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Abstract

Recently, distributed shared memory (DSM) systems have received
much attention because such an abstraction simplifies programming. An
important class of DSM implementations is one which uses cache memories
to improve efficiency. In this paper, we present a cache-consistency proto-
. col which uses considerably less communication as compared to previously
proposed protocols. This is realized by maintaining state information and
capturing causal relations among read and write operations. We prove
that the protocol satisfies a formulation of sequential consistency. We
also present several modifications to the protocol and compare the classes
of execution histories captured by these protocols and several previously
proposed protocols.

Un protocole efficace pour
les mémoires partagées réparties

Cet article propose une définition de la cohérence des exécutions réparties (voi-
sine de la " cohérence séquentielle”) et présente un algorithme qui gére des copies
d’objets en accord avec cette définition. Le protocole obtenu est efficace. L'idée
sur laquelle il repose consiste a tenir compte des relations de causalité qui exis-
tent entre les lectures et les écritures sur les divers objets et qui définissent leurs
dépendances mutuelles.
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Communication Efficient
Distributed Shared Memories

Masaaki Mizuno* Gurdip Singh'
Michel Raynal Mitchell L. Neilsen$

~Abstract

Recently, distributed shared memory (DSM) systems have received
much attention because such an abstraction simplifies programming. An
important class of DSM implementations is one which uses cache memories
to improve efficiency. In this paper, we present a cache-consistency proto-
col which uses considerably less communication as compared to previously
proposed protocols. This is realized by maintaining state information and
capturing causal relations among read and write operations. We prove
that the protocol satisfies a formulation of sequential consistency. We
also present several modifications to the protocol and compare the classes
of execution histories captured by these protocols and several previously
proposed protocols.

Index Terms : cache-consistency protocols, causal relations, distributed
shared memory, sequential consistency

1 Introduction

A fundamental problem in concurrent computing is to provide programmers with
a model of shared data which simplifies programming. Efficiency is a major issue
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in the implementation of shared objects. To maintain appropriate performance
level, often multiple copies of an object are maintained, which might cause data
consistency problems. Modifications to the individual copies must be handled
properly in order to avoid inconsistent system states. Complications may also
arise due to the fact that the operations on object may not be instantaneous.
The purpose of a data consistency protocol is to provide an illusion of serial
execution of operations on single copies of objects. Recently, data consistency
protocols for implementing shared memories in message passing systems have
received much attention [AHJ91] [HA90] [ABD90].

Most proposed distributed shared memory (DSM) implementations are based
on cache-coherency protocols for multiprocessor systems. In a cache-based sys-
tem, multiple copies of an object may reside in local cache of different processors.
Traditional cache-consistency protocols have required that all copies of an object
be identical at all times. This, however, may be a very stringent consistency re-
quirement. Lamport proposed the notion of sequential consistency, which states
that a shared memory system is sequentially consistent if each execution of
the memory system is equivalent to a sequential execution of the same set of
operations [Lam79]. Several protocols have been proposed which use different
formulations of this notion and each one has tried to capture a larger set of
sequentially consistent executions. Scheurich and Dubois proposed a sufficient
condition for sequential consistency which requires that a processor cannot issue
a memory access until its previous write operation has been globally performed
[SD87]. Brown proposed a protocol for multiprocessor systems which allows
invalidation requests to a local cache to be buffered until the shared memory
needs to be accessed [Bro90]. Afek, Brown and Merritt also proposed a pro-
‘tocol for multiprocessor systems which captured a larger set of executions by
allowing buffering of write requests [ABM89). The protocols in both [Bro90] and
[ABMB89] require that for each write operation, all processors be informed that
this operation has taken place. Furthermore, both need an atomic broadcast
facility to totally order the write operations. For this purpose, they assume a
special hardware capability to do atomic broadcast.

Communication in a distributed system may be orders of magnitude more
expensive as compared to that in a multiprocessor system. Hence, DSM imple-



mentations requiring frequent atomic broadcasts can be very expensive. Since
communication is expensive while memories and high-speed CPUs are becoming
cheaper, a strategy appropriate for a distributed system is to reduce commu-
nication at the expense of memory and computation time. We show that by
maintaining some additional state information, the amount of communication
required to maintain consistency can be considerably reduced. In this paper, we
propose efficient DSM implementations based on this idea. These protocols do
not require atomic broadcasts. The consistency definition used in this paper is a
formulation of sequential consistency. Our formulation reflects the intuition used
in many protocols that all processors must agree on the ordering of the write
operations and each processor should individually schedule its read opérations
in an appropriate manner.

