*1€ Croa€

7

in P¥ of complexity m, with v*¢ = Ci& = Aok, Let ¢g € 0 such that vé, share no variable
with either A A + F or V, and define 8 = v¢o. With this definition, Cir€ = By¢5'¢. None
of the variables in v*¢ = Ao} isin ker(o}), and by the choice of ¢g, none of them is in var(f).
Hence, there exists a variable renaming ¢, into V \ (ker(c£) U var(8)) such that ¢; = id on
var(Cr€) = var(Bydg'€). Define § = ¢5'¢p,. With B and 6 so defined, the conditions i-4i
are satisfied. Concerning iv, simply note that applying ¢, to all the formulas in (3.49), we

obtain an MP-proof in P* of B.# based on 88 of complexity m, as demanded.
Note that by conditions i-iii, we have that

var(B) N var(fl) =0 = var(f) N var(£),

and all the variables in var(/38) are unbound in E. Hence, by Corollary 2.87, there exists an
environment F D E such that a}: =0 | var(B) + of, which is iv. But then Biof = Bif =
Aot = Acf, which implies that vi is an instance of GSLD. O
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Proposition 3.44 Let P be a set of clauses, Ag... A, atoms, V a finite set of variables
such that Uy var(A;) €V, and Ey an environment such that for all i < n,

PE }—ﬁlp Aiago.
Then there erists a GSLD-refutation

Ao... A, F Eq
: (3.50)

FE)
in P2, Ao...Ax & Eo of complezity (n + 1) + Ly my, and of, = of, on V.

Proof By induction on (n + 1) + ¥, m,.
Base Case: (n+ 1)+ Z,m; =1. Hencen =0 = m,. By hypothesis, P* +§,5 Aoof.

1

By Proposition 3.43, there exists an atom 3 = B € P=, a substitution 6, and an environment
F such that '

. var(B)NV = 0.
. of =0 | var(B) + aEO,

and

H B Ao F £y
FF

is an instance of GSLD, hence a GSLD-refutation of complexity (n + 1) + £, m;. Also, by
i and i, of = a}o on V.

Inductive Step: (n + 1) + Ef,m; > 1. Note that in this case we have either n > 0,
or m, > 0. By hypothesis, P F7y» Anof,. By Proposition 3.43, there exists a clause
B = By...B, € P=, asubstitution §, and an environment F' O Ky satisfying 7 and 2 above,
and there exists an MP-proof

50 o { Bof
a | (3.51)

: Ao :
B9 ! { By,8

of complexity m,,, and such that

By...Byy + By Ao... A F Ey
Ao... A1 By...Bry v F

(3.52)
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is an instance of GSLD. By (3.51), if for j < k, 7, is the complexity of A;, we have
m, =k + S;‘;g 7. (3.53)

By (3.51), and i, for all j < k, P* Fjp B,of. Also, by hypothesis, for all i < n,
PE Fip A;o’}o, and since o} = agoa;ﬁ, by Proposition 3.14, for all i < n, P* +yp Ajof.

Also, by (3.53),
(m+k)+ (S m)+(Er)=((n+1) + Shem) - L. (3.54)

This means that we may apply the I.H. to the conclusion of (3.52), and the set V U var(3).
This gives us a refutation
Ag...Ap1By...Bi_y F F

(3.33)

OBy

of complexity (3.54), with 0§, = of on V U var(B), hence, of, = of on V. Putting together
(3.52), and (3.55), we get a refutation as demanded. O

Theorem 3.45 (Completeness of GSLD) Let Q = Ao A ... A A, a query, P a program,
and 8 an answer for QQ in P. Then for any environment Eqy such that O'EO < 8 on var(Q),
there exists a refutation

Ap... A, F Ey

+ E,
in GSLD, with of = 6 on var(Q).
Proof By Proposition 2.86, there exists an environment Fy 2 Eo such that of =6 on
var(Q)). Since 0 is an answer, so is 0}0. Hence, by the completeness of SMP, and Proposi-

tion 3.14, for all s < n, P* +,p Aia}.to. The preceding proposition implies that there exists
a GSLD-refutation

Ao...An F Fy
: (3.56)
FE
with of, = of on var(Q). Now it suffices to replace Fy with Ey in the axiom of (3.56),

which is allowed by Proposition 3.24. O
Corollary 3.46 (Completeness of SLD) If 8 s an answer for @Q in P. then for any

environment Foy with ago < 8 on var(Q), there exists a refutation
Ag... A, + Ey
FE,

in SLD, with o, < 60 on var(Q).

