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EXPONENTIAL CONVERGENCE OF ONE-DIMENSIONAL TOOM’S
PROBABILISTIC CELLULAR AUTOMATA

SECTION 1. INTRODUCTION

- Processes - with -local interaction in the “high temperature” region (i.e. when the interac-
tion is weak) are sufficiently well understood (see review [1], [7]). One can reasonably assert
that the low temperature region for Gibbs random fields corresponds to small perturbations
of determinstic processes with local interaction. One of the deepest results is the proof of
stability by Toom [6] for his cl.ass of deterministic processes. For the simplest processes of this
type (e.g. for Stavskaya’s model) cluster expansion techniques and as a consequence stability,
exponential convergence and an analytic property were known earlier ([3], [4], [5]). In this
paper we solve this problem completely (mainly the one of exponential convergence) for the
general Toom’s model in the one-dimensional case. For more dimensions only very special

cases can be treated with our ideas. The general case now seems to be beyond our reach.

PCA formalism

We consider PCA’s with memory which describe the stochastic discrete time evolution-of spin
variables on the lattice Z. We denote the value of the spin at the point ¢ € Z at timet € Z
by o(z4) = £1 and write g, for the configuration at time t; o4 will denote the configuration
on the space-time set A C Z2. We assume that the past of the PCA is fixed: o, = +1 if
t < 0. The PCA evolves by simultaneous updating of spins. That is the spin configurations
i1y 2 GyT , t 2 0, determine the probabilities P(o(z,y)|as-1,* ", T4-T), a’(x,,) = +1 of the
spin values at each point z at time ¢{. The natural number T is called the depth of memory.
The conditional probability distribution of g, is a product measure given by

H P(a(z,t)lgt—la"'ag.t—T)' (1.1)
r€Z
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The transition probabilities satisfy the normalization condition

E P(U(z,t)lg.t—la'“ag.t—T) = 13 (12)

oz =%l

which is taken into account by writing
1
P(d(x.t)lgt—l’ cesGioT) = 5@1 + a(z.t)h(Z.t)(Qt—la oo aQt-T)) (1'3)

with |h(m)(g_t_l, iee ».‘Zt—T)I < 1. We assume that h(; ) is translation invariant, time homoge-

neous and of finite range, that is

holg_y,s--.,a.1) = ho(ov),

where U C Z x {—1,...,—T} is a fixed finite set, which we call-the basic set of the origin 0

of the lattice Z?. We shall consider nearly deterministic PCA’s with
ho=®¢-(1—-2f0), (1.4)

where [®g] = 1 and |fg| < € for a small parameter € > 0. If fy = 0 we obtain a deterministic
PCA with deterministic function ®g. The existence of a small perturbation fo implies that for
each point (z,t) € Z?

P(U(r,t) # q)(.’r,t)(gt—la oo $g_t—T)) e

The transition rates (1.1)-(1.4) define a distribution on the space of spin configurations on
Z*®. We shall investigate the limiting behaviour of finite dimensional probabilities P(c4),
A C Z* Thus we shall say that PCA exponentially converges to the stationary state if the
probabilities P(o7-4) tend to some limit u(o4) as 7 € IN tends to infinity and this convergence
is exponential: that is, there exist constants C(A) dependent on A and ¥ < 1 independent of
A such that

lu(o4) — Plorra)l < C(A) .77 .

Here, by T™ A we denote time shift of A - the set {(0,7) + ala € A}.
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A PCA with the deterministic function ®g is called stable if for any § > 0 there is an € > 0,

such that for any z € Z? we have P(o, = —1) < § uniformly in fo, provided |fo| < €.

Now consider Toom'’s criteria of stability for PCA’s under consideration given in [6]. Toom
calls a subset @ C U a plus set, if $o(oy) = +1 for any configuration oy equal to +1 for
~all z € @ ; @ is a -minimal plus-set if it-contains no other plus sets. From now on we shall
consider Z?2 as a subset of real space IR?; for any A C Z2 we denote by Conv(A) the convex
hull of A in IR?. Toom stated his criteria for monotone deterministic functions ®y, satisfying

®o(oy;) < Bo(ofy) if of; < of}, where the last unequality is considered at every point of U.
o\%y o\9y U U q Y P

For monotone PCA’s satisfying conditions (1.1)-(1.4) Toom’s criteria is stated as follows: “a
PCA is stable if and only if there is no ray from the origin, intersecting the convex hull of any

minimal plus set” (Toom'’s condition).

