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UNE TECHNIQUE DE POINT INTERIEUR POUR L'OPTIMISATION NON LINEAIRE

José HERSKOVITS(*)
COPPE
Rio de Janeiro Brésil

Résumé

Nous proposons une méthode de minimisation d'une fonction réguliére sous contraintes
réguliéres d'égalités et d'inégalités par des algorithmes de points intérieurs. Elle consiste en la
résolution itérative, suivant des variables primales et duales, de conditions d'optimalité du
premier ordre de Karush-Kuhn-Tucker. Sur ce principe, des algorithmes de différents ordres
peuvent étre obtenus. Pour commencer, nous considérons le probléme sous contraintes
d'inégalités et nous présentons un algorithme de base globalement convergent. En particulier,
des versions du premier ordre de type quasi-Newton sont établies. Nous considérons ensuite le
probléme général pour lequel un algorithme de base est proposé. Cette méthode est facile a
implémenter car elle n'implique pas la solution de programmes quadratiques, mais seulement de
systemes linéaires d'équations. Plusieurs exemples démontrent la robustesse et 'efficacité de
cette méthode.

AN INTERIOR POINT TECHNIQUE FOR NONLINEAR OPTIMIZATION

Abstract

We propose an approach for the minimization of a smooth function under smooth
equality and inequality constraints by interior points algorithms. It consists on the iterative
solution, in the primal and dual variables, of Karush-Kuhn-Tucker first order optimality
conditions. Based on this approach, different order algorithms can be obtained. To introduce
the method, in a first stage we consider the inequality constrained problem and present a
globally convergent basic algorithm. Particular first order and quasi-Newton versions of the
algorithm are also stated. In a second stage, the general problem is consider and a basic
algorithm obtained. This method is simple to code, since it does not involve the solution of

quadratic programs but merely that of linear systems of equations. Several applications show
that it is also strong and efficient.

(*) Professeur invité dans les Projets MENUSIN et MODULEF de 'INRIA-Rocquencourt.



AN INTERIOR POINT TECHNIQUE FOR
NONLINEAR OPTIMIZATION

José HERSKOVITS '’

Mechanical Fngineering Program
COPPE ,” Federal Universitv of Rio de Janeiro
Caixa Postal 68503, 21945 Rio de Janeiro, BRAZIL.

Abstract

We propose an approach for the minimization of a smooth function under
smooth equality and inequality constraints by interior points algorithms. It
consists on the iterative solution, in the primal and dual wvariables, of
Karush - Kuhn - Tucker first order optimality conditions. Based on this
approach, different order algorithms can be obtained. To introduce the
method, in a first stage we consider the inequalitv constrained problem and
present a globally convergent basic algorithm. Particular first order and
quasi-Newton versions of the algorithm are also stated. In a second stage,
the general problem is consider and a basic algorithm 1is obtained. This
method is simple to code, since it does not involve the solution of quadratic
programs but merely that of linear systems of equations. Several applications

show that it is also strong and efficient.

1. Introduction

This paper is concerned with the solution of the nonlinear constrained

optimization problem

min)i(mize f(x) (1.1)
submitted to g(x) £ 0
and hi{x) = 0,

where f € R, g € R" and h € R are smooth functions in R".

(x) Before april 93 at INRIA, MODULEF Proj., B.P. 105,
78153 Le Chesnay Cedex,France.



We propose a technique that uses fixed point iterations to solve the
nonlinear equations, in the primal and dual variables, given by the
equalities included in Karush - Kuhn - Tucker optimality conditions. With the
object of ensuring convergence to Karush - Kuhn - Tucker points, this is done
in such a way to have the inequalities satisfied at each iteration. Based on
the present approach, first order, quasi Newton or Newton algorithms can be
obtained.

The algorithms studied here require an initial estimate of x, at the
interior of the inequality constraints, and they generate a sequence of
points also at the interior of these constraints. When only inequality
constraints are considered, the objective is reduced at each iteration. In
the general problem, an increase of the objective can be necessary to have

the equalities satisfied.

The present method is simple to codify, strong and efficient. It does
not involve penalty functions, active set stirategies or Quadratic Programming
subproblems. It merely requires to solve two linear svstems with the same
matrix at each iteration and to perform an inaccurate line search. In
practical applications, more efficient algorithms can be obtained byv taking
advantage of the structure of the problem and particularities of the

functions in it.

The ideas involved in this approach zre first discussed in the framework
of the inequality constrained problem and a globally convergent basic

algorithm is proposed. Equality constraints are included later.

We say that this algorithm is bar ¢ because some of its procedures are
very widely defined, allowing severa. alternatives. The first order algorithm
and the quasi Newton one, descr.oed in references (3] and [5], can be
considered as included in this family. This is also the case of the quasi
Newton algorithms presented in [2], {4] and [8] and of an application in

solid mechanics presented in [12].