Proof Immediate from the completeness of GSLD, and Proposition ?7. O
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3.2.8 Independence of the Selection Rule

As was the case for the unification system U, the introduction of an exchange rule gives
us some freedom in the choice of the atom to reduce during a resolution refutation. The
next statement shows that for any fixed exchange rule X, any UGSLD-computable answer
is subsumed by an SLD¥-computable answer.

Proposition 3.47 If Ay F Eo has a refutation mg of conclusion + E| and complezity m
in UGSLD, then for any finite set V of variables such that var(me) €V, and any exchange
rule X, Ao &+ Eo has a refutation of conclusion + Fy and complexity m in SLDX, with
of, <of onV.

Proof The statement trivially holds for m = 0. Suppose now that the given refutation
7o is of complexity m > 0, and that we have already chosen the set V of variables with
var(mg) € V. According to Proposition 3.33, we may transform mg into an elementary refu-
tation m; of Ag F F, of complexity m, with var(m,) = var(me) C V. Now, choose and
instance

Ao F Ep
Ao F Ey

of X. Since Ap F E; has the elementary refutation m,, of complexity m, Corollary 3.35
ensures that there exists an elementary refutation 73 of Ag F FE; of complexity m, with
var(my) = var(m;) C V. By Corollary 3.39, there exists a refutation Az of Ag F E; of com-
plexity m in GSLD with conclusion + Fj, with of, = g on V.

Since of, < o , Corollary 3.42 tells us that there exits an SLD-refutation

' - C Ao F Eq
II + E,
A2 :
FF,

of complexity m, with of, < of, on V.

We may now apply the I.H. of this proposition to the proof A, of complexity m — 1, and
the set W = V U var(Az). This gives us a refutation A; of [I + E, of complexity m — 1 and
conclusion F Fj in SLDX, with a;l < 0}2 on W. But then

recC Do F Ey
Inkr E

A :
—F

is a refutation in SLD¥ of complexity m, with of, <of, <ot =cf, onV. O
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3.3 Delayed Unification

We already remarked that an application of SLD may be transformed into an application
of ad followed by a finite number of unification steps. This implies that any maximal proof
in SLD may be naturally transformed into a maximal proof in SLDS. In particular, any
refutation in SLD may be transformed into a refutation in SLDS.

We assumed that <’ is not a program symbol, and according to our definition, an
application of ad introduces at least one equation. Hence a proof in SLDS cannot contain
two consecutive applications of ad. Things are different if we introduce an exchange rule.

In this section, let X denote the full exchange rule. We know that if r is a unification
rule, any instance

Ag F Ey

A F E;
of r¥ may be seen as an abbreviation of a proof

Aoy F Ep

Ti=uF E, (3.58)
TAF E

with I' A = A;. where the double line represents an application of X, and the single line an
application of r. We may find convenient to represent the instance (3.57) in its ‘expanded’
form (3.58). Note that in (3.58) A is a possibly empty list of equations.

An instance occurring in a proof = uniquely determines a subproof of 7, namely, that
consisting of the selected instance, plus those above it. In the particular case of SLDSX,
the rule applications are totally ordered in the obvious way: the instance ¢y precedes ¢ iff
the former is above the latter in #. This allows us to introduce the following notion. Let ¢
be an instance of ad¥ occurring in 7. The deviation of ¢ is the number of instances of U¥X
preceding ¢ in m. The deviation of 7 is the sum of the deviations of all the instances of ad*
in 7. Consequently, in a proof

(3.57)

A+ FE
: (3.59)

o FF

of deviation 0, an application of ad* cannot be preceded by instances of UX. This means

that the above proof may be partitioned into two segments: an initial segment
AtFFE
AFE
containing only applications of ad*, followed by a proof
AFFE
: (3.60)
Inr F
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in U¥X. Otherwise said, the proofs of deviation 0 are proofs where the unification steps are
dalyed. We will see that the delayed SLDS proofs are enough for computing answers. This
result has been suggested to us by G. Ferrand in a personal communication. We simply
adapted it to our formalism.