We first propose a protocol which maintains a data structure to keep track
of the recent versions of objects in each cache. When a processor accesses the
shared memory, the set of objects in its local cache, whose values have become
out of date, are detected using the information stored in this data structure, and
these values are invalidated. This protocol allows the same set of sequentially
consistent executions as the protocol in [Bro90] but uses less communication.
In this protocol, once object x has been invalidated at processor i, no more
invalidation requests for z are sent to ¢ until ¢ reads z. In the protocol in
[Bro90], an invalidation request for z is sent to ¢ every time z is updated by any
other processor.

We then modify the protocol to obtain a protocol which allows the same set
of sequentially consistent executions as the protocol in [ABM89] but again uses
less communication. In this protocol, only the necessary writes are propagated.
On the other hand, in the protocol in [ABM89), all the writes are propagated to
all the processors. In the extreme case in which the cache is large enough to hold
all the objects, a read operation can always read a value from the local cache
in our protocol. In this case, the protocol requires only one round of message
exchange between a processor and the shared memory for a write operation and
no messages for a read operation.

Although, we have used'sequential consistency as the correctness criteria, our
method may be applied to data consistency protocols which satisfy other notions



of consistency. For example, we show that the number of invalidations in the
protocol proposed in [HA90] to maintain causal consistency may be reduced by
using the same information and computation as used by our protocol.

This paper is organized as follows. In the next section, we give a definition
of consistency and show that it is equivalent to the notion of consistency used
previously. In Section 3, we give a brief review of the protocols in [Bro90] and
[ABM89]. In Section 4, we present our protocol and prove that it is correct.
Section 5 discusses several modifications to the protocol and compare the per-
formance of these protocols to some existing implementations. We also discuss
a data structure which can be used to capture causality information effectively.

2 Definitions

In this section, we give a formulation of consistency and prove that it is equiv-
alent to the notion of consistency used previously. Some of the definitions and
notations introduced in this section follow [ABHN91]. A shared memory system
consists of a set of processors P and a memory M. Each processor in P may exe-
cute a sequence of read and write operations on objects in M. A write operation
by processor 1 on an object z is denoted by w;(z)v, where v is the value written
on z by this operation. A read operation on z by t is denoted by r;(z)u, where
u is the value of z returned by this operation. We may omit the parameters of
an operation when they are not important. For simplicity, we assume that all
values written by write operations are distinct.

An ezecution history of a shared memory system is a poset U = (U, —u).
A poset is a pair (U,—y), where U is a set and —y is an irreflexive and
antisymmetric partial order. In the following, we give some definitions:

e We say that an execution history U = (U, —v) is processor-ordered if the
operations of each processor in U are totally ordered by —y.

e An execution history S = (S, —5) is a sequential historyiff it is processor-
ordered and — ¢ 1s a total order.

e A sequential history § = (S, —s) is legal if for every read operation r(z)v
in S, there exists a write operation w(z)v such that w(z)v — 5 r(z)v



and there does not exist a write operation w(z)u such that w(z)v —s
w(z)u — s r(z)v.

e A restrtictio;n of V = (V, —v) to the set U, where U C V, is an execution
history U = (U, —y) such that for any operations o and ¢’ in U, 0 —y 0’
iff o — v 0.

o We define [7|z to be the restriction of history U to the set of operations
performed by 1. '

e Two execution histories S and U are equivalent if for every processor i,
Sli=0)l . » -

¢ Two execution histories § and I are result-equivalent if every read opera-
tion returns the same value, every write operation writes the same value,
and the final write operations on each abject are the same in both § and

-

U.
For example, wy(z)1, w;(z)2, ra(z)l and wy(z)l, ry(z)l, wa(z)2 are
result-equivalent but not equivalent. _

o U = (U,—y) respects V = (V,—y) iff V C U and for any two opera-
tions 0 and o' in V, if 0 —y o’ then 0 —y o'.