We discuss in the following section the present approach in the case of

inequality constrained optimization and present, in Section 3, a basic



algorithm for this problem. Global convergence is studied in Section 4 and
some particular algorithms are presented in the next section. In section 6 we
discuss the inclusion of equality constraints and present a basic algorithm

for the general nonlinear smooth optimization problem.
2. The inequality constrained optimization problem

In what follows, we discuss the basic concepts involved in the present
approach when applied to the inequality constrained nonlinear programming

problem

min)i(mize fix) (2.1)

submitted to g{x) s 0.

These ideas will be further extended to ©problems including equality

constraints.
Notation

We call A € R" the dual variables vector, Q = {x € R"/ g{x)S 0} the

feasible set, Q% its interior, L(x,l)=f(x)+)\tg(x) the Lagrangian and

™m

2 . . . .

Hix,A) = YV f(x) +ZkiV2gi(x) its Hessian. G{x) denotes a diagonal matrix
i=1

such that G“(x) = [gi(x)].

Then, Karush - Kuhn - Tucker (KKT) first order optimality conditions are

expressed as follows:

Vf(x) + Yg(x) 2 = 0, (2.2)
G(x) A = 0, (2.3)
g(x) £ 0 and (2.4)
A2 0. (2.5)

A vector (x*,l*) satisfying KKT conditions will be called a KKT ‘Pair of
the problem and, a Stationary Pair if it only satisfies equalities (2.2) and
(2.3). A vector x is a KKT Point if it exists A* such that (x A7)
constitutes a KKT pair and, we call it, Stationary Point if only (2.2) and

{2.3) can be satisfied.



The following assumptions about the problem (2.1) are made:
Assumptions

Assumption 2.1. There &exists &a real number a such that the set

0
QaE {x € Q; f(x) < a} is a compact-and has an interior Qa.

Assumption 2.2. Each x € Qg satisfies g(x) < O.

Assumption 2.3. The functions f and g are continuously differentiable in Qa

and their derivatives satisfies Lipschitz condition.

Assumption 2.4. ( Regularity Condition )} For all x € Qa the vectors of the
set Vgi(x); for 1 such that gi(x) = 0, are linearly

independent.

Let us remind some well known some concepts [6], widely used in this

paper.
Definitions

Definition 2.1 d € R" is a descent direction of a real function ¢ at x € R"
it d've < o,

Definition 2.2 d € R" is a feasible direction of the problem (2.1), at x € Q,

if for some 6 > 0 we have x + td € Q for all t € [0,0].

Definition 2.3 A vector field d(x) defined on Q is said to be an uniformly
feasible directions field of the problem (2.1), if there
exists T>0 such that X + td(x) € Q for all
t € [0,T].

It can be proved that d is a feasible direction if dtvgi(x) < 0 for any
i such that gi(x) = 0. Definition 2.3 introduces a condition on the vectorial
field d(x), which is strongest than the simple feasibility of any element of

d(x). When d{(x) constitutes an uniformly feasible directions field, it



supports a feasible segment {x, x + 8(x)d(x)], such that 6(x) is bounded
bellow in by T > 0.

The algorithms that we obtain, for a given initial interior point,
k . . . . .
generate a sequence {x } of interior points with decreasing values of the

*
objective and converging to a KKT point x of the problem.

At each iteration it is defined a search direction d, w.ich is a descent
direction of the objective and also a feasible direction of @ A line search
is then performed to ensure that the new point is interior and the objective

is lower.

As a consequence of the requirement of feasibility, d must actually
constitute an uniformly feasible directions field. Otherwise, the step length

may go to zero, forcing convergence to points which are not KKT.

We solve the system of equations (2.2),(2,3) in (x,A) by means of fixed
point iterates. This is done in such a way that (2.4) and (2.5) are verified
at each iteration. In this wayv, we obtain those solutions of (2.2), (2.3)

that are Karush-Kuhn-Tucker pairs of the problem.

A Newton'’s iteration for the solution of (2.2), (2.3) is defined by the

following linear system:

- v/ v .
° Velx) ) xgm x ) o} VEGx) 4 TR(x)) (2.6)
AVg (x) G(x) A A G(x)Xx
where B = H(x,A), A is a diagonal matrix with A“= li, (x,A) is the current

point and (xo,ko) is a new estimate. Instead of H(x,A), B can be taken equal

to a quasi - Newton estimate or to the identity matrix.

Then, depending on the way that B € RN symmetric is defined, (3.1) may
represent a second order, a quasi - Newton or a first order iteration.
However, as a requirement for global convergence, in the present approach B

must be taken positive definite.



