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UN ALGORITHME PARALLELE
PROBABILISTE POUR OBTENIR
PRESQUE TOUS LES SOMMETS D’UN
POLYTOPE

IVAN LAVALLEE!, PHAM CANH DUONG?

Résumé

Ce travail préscnte un algorithme paralléle probabiliste pour obtenir tous
les sommets d’un polytope avec une certaine probabilité. L’argument probabi-
liste est de type Monte-Carlo et l'algorithme ne présuppose rien quant aux
problémes de dégénérescence. De méme, la redondance de constraintes dans les
données n’influe pas sur Palgorithme.

La partie de I'algorithme qui concerne la localisation d’un sommet utilise
un nouve! algorithme de recherche de “point au plus prés” dans un polytope.
Mots clefs: point au plus prés dans un polytope, sommets, polytope convexe,

methode gravitationelle.
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A PARALLEL PROBABILISTIC
ALGORITHM TO FIND “ALL” VERTICES
OF A POLYTOPE

IvaN LAVALLEE!, PuaM CaNH DUONG?

Abstract

This paper presents a new parallel algorithm to find all vertices of a convex
polytope. This algorithm is of monte—carlo type and requires no assumption of
problem nondegeneracy. Redundant constraints have no influence on the main
computation: The vertex locating routine uses a new. algorithm for nearest

point problem in polytopes.

key words: Nearest point problem, vertex, convex polytope, gravitational

method.
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1 Introduction

- The problem of finding all vertices of a polytope, a bounded convex set defined by
a finite number of linear inequalities, arises from several fields of research such-as eco-
- nomic - modeling, pattern recognition theory, nonlinear optimization theory.....(see[1-
4]). For its solution, a large number of methods has-been proposed (3, 5, 6, 7].
- Existing methods allow to enumerate exactly all vertices of a polytope and are quite
efficient for problem of moderate size. For large scale problems, having considerably
larger number of vertices, monte-carlo like algorithms seem to be more suitable be-
cause they are often simpler to implement and, what is more important, to parallelize.
In this case, the notion of “all vertices” must be replaced by the one of “all essential

vertices” that will be discussed in Section 3.

In this paper we present a 'new parallel algorithm based on stochastic techniques
and on an improvement of the gravitational model, proposed by Chang and Murty
in {10, 11]. +An overview of the method is presented in Section 3. Each of its steps

- will be discussed .in detail in Sections 4, 5 and 6.

2 Preliminaries

Let D be a convex polytope given by
D= {zeR : A2T > b}; (1)

where A is a m X n—matrix, b is a column vector in IR™. Denote by /N the index set
N ={1,...,m} of rows of A.

For simplicity of expression, assume that no redundant constraints are present
and that the origin of IR" is a strictly interior point of D. Later, in Section 3, we will

show that these assumptions may be removed.

For an n-dimensional polytope with m facets the maximum number of vertices is
given by (see [14, 19])

(2)

Vou(min) = ( m—[(n+1)/2 ) . ( m = [(n+2)/2 ) |

m-—n m-—n



Let F be a ¢{~dimensional face of D, i.e. there is a subset N(F) C N such that
IN(F)| = n— ¢ and the linear subspace

H(F) = {ze€ R : Az" = b, i€ N(F)} (3)

is the affine hull of F.

Denote by Ar the matrix (4;) , ¢ € N(F). Since there are no redundant con-

straints, Ar is of full rank which is equal to (n — ().

Denote by Pos(Ax) the positive hull of vectors A; , i € N(F), i.e.

Pos(Ar) = {z€R" -z = ) oA, >0}
iEN(F)

Definition 2.1. For each face F of D we define the set Poly by

Poly = F — Pos(Ar). (4)

Noting that if F is a 0--dimensional face of D, i.e. F is a vertex of D, then Polr
. is the polar cone of the cone {z : A;zT > b;, i € N(F)}, we also call Polsr the

polar cone of the face F.

This notion has a direct relationship with the nearest point problem in D. Let
a ¢ D and a € Poly for some facet F of D. From (4) there exist a point p, € F and
a vector y € —Pos(Ar) such that

a = pst+y. (5)

Theorem 1. p, is the nearest point in D to a.

Proof. From (1) and (3) it is clear that
Dc{ze R : Aa" > b, i€ N(F)} (6)
Set § = y/|lyll and consider the hyperplane
H={zeR :§" = jp,}. (7)
The hyperplane H passes throw p, and is orthogonal to y = a — p,.