We shall prove that Toom’s condition is sufficient for exponential convergence of the PCA

satisfying (1.1)-(1.4) to a stationary state. The requirement of monotonicity may be omitted.

Certain constructions used in our investigation are rather geometrical, so we need to introduce

some, mostly well known, geometrical notions.

For any set G C IR? by z + G we denote a shift {z + glg € G} of the set G, and we des-
ignate U(z) = z+ U - the basic set of the point z€Z2 THe set O=
{fxvlv € U} U {v — wlv,w € U} is called a neighbourhood of zero and the set O(z) = z + O is
the neighbourhood of the point z.

The notation |A] will be used for the cardinality of any set A C Z2. For arbitrary A C Z2? we

define its height upA = mtax{tl(a:,t) € A} and its top layer sup A = {(z,t) € A|t = upA}.
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By Z? and IR? we denote the sets Z x {t,t — 1,...} and IR x [0,t] respectively. We shall
write R!'(A) for the projection of the set A C Z? into Z2, so R'(A) = AN Z% L'Y(A) =
{(z,7) € Al =t} is a t-cut of the set A.

The set A C Z? is called connected, if for any u,v € A there exists z; = u, 2z3,..., 2y, = v such
that z; € A and ziy; € 0(z),t =1,...,m —1. For points u and v of this sort we shall write

A
u~v.

The designation o3 will be used for the configuration of —1 on A and o} for the configu-
ration of +1. For convenience we shall write P(A}, Af,...,Br,B;,...,0c,,0¢,,...) for the
probability of the configuration, coinciding with UZ; on A;, 0p, on B; and configuration o¢, on
Ci,i1=1,2,.... The number of sets in P(-) is arbitrary.

A notation P(Af,AY,...,B{,B;,...,00,,0c,,---,|DY,DF,...,E[ ,E7,...,0F,0F,,...) will
be used for the conditional probability of the configuration specified above given configuration
which agrees with ¢ ,0g ,0F,1=1,2,....

Having given these notions we are able to proceed to the meaningful part of our work.
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SECTION 2. STATEMENTS AND PROOFS
We shall prove the theorem under the condition, which is wider than that given by Toom,

stated as follows:

“There exist two plus sets (); and @, and a line [, passing through the origin and

separating these sets in IR*”. (Modified Toom’s condition)

Obviously any stable PCA has at least one plus set, because if ®¢(of;) = —1 the PCA is
unstable. Thus we reformulated:Toom’s condition in a wider version, since we-don’t require

monotonicity of the deterministic function.

Theorem
Consider the PCA defined by (1.1)-(1.4) and satisfying the modified Toom’s condition. Then

for sufficiently small ¢ > 0 the PCA converges exponentially to the stationary state.

We shall give the proof for the case T = 1 only. The case T > 1 is similar to rather annoying
technicalities (see Berezner [8]). Besides, our method allows us to consider a few modifications
of the considered models. For example, we can allow the perturbation fg from (1.4) not to be
bounded by ¢ for configurations oy where ®p(oy) = —1. We can apply our constructions f.or

more values of o, (see [8]).

Remark A

To prove the theorem we have to prove the exponential convergence of probability P(oz-,),

T — OQ.

Our goal is to obtain the exponentially convergent (uniformly in 7) series 3~ CI(A) for the

probability P(o7. ), where the coefficients of the two series 3~ C7'(A) and 3 C72(A) can differ
only for n > min(r, ;). This will immediately imply the exponential convergence of P(o7.,)

as 7 — 00.
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For this purpose we shall introduce the special construction, which we shall call cluster expan-

sion.

The Construction of the Cluster

‘For' convenience ‘we -assume -that -the basic set U of the origin is -the set of-points

(=v,=1),...,(v,~1),v € IN, adding points of fictitious dependence.

Consider arbitrary finite sets A, F C Z?, such that upF < upA = ¢, and fix an arbitrary

configuration ¢ on Z2, coinciding with o; on A and some fixed configuration of on F.

Remark
The necessity of considering set F' with fixed configuration on it will become clear later. Such
a set will represent a set of points, where the configuration will be fixed as a result of using

multistep cluster expansion.

For any such configuration we obtain a partition of Z? into the maximal connected sets {G_},

w € O, where g is equal to —1, and sets {G}}, w € O, where ¢ is equal to +1.