In what follows, we introduce some modifications on iteration (2.6) in a
wayv to obtain, for a given interior pair (x,A), a new interior estimate with

the objective improved.

With this purpose, we define a direction d0 in the primal space, as

d0 = Xy" X Then, (2.6) becomes
Bd0+'\7g(x)10= - Vf(x) and (2.7)
Avg'(x)d, + GIx1 = 0, (2.8)

which now gives a direction d0 in the primal space and a new estimate of 2,
It follows from (2.7), (2.8) that d(J is zero in a Stationary Point. As it
will be proved below, d0 is a descent direction of f. However. d0 is not
useful as a search direction since it does not always constitute an uniformly
feasible directions field. This is due to the fact that as any constraint
goes to zero, (2.8) forces dO to tend to a direction tangent to the feasible
set. In fact, (2.8) is equivalent to

= 0; i=1,m, (2.9}

t
lngi(X)d0+ gi(X)k01

which implies that Vg (x)d,= O for i such that g (x) = O.
To avoid this effect, we define the linear system in d and x
Bd + Yg(x)A = - Vf(x)
Avgt(x)d + G(x)X = - pAw, (2.10)

obtained by adding a negative vector in the right side of (2.8}, where the

scalar factor p and w € R" are positive and A is the new estimate of A, In

this case, (2.10) is equivalent to

t N .
)\ngi(x)d + gi(x)1i= -pxiwi, i=1,m,

and Vg:(x)d = -pw, for the active constraints. Thus, d 1is a feasible

direction.



We can consider that the inclusion of a negative number in the right
hand of (3.4), produces the effect of deflecting d0 in the sense of the
interior of the feasible region, being the deflection of dO relative to the

i-th constraint proportional to pw ..

Finally, as the deflection of d0 is proportional to p and d0 is descent,
by establishing upper bounds on p it is possible to ensure that d is a

descent direction also. Since dtVf(x) < 0, we obtain these bounds by imposing
d'VE(x) S o d VE(x), (2.11)

which implies dtVf(x) < 0.

Condition (2.11) implies that d is in a circular cone whose axis is
Vf(x). In general, the derivative of f in the direction of d will be smaller
than in the direction of do‘ This is a price that we pay to obtain a feasible

descent direction.

Note that d can be obtained by solving

Bd1+‘7g(x)11= 0, (2.12)

AVg'(x)d, + G(XN, = - Aw (2.13)
and computing

d = d0+ p d1‘

In this way, it is easy to establish bounds on p to ensure that (2.11}) holds.

As a requirement for d(x) to be an uniformly feasible directions field,

P must be also bounded below.

The ideas pointed above are a basis for the iterative method that we are
studying. To determine a new primal point, an inaccurate line search is done

in the direction of d, requiring feasibility and a satisfactory decrease of



the objective. Different updating rules can be adopted to define a new

positive A,
3. A basic algorithm

In this section we present a basic algorithm for inequality constrained
problems that globally converges in the primal space to Karush-Kuhn-Tucker
points of the problem. It is basic in the sense that various procedures of
the algorithm are very widely defined. This fact, turns possible the
implementation of different versions depending of the problem to be solved,

the available information about f and g, and the desired rate of convergence.
The algorithm is stated as follows:
ALGORITHM I

Parameters. « € {0,1), n € (0,1}, ¢ > 0 and v € (0,1).
Data. x € Qg, A >0 ,B € rR™M" symmetric and positive definite and w € R"

positive.

Step 1. Computation of a search direction.

{i) Compute (do, 10) by solving the linear system
Bdo+Vg(x)lo= - Vf(x}), {3.1)
Avg"(x)d, + G(x)A, = O. (3.2)

If d0= 0, stop.

(ii) Compute (da’ Xi) by solving the linear system
Bd1+Vg(x)11= o, (3.3}
I\Vg‘(x)d1 + x| = - Ao, (3.4)

(iii) If d:Vf(x) > 0, set



inf {old_II*; (a-1) d V(x)/d.9f(x)} , or (3.5)

©
1

q)"doll2 otherwise. (3.6)

el

{iv) Compute the search direction

d

d0+ [4 di, and {3.7)

»
L

)‘o+ p 11 (3.8)

Step 2. Line search.

Compute t, the first number of the sequence

2 3 . .
{1,0,07,07,...} satisfying

fix +td) S f(x)+tnVf(x)d and (3.9)
g (x + td) <0 if iiz 0, or (3.10)
gi(x + td) s gi(x) otherwise. {3.11)

Step 3. Updates.
(i) Set
X = x + td
and define new values for
®w > 0,
A > 0 and
B symmetric and positive definite.
(ii) Go back to Step 1. n

As we are going to show, p defined by (3.5) (3.6) is finite in Qa and
{2.11) holds.