Sequential consistency was proposed by Lamport to formulate a correctness
criterion for multiprocessor shared-memory system [Lam79], A multiprocessor
system is sequentially consistent if the result of any ezecution is the same as
if the operations of all the processors were ezecuted in some sequential order,
and the operations of each individual processor appear in this sequence in the
order specified by its program. We présent a formulation of this definition in the
following:

Definition 1: A memory M is sequentially consistent iff for each of its execution
histories H, there exists a legal sequential execution history WR = (WR, —wr
), where WR is the set of all read and write operations in H, such that H and
WR are result-equivalent.

Sequential consist'ency, like the notion of view serializability, only requires

that the results of the operations be the same. Thus, an execution history



H in which operations are not invoked in the order specified by the program
could be sequentially consistent. For example, consider a program in which
processor 1 writes a value 1 on z while processor 2 reads z and then writes 1 on y.
Then, wi(z)1, wa(y)1, r2(z)1 is sequentially consistent execution since it is result-
equivalent to the following sequential execution: wy(z)1,r3(z)1, wa(y)1. We want
to consider systems in which a processor issues operations in the order specified in
the program. For this purpose, we give the following (more restrictive) definition

of consistency:

Definition 2: A merﬁory M is consistent iff for each of its execution histories
H, there exists a legal sequential execution history WR = (WR, —wnr), where
W R is the set of all read and write operations in H, such that H and WR are

equivalent.

Most cache-consistency protocols implementing sequential consistency im-
pose a total ordering on write operations. The order viewed by all processors is
consistent with this total ordering. Furthermore, each processor independently
tries to schedule its read operations in such a manner that legality and processor
order are maintained. We give an alternative definition of sequential consistency

which follows this intuition:

Definition 3: A memory M is sequentially consistent iff for each of its execution
histories H, there exists a sequential history W= (W, —w), where W is the
set of all writes in H, such that the following holds for each processor i:

(a) Let WR; = W U R;, where R, is the set of read operations performed by 1
in H. Then, there exists a legal sequential history WR; = (WR;,, —wnr,)
such that WR; respects Wand H li and VVRIt are result-equivalent.

Definition 4: A memory M is consistent iff for each of its execution histories
H, there exists a sequential history W = (W, —w), where W is the set of all
writes in H, such that the following holds for each processor ::

(a) Let WR; = W U R;, where R; is the set of read operations performed by i
in H. Then, there exists a legal sequentia] history WR; = (WR;, —wr,)
such that W-R respects W and Hli = WR;li.



Lemma 1: Definitions 2 and 4 are equivalent.

Proof of Lemma 1:

(2 = 4) Let H be an execution of M such that there exists a legal sequential
history WR = (WR, —wRg), where WR is the set of all operations in H, such
that H and WR are equivalent. Let W = (W, —w) be a poset, where W is
the set of write operations in ﬂ, and W is the restriction of WR to the set
W. Since W is a restriction of WR, W is also sequential. We will show that
W satisfies condition (a) of Definition 4. Let WR; be the restriction of WR to
W R;. First, we have to show that WR; is a legal sequential history. Since WR
is sequential, WR; is also sequential. Removing read operations from a legal
sequential history will not invalidate the legality of the rest of the history. Since
WR; is obtained from WR by removing read operations of all processors except
1, WR; will also be legal. Hence, WR; isa legal sequential history and respects
W. Since WR; is a restriction of WR and contains all operations performed
by i, WR;|i = WRJi. Since H|i = WRJi, we have that WR;|i = H|i. Hence,
condition (a) of Definition 4 is satisfied.

(4 = 2) Let H be an execution of M such that there exists a sequential history W
= (W, —w) such that for each i, there exists a legal sequential history WR; =
(W R;,—whr,) such that WR; respects W and WR;|i = H|i. Assume that, for
simplicity, that processors are labeled 1,...,n. Let WM, = WUR,UR;U- - -UR,,
where k > 1. We will prove the following claim:

Claim I: There exists a legal sequential history WMy = (W My, — w4, ), such
that for all j < k, H|j = WM|j.

Then, from Claim 1, WM, is a legal sequential history containing all read and
write operations in H and for all i, H|i = WM,|i. Hence, it satisfies the condi-

tions of Definition 2.