2



Since § € —Pos(Agr), there exist non negative numbers a;, 1 € N(F) such that
y = ‘ZCM,’A,’ ,1 € N(f)
(6) then follows that

ng < z o;b; forall z € D.
iEN(F) :
On the other hand, from (3) we have
37PaT = Z a;b;.
iEN(F)

The last two expressions give

grt < gpL for all z € D.

It means that the hyperplane (7) separates the point a from the polytope D. So, p,

is the nearest point in D to a O

The above Theorem has the physical interpretation that, during the projection
: process onto D, faces of D act like attractors with respect to points in their polar

cones. This observation may by formalized as follows.

Let S(0,7) and B(0,r) be resp. the sphere and the ball of radius r and centered:
at 0. In the sequel, if no confusions can arise, they will be referred to simply as S

and B respectively. Suppose that D C B(0,7). Now, let’s consider the mapping
P:S50,r)—= D

which puts in correspondence to each z € S(0,r) its nearest point in D, i.e. P is the

projection mapping from S(0,7) onto D.

Definition 2.2. For a face F C D we define the domain of attraction of F in S(0,r),
denoted by ox, to be the intersection of the sphere S with the polar cone Poly of F

or = S(0,r)N Polg. (8)

Let ¥, be the area on the spherical surface~S(0,7) occupied by the union of

domains of attraction of all non zero - dimensional faces of D (the remaining part

3



S\Z, of 5(0,r) is then occupied by domains of attraction of all vertices of D). Our
algorithm is based on the following interesting property of that set :

mes(Z,)
Where mes(Z,) denotes the (jordan) mesure of 2, on spherical-surface -S(0,7). An

equivalent form of (9) will be proved in Section 5.

3 Description of the algorithm

Expression (9) means that the probability that a point z, uniformly distributed
on the sphere S(0,r), will fall within domains of attraction of vertices of D may be

made arbitrarily closed to 1 by increasing r.

First, we present a conceptual description of the algorithm. Given two positive
numbers p < 1 and & < 1, suppose that o, is the domain of attraction of some vertex

v € D such that

mes(oy) '
mes(S) z @ (10)

Here, @ may be considered as the probability that a trial point, drawn at random
on S, will fall within o,. Then the probability P that at least one trial point out of

N sampled points is falling within g, is given by

P=1-(1-a™

Solving N gives !

_ log(l1 - P)
N = log(l — o)

By (9), choosing the radius r of the sphere S large enough so that

mes(Z,)
mes(S)

“will guarantee that almost all of N trial points will fall within domains of attraction

< a

of vertices of D. Then, after projecting onto .D these points gives us all vertices-of D

whose domain of attraction satisfies (10).



Remark 1. Geometrically, mes(o,) may be viewed as a “mesure of sharpness” of the
vertex v. The larger mes(o,) is, the sharper v will be. So, the proposed procedure
tends to filter out all vertices that are too “plane” (not satisfying (10)). Such a vertex
may be called “non-essential vertez” of the polytope D. This property may be used

to save computer time while dealing with large scale practical problems. - -

Remark 2. In the case when the number of detected vertices.is equal to the maximal
expected number of -vertices for- D, given in (2), we can conclude that all.vertices of

D are found.
We now describe the algorithm.

Algorithm 1
Initialization . Given 0 < P < 1 and 0 < a < 1. Choose the total number NV of trial

points to be sampled on S as
_ log(1 - P)
" log(l —a)’
“Draw at random ! points on S then find their projection on D (I is-chosen-according

to the numnber of processors available on the computer system in use).

Denote by

X the set of trial points tested so far;
X* the set of vertices of D found so far;
u  the number of points y € X whose projection onto D is not a vertex of D;

Sk = S(0,2%.7) the current bounding sphere.
Step 1. [Sample, reduce sample]

1.1. Sample a point z at random on Sk.

Find * € X* such that ||z — z*|| = minyex-

z—1y||, 1.e. =* is the nearest point

i X~ to z.

1.2. [Deleting rule ] If z belongs to the domain-of attraction of vertex z*,-i.e. if
T € 0., then delete £ and return to 1.1.

Otherwise, go to Step 2.



Step 2. [Update X~

2.1. Find the projection of x onto D. If the projection point is a vertex of D, add
it to X~ and go to Step 3.
Otherwise, increase u by 1 then go to substep 2.2.

2.2. [Update Sk | If %7 > (1 — P), then replace Si by Sky1 = $(0,2%*1.r) and
return to Step 1.

Otherwise, return to Step 1.