The algorithm includes, in Step 2, an inexact line search based on
Armijo’s procedure for unconstrained optimization [6]. In addition to (3.9),
which ensures a reasonable decrease of the function, conditions (3.10) and

{3.11) impose to the new primal point to be interior. Moreover, ({3.11)



prevents saturation of the constraints associated to negative dual variables,

as it will be required to prove convergence to Karush - Kuhn - Tucker points.

Different algorithms can be obtained according to the way of updating 2,

B and w. In what follows we introduce some assumptions about A, B and W
Assumptions

. . , s 1 S
Assumption 3.1. There exist positive numbers A", X7 and B such that

s 1
0 <X s XA and Xiz A" for any i such that gi(x) 2 - B,

Assumption 3.2. There exist positive numbers g, and o, such that
ollldzll < d'B d < 0, ld’ll for any d € R".

Assumption 3.3. There exist positive numbers w_ . and @, such that uls 0w < o,

2
<

1

In the next section we prove that any sequence {xk} generated by the
algorithm converges to a Karush - Kuhn - Tucker point of the problem for anv
way of updating A, B and ®, provided that the previous assumptions are true.
Moreover, (xk,X;) converges to a Karush - Kuhn - Tucker pair. Depending on
the way of updating A, global convergence in the dual space can also be

obtained.

4. Global convergence

The theoretical analysis to be presented now, includes first a proof
that the algorithm never fails, then a study of the case when it stops after
a finite number of iterations and finally the actual study of convergence.

The algorithm doesn’t fails if the solution of the linear systems (3.1),
(3.2) and (3.3), (3.4) is unique. This is a consequence of a lemma proved in

[8] and stated as follows:

Lemma 4.1. Given any X € Qa, any positive definite svmmetric matrix B

and any positive A such that 1i> 0 if gi(x) = 0, the matrix

10



B Vg(x)

M{x,\,B) = .
AVg (x) G(x)

is nonsingular. u

In consequence, do’ )‘0’ d1 and X1 obtained in Step 1 of the algorithm

are uniquely determined. Moreover, since x is in a compact and A and B are

bounded, it follows that M is bounded out of zero and then, do’ )‘o’ d1 and )\1

have an upper bound.

We consider now the special case when d0= 0 is‘ obtained in the Step I of
the algorithm and, in consequence, it stops. Since all the iterates are
strictly feasible, it follows from (3.1} and {3.2) that Vf{x) = 0. Thus, if
the algorithm stops, x is a particular Karush - Kuhn - Tucker point. From now

on, the case when the algorithm never stops is studied.

Lemma 4.2. The vector do, defined in step 1 of the algorithm, satisfies
t t
dOVf(x) s - doB do'

Proof., It follows from (3.2) and Assumption 3.1 that Xi= 0 implies
A = 0. Then, (3.1) and (3.2) are equivalent to

0
Bdo+ Vg’(x)lc’) = - Vf(x), (4.1)
A'Vg' ' (x)d) + G'(x)A’= 0, (4.2)

where (-)' means that only constraints associated to nonzero A’s are

considered. Scalar multiplication of both sides of (4.1) by do vields
t _ ot _ atous ,
don(x) = doBdo dOVg (x))‘o’
so that, in view of (4.2),

t - t st y'1 ' ’
dOVf(x) = doB do + lo AN G (x)xo.

11



The result of the lemma follows from Assumption 3.2 on B and the fact that

NlGN(x) s negative definite. =

As a consequence of the preceding lemma, we have that d0 is a descent

direction of f.

The updating rule for p, stated in Step 1 of the algorithm, ensures that
2
p s cplldoll . (4.3)
On the other hand, from Lemma 4.2 and Assumption 3.2, we get
t 2
- dOVf(x) 2 ollldoll
and, in view of (3.5),

o 2 inf [¢; (1—oz)ol/d§vf<xnIldon2

in the case when d:Vf(x) > 0. Since d1 is bounded and (3.6), we deduce that

it exists ¢>0> 0 such that
2
p 2 (polldoll (4.4)

is always true. Since d0 is bounded, it follows from (4.3) and (4.4) that o

is positive and bounded above.

Considering now {4.3) together with (3.7), it can be shown that it
exists 8 > 1 such that the inequality

tall < 6lldoll (4.5)

is always verified by d0 and d.
Lemma 4.3. The search direction d satisfies

d'vfix) s « d;Vf(x).

Proof. In consequence of (3.7) we have

12



d"VH(x) = A Vi(x) + P d:Vf(x),

that, together with (3.5) and (3.6), yields the result of the lemma. ]

Since d0 is a descent direction of f, the last result implies that d

also it is.