Proof of Claim I: We will prove it by induction on k.

Base case: k = 1. Let WM, = WR;. Then, W‘MI satisfies the conditions of the
claim. _

Induction Step: Assume that there exists a legal sequential history WM, =
(W My, — was, ), such that WM, respects W and for each j < k, H|j = WM, lj.
We construct WE.H using WWk and WEH as follows: Let o and o' be op-



erations in Wm“. If both operations belong to WM, then o — WMy, ©

if o — WM, 0.

set WM,. We will now add the read operations in R4, to this total order.

This will impose a total order on all operations belonging to

We will add the read operations in the order in which they appear in WE“.
If o is a read operation, r(z)v, in Riy1 and o' is the operation immediately
preceding r(z)v in WRiy41 and o” is the operation immediately following o’ in
WM, (according to the ordering introduced so far) then o/ —sypy, 4 0and
0 —wM,,, 0. iFrom the construction, it is clear that Wm«n is sequential.
We must now show that WMp,, is legal and that WM, |i = H|i. Adding a
read operation will not violate the legality of other read operations. Further-
more, read operations in Ry, are added in such a manner that the value read
corresponds to the immediately preceding write operation on the same object.
Hence, since WEH and W’Mk are legal, WTW\H.I is legal. It can be shown that
W Ry, is a restriction of WMs4;. Since WRyy|(k + 1) = H|(k + 1), we have
that for all i < k+1, WMip i = HJi. a)

3 Related Work

In this section, we will review some implementations of consistent memories

proposed in the literature.

3.1 Brown’s Algorithm

Brown presented an asynchronous multicache algorithm which satisfies a more
restricted form of consistency than the one given in the previous section since
his definition of consistency applies only to a specific architecture [Bro90]. In
this algorithm, the real-time ordering on write operations is preserved; that is,
if 0 and o' are write operations such that o completes before o’ starts then o is
ordered before ¢’ by the protocol. The implementation assumes a system model
which consists of a shared memory and processors. All the processors and the
shared memory are connected by a fully connected bus. Each processor has local
cache memory and a special queue which stores invalidation requests for cache
objects.



When a processor writes a value to an object, then as a single atomic action, it
updates the value of the object in both its local cache and the shared memory and
places an invalidation request for the object in the queues in all other processors.
To read an object, it searches its local cache. If the object is found, it returns the
value in the object. Otherwise, it reads the value from the shared memory. The
invalidation réquests are buffered at a processor. When the processor accesses
the shared memory (either to read or to write), all the invalidation requests in
the queue are performed and the queue is emptied.

For each write operation, a processor needs to send a message to the shared
memory and an invalidation request to each of the processors. Furthermore,
this operation must be atomic. The implementation assumes the existence of a
special hardware capability for this purpose. A read operation at a processor
requires one round of message exchange between the processor and the shared
memory if the object is not found in its local cache.

3.2 The Lazy Cache Algorithm

Afek, Brown, and Merritt presented a lazy cache algorithm in [ABM89] which
satisfies a consistency definition that is less restrictive than that of [Bro90]. In
this protocol, the order in which the write operations are performed may not
reflect the real-time order. This algorithm assumes a similar architecture as in
[Bro90] except that there are two queues, IN; and OUT;, associated with the
local cache of processor :. When a processor ¢ writes a value to an object, it
places a write request consisting of the value and the object name in OUT;. As
a separate atomic operation, the request at the head of OUT; is placed in the
IN queue of all processors, and the shared memory is updated. As another
separate operation, a processor dequeues the request at the head of IN queue
and updates it local cache based on the request. Thus, this algorithm queues
updates to data objects instead of invalidation requests in the IN queues and
allows a processor to issue a write operation before the previous one has been
dequeued from the OUT queue. The ordering of write operations depends on the
order in which requests are dequeued from the OUT queue of various processors,
which may not be the same as the real-time order.



In this protocol, for each write operation at a processor, one message is sent to
the shared memory. The processor also broadcasts the request (when the request
reaches the head of OUT) to every processor. Furthermore, this broadcast must
be atomic. Since a write operation does not have to wait for the previous write
operation to be dequeued from the OUT queue, this protocol will incur less
latency as compared to [Bro90]. A read operation requires access to the shared
memory only if the object is not found in the local cache.