Step 3. [Stopping rule ] If the expected number of vertices is attained or | X| exceeds

N, then stop, else return to Step 1.

Each Step of the above algorithm will be discussed in detail in next Sections.

4 A new algorithm for nearest point problem

in a polytope

The first major problem we have to solve in-implementing the above algorithm
is how to find the projection of a given point on a convex body. That important
problem has been studied by many authors [8, 9, 12, 13]. Efficient algorithms have-
been proposed for special cases where the convex body is given as a simplicial cone
(Murty and Fathi (8]) or as the convex hull of a collection of points in JR™ (P. Wolfe
(12, 13)). '

In this Section we present a new algorithm based on an original method, called
“stepest descent gravitational method”, developped by S.Y. Chang and K.G. Murty
[10, 11] for solving linear programs. We show that Chang and Murty algorithm may
be modified into an efficient algorithm for nearest point problem in a polytope, given

in the form (1).

We now recall briefly that method (sce [11] for more details). Let’s consider the
following linear program
Minimize cz7 ;

subject to z€ D={z € R* : AzT > b},

(11)

6



where A is a matrix of order m x n, b € IR™ is a column vector, and c€ [R" is a row

vector.

Without loss of generality we can assume that D has an interior point zg. Let’s
introduce a havy spherical liquid drop centered at.zy with radius € > 0 , chosen so
that the drop is completely contained in :D..Make the faces of D impermeable. Then

“introduce a gravitational force in D-in the direction -c and release the -drop. The
-drop will fall down and, after touching the faces of D, roll down on those faces under
the influence of the gravitational force. Then the final halting position of the drop
is the lowest possible point in the direction -c, that the drop can get to in D. If
the radius of the drop, ¢, is sufficiently small, the touching faces of (11)’ at this final

halting position, will determine an actual optimum solution of the LP(11).

The gravitational method consists of .a sequence of stages according to the chosen

value of €. Such a stage, in its turn; consists of the following two.substeps.

Suppose-that the current position -of the center of the drop is Z. - Denote by
J(Z) ={i : -Aix = b; + €||4ill}, i.e. J(&) is.the index set of touching constraints at
that time.

Algorithm 2. (Stepest descent gravitational method. See [11])
Substep 1. Find the gravitational direction at the current interior feassible solution.
As shown in [11], this involves the solution of a special nearest point problem of the

form
Minimize (¢ - nAys)(c — nA,)7, (12)
subject to >0,
where A; is the submatrix of the matrix A that contains all rows A; of A such that
¢ € J(Z). nis arow vector (1 : ¢ € J(Z)). Let 7j be an optimum solution for (12).
The vector {& = ¢ — 7jA; is called the residual vector in this step. If & # 0, the

gravitational direction at Z is —&;/||&: |-

Substep 2. In this substep, we move the drop straight in the gravitational direction,
found in substep 1, to the maximal extent possible, until it is blocked again by the
boundary of the polytope D. The step length of the move is ‘determined as the



minimum of A satisfying the following inequalities

Ai(Z + Aéz) = bi
1Al

>¢ foralli=1,...,m. (13)

After the drop halts, the final position of its center may be used to detect the
optimum solution of the LP(11). This special step involves projection on the affine
subspace defined by the touching constraints at that time, treated as equations. If

- this final step yields a feassible solution for D, we have the optimum solution for
LP(11). Otherwise, we reduce the radius € of the drop and restart the algorithm
with this smaller drop. The algorithm yields an optimum solution for LP(11) after

a finite number of stages.

As indicated in [11], this algorithm has several advantages over other methods for

linear programming. We note some of them that are important for our purpose.

1. In the gravitational method redundant constraints never enter into the major

computation, i.e. in the direction finding routine.

2. The gravitational method does not require the non—degeneracy of the problem

for its finite convergence.

This exellent algorithm may be modified in the following way to solve the nearest
point problem in a polytope, given as (1). Suppose that we have to define the
projection on D of a point a lying outside D. Instead of the constant gravitational
field, as it was used in {11], we introduce a power{ull gravitational force concentrated
around the point a (the point a then acts like a “black hole”). In this case, our liquid
drop will move toward the point a. Its final position is the point of shortest distance
from a that the drop can get to in D. This leads to the direction finding and step

length finding routines analoguous to those of the Chang and Murty algorithm :

Algorithm 3
Substep 1. [Direction finding routine]

With z, J(Z), n, Ay, & defined as in (12) and @ = (Z — a)/||z — a]|. Solve the



following nearest point problem in a convex cone

Minimize (a — nd;)(a —n4;)T,
subject to n >0,

(14)
Let 7 be the optimum solution to (13), define the residual vector in this step as
& = a—1A,.