It follows from the preceding lemma that dLVf(x) is never zero. This is
due to the fact that d Vf(x) = 0 implies d;Vf(x) = 0 and, from Lemma 4.2,
d0= 0. Thus, the algorithm stops after computing do'

Proposition 4.4. Let be a real function ¢ in R" continuously
differentiable and such that V¢ satisfies Lipschitz condition in T € Rn,

that is, there exists a positive constant k such that for all x,y € T, it is

ve(y) - Vo(x)ll < kily - xI.
Then, the following condition is true:
®(y) s ¢(x) + (y-x)'Vo(x) + kly - xU®,
Proof. The Mean Value Theorem yields
$ly) = &(x) + (v - x)'9 [z +&(y - x)]
for some & € (0,1). Then,
®(y) < &(x) + (y-x)'Va(x) + lly - xBIVe[x + E(y - x)] - Vo(x)l

and the result follows from Lipschitz condition., (]
Lemma 4.5. There exists T > 0 such that the conditions (3.9) - (3.11)
are verified for any t € [0,T] at any x € Qa and d computed in Step 1 of the

algorithm.

Proof. Let us consider first condition (3.10), which applies in the case

when Kiz 0. It follows from Proposition 4.4 that there exists ki> 0 such that

13



g (x +td) S g (x) +t d'¥g (x) + t'k Idll® (4.6)
holds for any x and x + td in Qa' Therefore, if
g.(x) +t d'Vg (x) + t'k ldl® <o, (4.7)
then (3.10) is true. By (2.10), this condition is equivalent to
- 2 2
gi(x)(l - t)\i/ xi) - POt +t killdll < 0,

in the case when li> O. The last inequality is verified if

1 -th/A>0
1 1

and
pw - tkilldll2> 0.
Both inequalities hold for any t such that
t <inf{A s X ; pw s k ldl® ). (4.8)

Thus, since ii is bounded, it follows from (4.4), (4.5} and Assumption 3.1

that it exists ti> 0 such that (3.10) is satisfied for any t € [O,Ti].

In the case when 7\1= 0, we have by Assumption 3.1 that gi(x) S B It

follows from (3.2), (3.4) and (3.8) that ii = 0. Thus, condition (3.10) is
binding in Step 2 of the algorithm. Since g is continuously differentiable

and d is bounded, the previous result is also obtained in consequence of
(407).

Following the same procedure as before, when ii < 0 it can be proved the

existence of ti> 0 such that (3.11) is satisfied for any t € [0,’61].

In consequence of Proposition 4.4, there exists kf> 0 such that
t 2 2
f(x + td) < f(x) + td Vf(x) + t ldll kr

holds for any x,x + td € Qa. Thus, condition (3.9) is verified for any t

14



such that
t 2 2 t
f(x) + td Vf(x) + t-ldll ka fix) + t n d Vi(x)

or, equivalently,

t < (n - 1)d"Vi(x)/kldl> ' (4.9)

It follows from (4.5), Lemmas 4.2 and 4.3 and Assumption 3.2 that {4.9)
holds for any t £ (1 - n)001/52. Thus, it exists T > 0 which satisfies the

requirements of the present lemma. =

In the case when a constraint gp is linear, the preceding result is
valid even taking wp= 0, which implies that no deflection relative to gp is

required. This can be shown by taking
t
= v
gp(x + td) gp(x) +td gp(x)

instead of (4.6). Following a procedure similar to that which leads to (4.8),
it can be deduced that (3.10) is satisfied for any t < lp/ip for any wPZ 0.

In the case when ip( 0, (3.11) holds for any t > 0.

Remark that, if B, A and @ are taken constant, we can consider d as a
vector field in @ In consequence of the previous lemma, it can be proved

that this vector field is an uniformly feasible directions field.

k . . . .
Any sequence {x } generated by the algorithm is contained in Qa. Then,
k . . .
since Qa is a compact, {x } has accumulation points in Qa. In what follows,
we are first going to prove that this points are stationary points of the

problem and then, that there are in fact Karush - Kuhn - Tucker points.

Lemma 4.6. Any accumulation point x* of the sequence {xk}, generated by
the algorithm, is a stationary point of the problem. Moreover, (x*,lo(x*))
constitutes a stationary pair. We call l; = lo(x*).