4 A Communication Efficient Implementation

In this section, we will describe a data consistency protocol which maintains
additional information in the shared memory in order to reduce the amount
of communication. The protocol allows the same set of sequentially consistent
execution as [Bro90]. We also show that the protocol satisfies our notion of

consistency.

4.1 Overview of the Protocol

We assume a system which consists of a shared memory module, residing at a net-
work processor, and multiple processors. The shared memory module, SMem,
stores a set of data objects. Each processor can reliably communicate with
SMem. Each processor has a local cache memory, which stores a subset of the
objects stored in the shared memory.

A processor performs a write operation on an object by sending a message
to SMem and updating its local cache. It then awaits response indicating com-
pletion of the operation. When a processor makes a request to read an object, it
looks up its local cache. If the object is found in the local cache, then its value
is returned. Otherwise, it reads the object value from SMem, updates its local
cache, and returns the value.

Since multiple copies on the object are being maintained, some of the values
in a local cache may become out of date with respect to the write operations
performed on SMem. If a processor reads such values, consistency might be
violated. Thus, processor must invalidate these out of date cache values. We

10



require that when a processor ¢ reads an object from the cache, the value returned
raust be at least as recent as the contents of SMem when the last operation by
the same processor was performed on SMem. The invalidations are detected as

follows:

SMem keeps track of the most recent write operation on each object. In
addltxon it keeps track of the values in the local cache of each processor. When
SMem receives a request from a processor, this request is causally ordered
after all the previous write operations.. At this point, using the information
present, SM em determines the values in the local cache of the processor which
are out of daié, and notifies the processor of these out of date values along with
the response to'the operation.” The processor invalidates the corresponding
location on receiving the message.

4.2 Description of the Protocol

We assume that a manager process exists on the shared memary and on each
of the processors. The ma.nagér process on a processor processes requests to
read or write objects from the user processes running on the processor. It also
communicates with the manager process on the shared memory. The manager
process on the the shared memory processes request messages from processors
to read or write objects.

In order to capture causa.l relatxons among read and write operations, the
shared memory manager assigns version numbers to all the write operations on
each object. The version number assigned to a write operation is one greater
than the previous write operation on the same object (the first write on an object
is assigned the version number one). Then, each write may be identified by its
version number and the object, such as “version 4 of object x.” Since we assume
that each write opération writes a different value, a value in an object can be
identified by the version number of the write operation which wrote the value.
Thus, we also identify a value as “value of version 4 of object x.”

The data structures maintained in SMem are:

e Memory area M[Object_Range).

11



¢ Two-dimensional array Cache_Ver[Processor_Range, Object_Range],
where Cache_Ver|p, o] stores the version number of object o which proces-
sor p holds in its cache memory. The value is 0 if the corresponding cache
location has been invalidated. Each element of Cache_Ver is initialized to

Zero.

¢ One-dimensional array Causal[Object_Range], where Causal[o] keeps the
version number of the most recent write on object o in the shared mem-
ory. Each element of Causal is initialized to zero, Note that Causal[o] =
M a:z:::i“"‘R'"” Cache_Ver{p, o] (therefore, this array need not be explic-

itly maintained. It is included for ease of exposition).
The data structures maintained in processor i are:

e A set of valid cache objects Valid;. Valid; is initialized to be an empty

set.
o Cache memory area C;[z] for each object z € Valid;.

Operations by the manager process at processor i are described below:

Write(x,v):
send [write, z,v] message to SMem;
receive [Invalid] message from SMem;
Valid; := (Valid;—Invalid) U {z}; Ci[z] := v;
Read(x)::
if x g Valid;
then
send [read, z] message to SMem;
receive [v, Invalid] message from SMem;
Valid; := (Valid;— Invalid) U {z}; Ci[z] := v;
return Cj[z];

Jperations by the manager process at SMem are described below:
Local Procedure Invalidate (var Invalid) :

Invalid := @;

12



for each y'in Object_Range,y # rdo
if Cache Ver(t,y] # 0 and Cache_Ver[i,y] < Causally]
/* check if object y in cache at processor 1 is out of date
relative to the current version of y */
then Invalid := InvalidU {y}; Cache Verli,y] :=0;

Receive (write, z,v] message from processor i::
Mlz] := v; “increment(Causal(z]); Cache Verli,z] = Causal[z];
Invalidate(Invalid); return [Invalid] to processor i; :
Receive [rc&d,' z] message from processor i:: |
Cache Verli, z] := Causal(z];
Invalidate(Invalid); return [M|[z], Invalid] to processor i;

Each operation must be performed indivisibly. We assume that a write request
to an object is processed before the first read request on the object is issued.
The proof of the following theorem is given in the Appendix.