Hence, if & # 0, the moving direction at Z is —&z/||&z]|-

With this moving direction the substep 2 remains unchanged:
Substep 2. [Step length routine] Find min A that satisfies (13).

The stopping rule must be modified in the following way. Denote by ¢ the moving

direction found at the previous pass of substep 1.

Stopping rule. Terminate the current stage if one of the following situations occurs

1. & =03

2. &/)|&|l = ¢ It means that the new moving direction is opposite to the one

found at the previous step.

After terminating the current stage, use the “final special step in a stage”, de-
scribed in [11], to determine whether or not a new stage, with smaller drop, must
be carried out. If it is not the case, this final step gives us the exact solution to the

nearest point problem.

Remark 1. At the end of a stage, following informations are available:
1. The projection z* of the point = on D;
2. The index set J(z*) of touching constraints defining *;

3. z” is not a vertex of D if either |J(z*)| < n or stopping condition 2 holds. This
observation is used in Step 2 of our algorithm 1 to detect whether or not the

projection of the trial point z is a vertex of D.



Reraark 2. In the substep 1.2 ([Deleting rule]) of the algorithm we have to verify the
inclusion z € o0,.. This task may be.done by projecting x onto the cone z* + Pol,..
If tke resulting point coinsides with z then we have that = € z* + Pol,.. Hencé,
T € 75-. So, together with all known vertices z* € X*, the information about Pol,-,

supplied by the above stopping rule, must be stored.

Now the last thing we need is how to justify the use of the substep 2.2 ([Update

Si]). This question will be discussed in the next Section.

5 Updating the bounding sphere S;

In the sequel we will denote by p(z, £) the usual hausdorff distance from point z to
the set £; by (o, B) the inner product of vectors @ and 5. Assume that D C B(0,1).
Define the set ¥ to be

£ = (S(0,1) N Pos(45)
F

for all nonzero-dimensional faces F of D.
The following theorem is an equivalent form of the expression (9) in Section 2.

Theorem 2. Given an arbitrarily small number ¢ > 0. For every z ¢ £ with
p(z,Z) > €, there exists a positive iﬁteger ko(€) such that, for all integer k > ko(e),
the point x belongs to the domain of attraction of some vertez of the reduced polytope
(1/k).D. '

Proof. Choose kg(€) = (v/2/e) and suppose that p, is the projection of z on ko'l.D.
Put g = k'

Assume the contrary that p; is in the relative interior of some non trivial facet F

of €g.D. From (4) z may be written in the form
z=p.+Pv (15)

with some normed vector v € —Pos(Ar) and positive number £.

10



It is clear that

p=ll < €, (16)

(pz,v) < € - (17)
Let y be a point in S(0, 1) such that
y=0+v. (18)

By definition of ¥ it is obvious that y € £. As p, is the projection point of z on
€0-D, the hyperplane H, passing across p, and orthogonal to v, will separate z from
the QOIy'tope €0.D. Since 0 € int(€y.D), this hyperplane separates strictly z from 0.
It then implies that .
(pz,v) >0 and B< 1. (19)

As z € 5(0,1) we have
(pz + Bv)’ = p2+2B(p,v)+ % = 1.
Combining with (16), (17) and (19) gives
€2 +280+P2>1= (g +0)2>1.

Hence,
0<(1-8)<e. (20)

Now, let’s estimate the distance between z and y.
by =2l = (v = (P + Bv))? = (1 = B)%* = 2(1 = B)(p.,v) + 72 .
Taking into account (16), (19) and (20) we deduce.
ly - z|* < 2€5 .
Hence,
ly —zll < V2ep = .
This contradiction proves the theorem O

11



Since mes(X) = 0 with respect to the mesure defined on the spherical surface
S(0,1), Theorem 2 means that with k large enough the probability that a point z,
drav/n at random on S, will fall into the polar cone of some vertex of D may be made
- arbitrarily closed to 1. In substep 2.2 of the algorithm 1 we use the value u/]|X| to
estitnate this probability. The magnification coefficient k£ (which corresponds to the
radius of the bounding sphere Sy) is updated each time that estimate value turns out
to b= greater than . Hence, the probability that the projection of a trial point is not
~a vertex of D is much less than a. It allows to reduce the number of nearest point

subproblems involved which is the most expensive part in the main computation.
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