Let us choose sets G| ,...,G}, satisfying

supAC | JG7 and supANG; #0 i=1,...,m.

i=1

(2.1)

We shall call such sets carrier sets of the cluster. To any carrier set we assign a component of
the cluster in the same way. So, to avoid unnecessary designations we shall consider in detail
the case of the unique carrier set G, which we shall denote by omitting suffixes. The case of
the multicomponent carrier will then be obtained by simply taking the union of corresponding

components of the cluster.
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Taking the set G we shall assign to it a set [' C Z2, which we shall call the cluster, a corre-

sponding oriented contour T in IR?, and the set OI' C ZZ, called the boundary of T.

Remark

We shall consider only such configurations ¢ on Z? for which carrier sets are finite, because
it is easy to prove that the probability of the infinite carrier set for a finite set A is zero.
To do this let us take a sequence of lines Iy = ! + (0,k(2v + 1)) in R*,k € Z (remem-
ber that ! is a separating line from the modified Toom’s coindition). By Ji we denote a set

{(z,7) € Z2,T > 0] either (z, 7) lies in the band between lx and l;4, or between I_; and I_;_,}.

As a result of the choice of Ji and the properties of separating lines we have P(J3,) > (1—¢)l2+l,
o0

and the configurations o} ,k € IN are independent. As 3 P(J#) = oo we obtain that with
k=1

the probability one, there exist two bands of +1 points, separating any set inside from infinity,

which implies that any carrier set of the cluster is finite with probability one.

Now denote G = U [u,v] C IR?, where any [u,v] is a segment from IR?.
u,v€EG:u€0(v)

There exists a closed oriented anticlockwise contour T formed by the ordered set of segments
(20, 21}, (215 22), - - -+ [2n=1, 2n], [2n, 20] Oriented from the first to the second point and satisfying

the following conditions:
(a.) Zi41 € O(z,‘), [Z,’,Z,'+1] NG = {Z,’, z,-+1}, 1=1,...,n.

(b) O(z;) NG N Ang(z;_1,2i,2i41) = 0, ¢ = 1,...,n, where Ang(u, z,v) is’ the angle in R®

formed by the rays [z,u) and [z, v), turning from the first to the second ray anticlockwise.

(c) The set G\T belongs to the internal domain I' C IR? of the contour T, which lies to the

left of the contour T, while traversing T anticlockwise.

(d) There does not exist any closed subcontour, formed by the segments of T and oriented

clockwise,.
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The conditions (a)-(d), and especially the condition (b), are very constructive, and one can
easily check the existence of the contour mentioned by straightforward construction of the con-
tour. To do this, one can start from the point 2o € sup G with the minimal z-coordinate and
then determine uniquely at every step the next segment of T in keeping with the conditions
in (a)-(b). Using loose but descriptive geometric terminology we can say that T is an external

oriented geometrical boundary of the set G.

The cluster ' corresponding to the set G (and to the configuration ¢ coinciding with o
on A and oF on F) is the set ' = T N G. The set

ol = { U O(z)} \(FTul)n 22 (2.2)

z€l

is called the boundary- of the cluster T.

In the case where the carrier of the cluster consists of few components G7,...,G;, we as-
sign to every component G; the corresponding component I' of the cluster, contour T‘, and
boundary af‘ and internal domain I and then set [ = UI¥ ; [ = ul ; O = Uor" ;
T:uT‘,i: 1,...,m.

Thus to any configuration g, coinciding with ¢; on A and or on F, we assign the cluster T,

which we shall call the cluster I' with kernel A and fixed configuration of.

The immediate consequence of the construction of the cluster is the fact that o coincides with
of on I and ¢ on 9T'*. Moreover, if any other configuration o agrees with o7, 0f, o3 and

or then its cluster is the same.

Now we shall formulate one important property of clusters, which will be proved at the end of

this section.

The point z € T is called an error point if at least one of the plus sets z + @, or z + Q,

belongs to dT'; this will imply ®.(oy(;)) = +1. The set of error points is denoted by ¢(T).
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Lemma

There exists sufficiently small & > 0 such that for any T’

(D) > a - [T . (2.3)

This lemma will be proved at the end of this section.

Now we are ready to give the cluster expansion for the probability P(c},) of the configu-
ration on an arbitrary finite set Ag C Z? (we introduce “0” to show that we are at the starting
point of our expansion). Taking t = upA, we consider all configurations ¢ in Z? coinciding
with o3 on Ag, and assign to each such configuration the cluster I'y = To(g) with kernel
Ao and corresponding sets T, [ , To. Taking into account the relation between ¢ and the
cluster 'y we can give the expansion

P(UZO) = Z Z P(U) = ;P(Ag’rgyarg)’ (2'4)

Lo g:Fg(o)=Io

where the sum is over all possible clusters I'y.