Theorem 1: The implementation is consistent; that is, it satisfies Definition 4.

5 Discussions

5.1 . Piggy-Backing Updates

In the protocol described in Section 4.2, the shared memory manager informs
a processor to invalidate certain values. Consider, for example, the case where
processor i is informed to invalidate the value on an object z. If a subsequent
read operation at i reads an object z then it will have to communicate with the
shared memory to obtain the current value, We can optimize the protocol to
avoid this communication as follows:

e When shared memory ﬁxa,x_mger notifies a processor to invalidate z, it also sends
the current value of z along with this message. After the processor updates z in
its local cache, a subsequent read operatidn on z can read the value from the local
cache if the value of z is not invalidated (due to local memory management).
In the extreme case in which the size of the cache is equal to that of the main

13



memory, cache values will never be invalidated. In this case, a processor needs to
communicate with the shared memory only when it writes a value to the shared

memory.

Our original protocol and the above modified protocol preserve the real-time
ordering on write operations and allow the same set of sequentially consistent
executions as allowed by the protocol in [Bro90]. In addition, the following
modification is possible to introduce concurrency among write operations within
a processor:

e A write operation does not have to wait for a response from SMem indicating
completion of the operation. However, when a read operation is performed by
a processor then it must wait for responses to all previous write operations

performed by i.

By introducing the above modification, the order in which the write opera-
“tions aré peifo_r’méd may no longer reflect the real-time order, and the resulting
protocol allows the same set of sequentially consistent executions as allowed by
the protocol in [ABM89).

5.2 Performance

In our protocols, each write operation requires one round of message exchange
between the processor and the shared memory. A read operation at a processor
also requires one round of message exchange between the processor and the
shared memory if the object is not found in its local cache. Thus, our pfotoco]s
require considérably less number of messages as compared to the protocols in
both [Br090] and [ABM89] In particular, we do not require an atomic broadcast
capability. In the protocol in Section 4, if z has been invalidated at processor
i then no more invalidation requests for = are sent to ¢ until ¢ reads z (since
Cache_ Ver[i,z] will remain 0 until i reads z and hence, z will not be included
in Invalid). This property is especnally useful if the degree of sharing is less.
Similarly, in the protocol described in Section 5.1, a write operation does not
have to be propagated to all proce_ssors. For example, if ¢ performs several write
operations on z and j subsequently reads z then only the most recerit write
operation on z has to be propagated to j. ' '

14



Our protocols, however, require maintenance of some extra data structures
to keep track of version numbers known to processors. Recent technological
advances, however, have made large memories and high speed CPUs available at
reasonable costs. On the other hand, communication is expensive in distributed
systems. In particular, as compared to tightly coupled systems, communication
may be orders of magnitude more expensive. Thus, we believe that our protocols
are appropriate for distributed systems. L

For the protocol presented in Section 4, it is possible to reduce the amount
of state information and the amount of computation at SMem at the expense of
larger message size. We can distribute the information stored in array Cache_Ver
among the processors; that is, each processor : maintains the row associated with
it of Cache .Ver. When the shared memory receives a request from processor 1,
it sends the entire array Causal back to processor i. Processor ¢ invalidates its
cache based on Causal and the row of Cache_Ver. This approach increases the
bit complexity of messages but decreases the computational load of the shared
memory manager.