Proof. Let be a sequence {xk} , where K¢ N = 1,2,3,.., converging

kK € K
to x . Since A, B,w and pP are bounded, there exists K1C K such that

15



k. k _k k k
{x A',B, 0,0} converges to {xx,X*,B*,w*,p*). Considering that d

kK € K
1
continuously depends of x, A, B, @ and p, we deduce that {dk}k e x> d*,
1
being d’= d(x A ,B 0 ,0").
Consider now KZC K1 such that {tk} > t*. It follows from Lemma 4.5

k € K
2
that t* > 0. Condition (3.9) can be written

£(x**Y) < £1(x*) + nmt*a¥teex"),

where we assume that k € Kz and k+1 does not necessarily belong to Kz. Let us
call fol(k) the element which follows k in Kz' Then, since fol(k) 2 k+1, it
is

f(xfol(k)) < f(xk) + ntkdktvf(xk)
and, taking limits in both sides for k % ®, we have

f(x") s f(x7) + nt d tvex”),

thus, d 'Vf(x") 2 0. Considering now the result of Lemma 4.3 in the limit for
k»® we get ngf(x*) = 0. It also follows from Lemma 4.3 that
d;tVf(x*) = 0 and, from Lemma 4.2, that d:= 0. Thus, (x*,)\:) is a Stationary

Pair.
.

Next, we are going to prove global convergence to a Karush - Kuhn -
Tucker point of the problem. However, this result requires an

additional hypothesis about the problem.
Assumption 4.1. The stationary points of the Problem (2.1) are isolated

points or they constitute isolated compact sets with the same active

constraints.

Theorem 4.7. Any accumulation point x" of any sequence generated by the

algorithm is a Karush - Kuhn - Tucker point of the problem.

Proof. As x* is a stationary point of the problem, it is only necessary

16



to prove that the Lagrange multipliers Xo(x*) are non negative,

Consider a constraint g, such that gh(x*) = 0. As the method is strictly
feasible, gh(xk) <0 for all k € N, where N = 1,2,3,... Then, we can define a
sequence {xk}k € K ° K © N, converging to x* and such that gh(xk) > gh(xk-l)
for any k € K. Note that k-1 may not belong to X. It follows from (3.11) that,

“k-1
for such a sequence, A z 0.

Now, we proceed by contradiction and assume that XOh(x*) < 0. It
follows from (4.3) that ih(x*) < 0 also. Then, since Assumption 4.1 holds, it

exists a ball T(Vh)E {(x/llx - ¥l < 7} such that ih< 0 for any x € Q:ﬂ T(Yh)

Tk-1
and any A, B, W, and p generated by the algorithm. As A 2 0, for any

k € K, we have that {x
k-1
" h e«

problem. Thus, it exists I such that #d* 'l < y/2 for any k > I, k € K and,

e e k © Q:) - F(Yh), which is a compact. Then,

has accumulation points, which are stationary points of the

k k- k- .
in consequence of the line search, llx - x Y o< ild Yo« Y¥/2. But this result
is in contradiction with the fact that the distance between the accumulation
and {x* 1)

points of {xk} is greatest than 7. =

k € K k € K

5. Some particular algorithms of the family

Some alternative updating rules for X, B and ¥ in the basic algorithm
stated above will be discussed in the present section. They lead to
particular algorithms with different performances in terms of local or global

speed of convergence.

Update of A. In the case of the dual variables A, the following updating
rule can be stated in Step &

Set, for i = 1,m,

2
li:= sup [)‘Oi’ € lldoll 1. (5.1)
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If g (x) 2 - B and A < 2, set A= 2l =

The parameters €, B and Al are taken positive. In this rule, Xi is a second
order perturbation of lm, given by Newton's iteration (2.6). If B and 2! are
taken small enough, after a finite number of iterations, li for the active
constraints becomes equal to )»Oi.

If Assumptions 3.2 and 3.3 are verified, X defined above satisfies
Assumption 3.1. In effect, since 7\0 and d0 are bounded, li has a positive

s
upper bound A",

Far from the solution it is convenient to have a search direction not
pointing to the constraints but slipping on their boundary. In this way the
steps will be longer and, consequently, the efficiency of the al.gorithm

improved.

This effect can be obtained by increasing the dual variable as the
corresponding constraint goes to zero since, as it follows from (2.9),
Vg;(x)do becomes smaller as li grows. The following rule satisfies this

requirement in a very simple way:

Set, for i = 1,m,

-1
li.— - g, (x). {5.2)

If A > 2", set A = S, .

We got this updating rule based on Dikin’s algorithm for Linear
Programming, presented in [1} and also studied in [11]). In the case of linear
programs, d0 obtained with this rule is the same that the search direction
given by Dikin’s algorithm. In effect, since H(x,A) = 0, it follows from

(2.7), (2.8) and (5.2) that

Vg(x)A = - Vf(x) and (5.3)

- G(x)"Vg‘(x)do + G(x) = 0. (5.4)
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Substitution of )‘0 from (5.4) in (5.3) gives the linear system in d0
-2 t
[Vg(x)G(x) Vg (x)]do= - Vf(x),

that shows the equivalency with Dikin’s algorithm, [11].