Since the instances occurring in a proof 7 are totally ordered, if = is of positive complexity,
we can unambiguously talk about the first instance of adX of positive deviation in 7. It is
easy to see that such an instance is immediately preceded by an instance of UX. As a final
remark, let r be a unification rule, and let

= b

HE
+ F
be an instance of rX. Since X is the full exchange rule, if I is any permutation of A,

n+FE
A+ F

is also an instance of r*. This observation can be generalised in the obvious way to the
instances of adX. Hence, if

ArE
: (3.61)

A+ F
is a proof in SLDS¥, and we replace the axiom A F E by one of its permutations, then we
obtain a proof in SLDS¥.

Proposition 3.48 [fwe are given the proof (3.61) in SLDSY, then we can construct a proof
AFFE
: (3.62)
Ik F
in SLDSX | of the same complerity, and deviation 0, with I1 a permutation of A.

The idea of the proof is to show that we can obtain (3.62) from (3.61) by a finite number of
applications of the transformation presented next.

Proposition 3.49 Let r be a unification rule, and suppose that

A+ FEy
Aot=xu F FEy
NoAg F F;
'+ C /\1A*_E1
MTPTx(C. A) F B
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is an application of X followed by one of ad®. Then there exist Ty and I1; such that

r+cC A F Ey
[y b Ey
I, = E

is an application of adX | followed by one of ™, and Il; is a permutation of Ay [ < (C, A).
Intuitively, we can always conmute an application of a unification rule followed by an appli-
cation of ad*X.

Proof By hypothesis, Ag t < u is a permutation of A, Ag is a list of equations, and A; A
1s a permutation of Ag Ag. Hence, there exist A, and A, such that Ag = A; A A,, and A,
is a permutation of A; A; Ap. This implies that Ay A, T < (C, A) Ag is a permutation of
MTx(C,A), and
A+ Ey
re=0C - AMAt=xuA b Ey
Al Mt=xul«(C,A) F Ey
A A T x(C,A)t=xu F Ey
Ay AT x(C,A)Y A B,

is a proof as demanded. O

Proof of Proposition 3.48 It suffices to show that if (3.61) is of deviation d + 1, then we can
construct a proof like (3.62) of deviation d. Consider the fist application of ad* of positive
deviation in w. Then, using the notation of the preceding proposition, = is of the form

A+ E,
r-C Ao Ao F E5
/\{AJ‘O((C,A) F B

If we transform these instances as indicated before, we get something like

r+~¢C AN o
A A i=ulx(CA)F E (3.63)
/\l{ A] AQFO((C,A)AO (o E]

A’ is obtained from A by a permutation in the axiom of the latter. By a previous remark, X'
is also a proof in SLDS¥, hence the same holds for the whole (3.63). It is also easy to verify
that (3.63) is of deviation d. O
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Corollary 3.50 If
AFE
HF
is a refutation in SLD, there exists an equational goal A + FE obtainable from A + E by a
finite number of applications of adX, and such that o} is a principal unifier of A + E. O

Hence, F' may be computed delaying the application of the unification rules. Here we have
an example.

p(z) + p(f(z)) p(f(a)) F
- p(a) p(z) f(z) < fla)
flz) < f(a) axz F
f(z) < f(a) F zxa
rxXa F x
F rxXa

The example also shows that such a strategy may have a bad termination behaviour. If we
use p(z) F p(f(z)) in each application of ad, we will never arrive at an equational goal for
firing the unification process. Despite this fact, it seems to us that the result merits attention
at least for its theoretical interest.
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