Let us consider the set Do from Z x {0,1,2,...} defined by

Do = { U U(Z)} \(AOUOFQU f‘our\o). (25)

z€sup 8l

So the points of Dy belong to the basic set of sup 9T and lie outside the interigr of 'y and the
values of the configuration ¢ at these points are not fixed by the algorithm for constructing
the cluster at the previous step. We can rewrite the probabilities on the right hand side of
(2.4) as

P(Ag,T5,0T¢) =Y P(A;,T5,0T¢,0p,) - (2.6)

‘,DO

We shall write P,(A~, B¥,0¢,...) for the probability of the corresponding configuration on

the projection of the sets in the parenthesis in Z2.
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Then the probability on the right side of (2.6) can be written as

P(A63F638F0+$UDO) = Pl(A(;’Fa)aFg.aaDo)

= PI—I(AE’ FajargiaDO)

X

P(LY(AqU o)™, LY(ATe) | R (Ao U o)™, R (8T0)*,0p,)-
(2.7)

The second probability on the right-hand side is the conditional probability of the configura-

tion on the t-cut L' (AgUToUOT,) under the condition of fixed configuration on the projection

of the set AgUT¢UAOToU Dy in Z2 ;.

e . . . . - +
Taking into account that any configuration op, can be written as op U op 5, for some

By C Dy we write

P(op,) = P(B;.U (Do\Bo)*) = S (=1)M\BLL Py (2.8)

Wo:BoCWo C Do
Using the argument similar to what is used in the deriving of (2.8) and expression (2.7) the

expansion (2.6) could be written as

P(A;,I5,0r¢) = Z Q' ona( Ao, To, 00, Wo) - P_1(Ay, Ty, 0T, W) (2.9)
W,C Do

with
f:ond(AOa FO, 8F0, Wo)

= Y (=1)"e\Bol. P(L(Ag U o)™, L'(8To) | R (Ao U To U Bo)~, R (8p U Do\ Bo)*).
BoCWo .

(2.10)
The 4-tuple of sets Aq, I'g, 0, Wy is denoted by Hy. A very important consequence of the
definition (2.5) of the set Dy and property (2.2) of the boundary 9l is the fact that conditional
probabilities in (2.10) do not depend on the time shift T7, 7 € IN, of all constructed sets. Thus

if we apply our construction to the probabilities P(or~ 4,), i = 1,2, we obtain

Qeari(T™ Ho) = Qina(T™ Ho) . (2.11)
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This fact together with the property (2.3) and with the expansion (2.9) is the corner-stone
of the expansion mentioned in Remark A. We need only to show how the probabilities in the
right hand side of (2.9) can be expressed through the probabilities in Z2 , in a similar way.
Considering the probability P,_;(Ag,Tg,0I, Wy ) in (2.9) we determine A; = WoU(Ag\(ToVU
: f‘o)) and-take an arbitrary configuration g on.Z? ; coinciding with o; on A, and oF, on:the set
Fi = R*"(Hy)\ A1, where o, has values fixed on the set F} by our algorithm at previous steps.
Here we write R'"!(Ho) for the union of the sets R'~!(Ap), R*"'(Ty), R*~!(dTy), R~} (Wo).
For each such configuration ¢ on Z2 , with fixed configuration on A; U B; we construct cluster
'y with the kernel A; (see the section “The construction of the cluster”). Thus

Pi1(A5, T, 008, W5) =Y Pii(ok, AL, TT,00T) . (2.12)
: T

Defining D; in the same way as we have defined D (see general definition (2.13)) we can get
the expansion for the probability on the left hand side of (2.12) through the probabilities in
Z? ,. Thus the expansion of the type of (2.9) can be iterated many times. The difference is only
in the growing number of points where the value of the configuration is fixed at the previous
stages. Remember that at every stage we move down the t-axis by a unit step. Assuming that
we have constructed the chain of 4-tuples Hy = {Ao, o, T, Wo},..., {As, T, 0Tk, Wi} let
us determine the 4-tuple of the (k + 1)-st step. We denote Axyy = Ax\(Tx U T'%) U Wy and
Fiyy = R (H)\Aryr. The cluster T'y;, with the kernel Ai,, is then constructed for the
configuration g in Z? ,_, with fixed values at the points of R'"*~!(H}). The set D4, is the
set from Z x {0,1,2...} defined by |

4

k+1

D =U (U(arj N zf_k_l)) \(Aks1 UBToU - UB UToU-- - UThy) ,  (2.13)

7=0
where U(G) = U U(z) is the basic set of the set G.