5.3 Ordering between Read and Write Operations

When the shared memory manager processes a write or read request, it orders
this request after all the previous write operations. For a write operation, this
ordering is established in order to form a sequential history of write operation,
(W, —w). On the other hand, for a read operation, the ordering is introduced
to satisfy legality. However, legality only requires an ordering be established
with respect to the previous write operation on the same object. For example,
let ..., wa(z), ws(y), we(z) be a sequence of write operations which have been
processed by the shared memory. Assume that none of the operations are issued
by processor :. Suppose that the shared memory now receives a read request on
object z from processor ¢ (denoted r;(z)). In order to satisfy legality, the read
operation should return the value written by w,(z) and therefore, r;(z) should
be ordered after w,(z). In this case, any one of the following ordering will be
sufficient :

L. ri(z) = wy(y)
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2. wy(y) = ri(z) and ri(z) = we(z)
3, we(z) = ri(z)

The algorithm described in Section 4.2 orders the operation as indicated in (3).
As a result, if the local cache of 1 contains y and z then these values have to be
invalidated. On the other hand, if ordering was done as indicated by (1), then
these invalidations can be avoided. For this purpose, we have to maintain an-
other two-dimensional array Last_Write[Object_Range,Object_Range], where
Last_Write[o, v] stores the version number of object v at the time when o was
last written. When the memory manager processes a write request on object o, it
updates row o of Last_Write to Causal. When the memory manager processes a
read request on object o, Invalid is computed using row o of Last_Write instead
of Causal.

5.4 Capturing Causal Relations

In order to efficiently implement cache-consistency protocols, it is important to
capture causal relations between write operations. Vector clocks are often used
to identify causal relations among events in message passing systems [Fid91]
[Mat89]. A vector clock consists of a set of local clocks, one for each pro-
cessor. Vector clocks in message passing systems keep causal information be-
tween events of the same type. In implementing shared memory, firstly we
have to order operations on each object. For this purpose, we can employ
a separate vector clock for each object. Secondly, we also have to capture
causal relations among operations on different objects. Thus, it is natural to
use a vector of vector clocks. Therefore, we find that a two-dimensional array
C R2[Processor_Range,Object_Range] is appropriate for shared memory sys-
tems. When processor ¢ writes on object z, the values in C R2 are interpreted
as follows: CR2[j,y] = k indicates that all the write operations up to and in-
cluding the k** write by processor j on object y causally precede this write on
z. Now, we will demonstrate that C R2 generalizes the data structures used in
our protocol and the protocol proposed by Ahamad et al. [HA90)] in order to
capture causal relations between write and read operations.
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We can view array Causal used by the protocol described in Section 4
as CR2 being collapsed into a one-dimensional array, such that Causalz] =
T keProcessor Range CR2[k, 2], for = € Object_Range. This is possible by assigning
system wide version numbers to all the writes on an object, instead of processor-
level version numbers.

Ahamad et al. proposed a protocol which maintains a one-dimensional ar-
ray VT [Processor_Range] [HA90]. We can view VT as CR2 being collapsed
into one-dimensional array such that VT[] = Tyeobject Range CR2[J, k], for
j € Processor_Range. B

In order to compare Causal and VT, consider the following example:

: }?’ W: (x) wi(y) ri(z)

P
12(y) wa(z)
When P1 performs r1(z), VT only records that “P2 has updated some object”
but does not know which object. On the other hand, if Causal is used, it
captures that “some processor has updated z, not x or y.” Therefore, Causal is
more appropriate to capture causal relations between operations and may allow
a protocol to minimize unnecessary invalidations as compared to VT

6 Conclusioh

We presented an efficient cache-consistency protocol for distributed shared mem-
- ory systems. The protocol enforces a formulation of sequential consistency. The
amount of communication required by the protocol is considerably less as com-
pared to previously proposed protocols. Furthermore, it does not require atomic
broadcast. This is realized by ma.intaﬁning, within the shared memory module,
the state information of local cache memories and causal information among the
write operations. Based on the information, the set of out of date cache values
is computed. Thus, the protocol requires additional memory space and compu-
tation. Since communication is expensive while memories are becoming cheaper
and CPUs are becoming more powerful, our strategy to trade communication
for memory and computation is appropriate for distributed systems.
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We discussed several modifications to the protocol. If the cache is large
. enough to hold all the objects, the protocol may be modified to require only one
round of message exchange between a processor and the shared memory module
for a write operation and no messages for a read operation. We also compared
the classes of execution histories captured by our protocols and several previously

proposed protocols.
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- Appendix: Proof of Theorem 1

Let H be an execution history of the protocol described in the previous section.