Update of B. In ALGORITHM I, B is a symmetric and positive definite rR""
matrix and has to satisfy Assumption 3.2. It can be taken B equal to the
identity, to an estimate of H(x,A) or, in the case when H(x,A) is positive

definite, to H(x,X) itself.

A quasi Newton estimate, following the same procedures as in Successive
Quadratic Programming (SQP) algorithms, can be constructed. We use the BFGS
formula with Powell’'s modification to ensure positive definiteness [9],
although it is not clear whether Assumption 3.2 will then be always

satisfied.

Update of w., As it was pointed before, the ‘deflection of do relative to the
i-th constraint is proportional to w. Let us call, for x € Q and d € R"
given, 91= max { t; gi(x + td) < 0 }. It should be convenient to chose w in a
way to have similar resulting wvalues for alil ei; i =1, m« As it follows from
{4.8) in Lemma 4.5, this requires the use of second order information about
the constraints. When this information is not available, some kind of

estimate can be done.

Asymptotic convergence. A study about about the local speed of convergence of
these algorithms is not presented in this paper, but only some comments about
this matter are made. In the case when (5.1) and BFGS rules are used for X
and B, the convergence is two-steps superlinear, provided a unitary step
length is obtained after a finite number of iterations. This result can be
obtained in a similar way as in Theorem 4.6 in (8], by showing that the
search directions of the present method and of the SQP algorithm locally
differ by a term that goes to zero faster than ||d0" and then, extending to
the present algorithm the proof of two-steps superlinearly convergence of the
SQP method, in [9]). However, to satisfy the requirement about the step
length, d must be such that Definition 2.2 holds for some 6 > 1. It is clear
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that 6 increases whenever p grows but, unfortunately, in some problems the
upper bound on P may be not large enough to allow the step length to be
unitary. This effect, which is similar to Maratos’ effect [10]}, in theory can

produce rates of convergence lower than superlinear.

In a quasi - Newton algorithm described in [2], Maratos’ effect is
avoided by looking at each iteration for a decrease of an estimate of the
Lagrangian, instead of the objective function. However, global convergence is
not strongly proved, since the estimate Lagrange multipliers changes at each

iteration and oscillations between several accumulation points are possible.

An algorithm that also solves optimality conditions by means of fixed
point iterates was presented in {8]. The authors obtained global and local
superlinear convergence by applying a technique presented by Mayne and Polak
[7] in a different context. First, as in the present approach, a feasible
descent direction d is obtained. Then, the constraints are computed at
(x + d) and an approximate projection, x, of (x + d) on the active
constraints is found. Finally, a new primal variable is determined by doing a
search along a parabola which is tangent to d and contains x. In this search,
a decrease of the objective and the feasibility of the new iterate are

required.

6. Including Equality Constraints

We consider in this section the general nonlinear programming problem
{1.1). A technique will be proposed to extend the domain of application of
the present approach to problems including equality constraints. The simplest
way probably consists on defining a suitable penalty function of the
equalities and then, minimizing that function submitted only to the
inequality constraints. Unfortunately, this approach brings up numerical

problems encountered in penalty methods.
In what follows, we discuss our approach to solve Karush - Kuhn - Tucker

conditions of problem (1.1) and present an algorithm based on this approach.

This algorithm requires an initial point at the interior of €, defined in
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Section 2, not necessarily verifying the equality constraints. It generates a
k . . . k 0 . .
sequence {x } of interior points ( {x } € & ) which converges to a Karush -
. * S
Kuhn - Tucker point x of the problem. In general, the equalities are only

active at the limit. Then, to have the equalities satisfied, an increase of

the objective function can be required.

Karush - Kuhn - Tucker first order optimality conditions of problem

{1.1) can be expressed as follows:

VE(x) + Vg(x) X + Vh(x) ¢ = 0, (6.1)

G(x) A = 0, (6.2)
h(x) =0, (6.3)
g{x) < 0 and (6.4)
x 2 0. (6.5)

where u € R" is the dual wvariables vector corresponding to the equality

constraints. Now, the Lagrangian is L{x,A,l) f(x) +th(x) +u‘h(x), and

i 9%h (x).
1 1l

m

. . . 2 2

its second derivative becomes H(x,A,l} = V' f(x) + ) A Vg (x) +
i=1 ! 1
i=

" 1o

i

A Newton’s iteration for the solution of (6.1) to (6.3) is defined by

the following system:

B Vg(x) Vhix) Xy~ X Vi(x) + Yg(x)Xx + Vhi{x)u
Avg'(x)  G(x) 0 A | = - | Gl (6.6)
Yh*(x) 0 0 b= H h(x)

being B = H(x,A,u), (x,A\,4} the current point and (xo,lo,uo) a new estimate.
Agsain, B can be taken equal to a quasi - Newton estimate of H(x,A,id) or to

the identity matrix.