2€G

The expansion (2.9) of the (k + 1)-st step is then
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P!—k—l(A(;a FE, aFg—a T A;-H» FI:+1’ aF:-H) = P!-k—l(UFk+1 ’ AI:+17 Fl:+h aF:—&»l) (2'14)

Z ::o:d 1(Hk+1)Pt k- 2(‘7Fk+nAk+1’Fk+1’6FL+1vWk+1)

i1 Wis1CDi g

where

temH) = 3 (=1)Wm\Bnly
BnCWm

P (L""‘(Am UTlm)™, L™ (| or) | R Y (Am UTm U B,)™, R ™" (oF,), (Dm\Bm)+> .
=1
At the step j when for the first time

D=A =W;=R7(0U---UdL;)N Z x {0,1,2--} (2.15)

we say that the chain H; is truncated. The contribution S(H;) of the truncated chain H; in

the expansion of probability P(o} ) is

H Qioki(H (2.16)

where Q'77,(H;) is equal to 1.

cond

Thus we can write the complete expansion for P(oy ) as the sum of contributions over all

truncated chains H;

P(A5)=3_3 " S(H;). (2.17)
i=0 H,

4

To each truncated chain H; we assign the value |['| = |Tg| 4 - - + |I';]. Then we have

45)=5 X S(H) =3 Cula) (218)

n=1H,:|l=n

Let us estimate the terms of this series. Consider H; with |I'| = n. It follows from (2.3) that

i)
H cond

< 2Pl eam (2.19)




where |D| = |Dg| + --- + |D;|. Now we shall show that the number of H; with |['| = n is

bounded by C™ for some C > 0. We have four obvious estimates. The first one is

I{Ti] ITs] = k}| < dF for d; >0, (2.20)
the second is
|8F| = |6Fo| +---+ |3FJ| <d,- lF‘ for some d, > 0, (221)
the third
|D]| < d3 - |0T'| for some d;3 > 0 (2.22)

and the fourth, which claims that the number ||W]| of choices of the sets W, ..., W, from the

sets Dg, ..., D; is bounded by
W] < 2Mel++IWsl < olP1, (2.23)
i From these estimates we obtain
|{H;| |I'| = n}] < C" for someC > 0. (2.24)
Combining (2.19)-(2.24) we get that for some constant ¥ > 0
ICa(A) < (P - €)™ . (2.25)

This proves that for sufficiently small € > 0 the series (2.18) converges exponentially. Consid-

ering a similar expansion for P(o7-4)

Ploz-4) = i Cr(A) : (2.26)

we note that the coefficients C(A) and C,(A) for n < t are the sums over congruent sets
T7H; and H,. Taking into account the equality (2.11) we find that these coefficients coincide

for n < t. Having proved this fact we refer the reader to Remark A, which completes the proof

of the theorem.
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Proof of Lemma

Obviously it is enough to prove (2.3) in the case when I' consists of one component.

Let n, be the number of plus vectors in the oriented contour T = [z, 21], ..., [Zn=1, 2n}, [2n, 20
- where the oriented segment z—,"z,-+1 ‘is-called a plus vector; if z4, lies to .the right of-the line
z; + l. Consider an arbitrary plus vector z?ziﬂ. We claim that either z; or z;;; is an error
point. Certainly, if pr z?zi+1> 0 (where ¢-is a unit vector Q_Zz,e = (0,1) and pr- z is the
orthogonal projection of the vector  on the vector @) then pr- ZinZ; +22 0 (otherwise z; and
z;42 will be connected by the segment [z;, z;;2], but this contradicts the construction of the
contour T'). This fact implies that z;4; + Q,(2¢41) C 9T and, correspondingly, z;4; € €(T'). If
pr- z_;'z,-+1< 0 then by the same argument pr- z12,< 0 and 2 € ¢(T). If pro z—?z,-“: 0 then
either z;_, lies to the left of z; +Z (and this implies z; € €(I')) or z;47 lies to the right of 24 +1

- which implies that z;4; € €(I'). Thus we assign the error point to an arbitrary plus vector.

Let us note that each error point corresponds to no more than 2|0| plus vectors, so that
le(T)] > a1 ny , a1 =1/2|0]. (2.27)
As the contour T is closed there exists a constant ap > 0 such that
ng >a{n+1-—ng) . (2.28)
Since |T'| = n + 1 > a3|T| for some a3 > 0 then summing (2.27) and (2.28) we obtain

L]

le(T")] > a|T'| for somea > 0.
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