In order to show the above 1mplementatxon is consxstent we have to show that

(A) We can construct a sequentlal hlstory W = (W, —-*w), where W is the set

of all write opera.txons in H

(B) For each processor i, we can construct a legal sequential hlstory WR; =
(WR;, —wnr,), where WR; = WUR; and R; is the set of rea.d operations
performed by ¢ in H 'such that WR respects W and H|i = W Rii:

Let W = (W, —*w) be a hxstory such that if o and o' are operatxons in W
then o — W o if 0 is processed before o' by the shared memory. Since the shared
memory processes the write operation in a serial manner, W = (W, —w) is a
sequential history. We will now show (B). We will construct a legal sequential
history WR,; = (W R:, —whg,) as follows:

(1) For any two operations o and o' in W R; which access the shared memory,
o —wr, 0 if o is processed before o'.
1

(2) For any two operations o} and o? performed by processor i, where o} is

o}

performed before o?, o} —swg; o?.

(3) Let o; be an operation performed by processor ¢ which accesses the shared
memory. Let < r; ,ri,--+,r;. > be a sequence of consecutive read oper-
ations performed by processor i which access only the local cache and r;,
directly follows o; in S; (due to ordering imposed by (2)). Let o; be an op-
eration by any processor which accesses the shared memory and o; directly
follows o; in S; (due the ordering enforced by (1)). Then r;, —whr; 0;.
Note: If a history is finite, we add an imaginary operation in the history

which accesses the shared memory after the execution terminates.

Then, from (1) and the fact that all operations in W access shared memory, we
have that WR; respects W, and from (2), H|i = WR;i. To prove that WR; is

legal, we will use the following claims:

Claim 2. Let o; be a write operation performed by processor i which accesses
SMem. If o, = w(z)v or o; = r(z)v then Ci[z] = v on the completion of this
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-B)

operation.

Claim %: Let o; be an operation performed by processor : which accesses SMem
such that o; is not an operation on z. Let w(x)v be an operation such that
w(z)v —wnr, o; and there does not exist w(z)u such that w(z)v —wrg,

w(z)u —wa; 0i. Then, on the completion of o;, either Ci[z] = v or ¢ ¢ Valid;.

Using Claim 2 and 3, we will now prove that S; is legal. Assume that, on the
contrary, S; is not legal. Then there must exist a read operation r(z)v such that
w(z)v ~—wr; w(z)u —wr; r(z)v and there does not exist w(z)s ordered in
between w(z)u and r(z)v according to —wr,. We have the following cases to
consider:

Case 1: r(z) access the shared memory. Then, from Claim 2, C;[z] # v. Hence,
r(z) cannot return value v. : ‘ |

Case 2: r(z) reads from local cache. Let o; be the last operation by ¢ which
accesses the shared memory. We have the following cases to consider:

(a) w(z)v —wnr, w(z)u —wnr, 0. If o; is an operation on z then Cji[z] # v
(from Claim 2). If o; is not an operation on  then C;[z] = u or ¢ & Valid; (from
Claim 3). Since r(z) did not access shared memory, z € Valid;. Therefore, C;[z]
= u. Hence, in either case, r(z) cannot return the value v.

(b) 0oi —wnr; w(z)u. In this case, rule (3) will order r(z)v in between o; and

w(z)u. Hence, r(z)v cannot follow w(z)u.
Proof of Claim 2: Obvious from the protocol description.

Proof of Claim 8: We know that Cache Ver|i,z] < Causal[z]. Let Causallz]
= [ on the completion of w(z)v. Then, Causal[z] = I before the procedure
Invalidate is invoked while processing o; (since there are no write operations
on z in between w(z)v and o; and Causal[z] is only incremented when a write
operation on z is performed). Let Cache Ver[i,z] = k. If k = 0 then = ¢ Valid;.
In this case, z is not included in Invalid since it has been already invalidated.
If 0 < k < [ then Invalidate will include z in Invalid and therefore, C;[z] will
be invalidated when o; completes. If k = [ then there must exist a read previous
operation which read the I** version of z. In this case, C;[z] = v. Hence, when

o; completes, either Ci[z] = v or z ¢ VALID;.
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