If we define do = X=X, then (6.6) becomes
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BdO + Vg(x)k0 + Vh(x,)uo = - Vf(x), (6.7)
Avg'(x)d, + G(x)A, = 0 and (6.8)

Vh‘(x)do = - h(x), (6.9)

which is independent of the current value of H. As in Section 2, in this case
we can also deduce that do is not useful as a search direction, since it does

not always constitute an uniformly feasible directions field.

Let us consider now the auxiliary function

¢ (x) = f(x) + i cilhi(x)l, (6.10)
i=1
where c, are positive constants. It can be shown that, if c, are large
enough, then ¢c(x) is an Exact Penalty Function of the equalitv constraints,
[6]. In other words, it exists a finite ¢ such that the the minimum of ¢c
submitted only to the inequality constraints occurs at the solution of the
problem (1.1). Then, the use of ¢>c as a penalty function is numerically very
advantageous, since it does not require penalty parameters going to infinite.
On the other side, <l>c has not derivatives at points where there are active
equality constraints. Then, to minimize d>c, non smooth optimization

techniques are required.

Suppose now that x € Q and c is such that
sg(hi)(ci+ “Oi) <0;1=12,..,p (6.11)

where sg(*) = (+)/1(-)]. Then, d0 given by (6.7) - (6.9) is a descent

direction of ¢c. This assert follows from
t t
doV¢c(x) < - doB do’

which is proved in a similar way as the result of Lemma 4.2. In this case, a
feasible direction with respect to the inequality constraints and, at the
same time, descent direction of ¢c can be obtained by adding a negative
vector in the right side of (6.8). This one can be taken as the search

direction of an algorithm for the solution of the problem (1.1), together
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with a line search ensuring a decrease of ¢c and feasibility of the
inequality constraints. Even if this approach is satisfactory, it has the

disadvantage of involving a non differentiable function in the line search.

We propose here an algorithm that wuses ¢c in the line search, but
avoiding the points where this one is nonsmooth. Let be A = {x € Q/ h{x)s 0}
and A%= {x € QO/ h(x)< 0}, For a given initial point in AO, this algorithm
generates a sequence {xk} in a° with decreasing values of <1>c. With this
purpose, the system (6.8) - (6.10) is modified in a way to obtain a feasible

direction of 4 and, at the same time, descent direction of d>c.
The algorithm is stated as follows:
ALGORITHM II

Parameters. « € (0,1), n € (0,1), ¢ > 0 and ¥ € (0,1).
Data. x € AO, A > 0, B € R"" symmetric and positive definite and

o'e R", v®e R® and ¢ € R positive.
Step 1. Computation of a search direction.
(i) Compute (do, lo’ uo) by solving the linear svstem
Bd + Vg(x)lo + Vhix)p, = - Yf(x),
Avg"(x)d, + G(x)A, = 0,
Yh'(x)d, = - h (6.12)
If d0= 0, stop.
(ii) Compute (dl, 11, ui) by solving the linear system
Bd1+ Vg(x))\1 + Vh(x)u1 = 0,
Avg'(x)d, + GIx)A, = - Ao, (6.13)

Vht(x)di = - o, (6.14)
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(iii) If ci< - 1.2 uoﬂ then set c,= - 2 uOi; i=1,..,p.
(iv) If d.¥¢_(x) > 0, set

. 2
inf {plld I%; («-1) d;wc(x)/d;%c(xn, or

p

o) (plldoll2 otherwise,

(v) Compute the search direction

d

d0+ [o] d1, and

)

xo+ p 11

Step 2. Line search.
Compute t, the first number of the sequence

{1,0,0°0>,...} satisfying

¢ (x+td) < @ (x)+tn dve (x),
hix + td) £ 0 and

g (x+td) <0 if X2 0, or

gi(x + td) < gi(x) otherwise,

Step 3. Updates.
(1) Set
X = X + td
and define new values for
wi > 0, w® > 0,
A > 0 and

B symmetric and positive definite.

(ii) Go back to Step 1. =

In consequence of (6.13) and (6.14) dl, obtained in Step 1, is a descent

direction of the active equality and inequality constraints. Thus, d1 points
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to the interior of A, Updating of ¢ ensures that do is a descent direction of

the resulting ¢c and, updating of P, that d is a descent direction also.

In the case when linear equality constraints are included, it is easv to
find an initial point verifying them. Then, it follows from (6.12) that dO is
on those constrains. Taking wf = 0 for any i corresponding to the Ilinear
equality constraints, we have that thev are always active. In consequence,
when all the equalities are linear, no penalty function is required and a

decrease of the objective is obtained at each iteration.
Global convergence of this algorithm can be proved using similar

techniques as in Section 4. We are not going to develop this prove since it

does not involve new interesting ideas.
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