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Propriétés de Superposition et Bornes des Performances
des Graphes d'Evénements Stochastiques

Xiaolan XIE
Projet SAGEP / INRIA-Lorraine
Technopole Metz 2000, 4 rue Marconi, 57070 Metz, France

Résumé

Dans ce papier, nous étudions les performances des graphes d'événements
stochastiques. Les temps de franchissement d'une transition sont générés par une
séquence de variables aléatoires i.i.d. de distribution quelconque. Nous considérons
d'abord un graphe d'événements stochastique dans lequel les temps de
franchissement de chaque transition sont générés par la superposition (ou addition)
de deux séquences de variables aléatoires. Nous mettons en évidence des propriétés
importantes de ce systeme. Plus particuliérement, nous montrons que le temps de
cycle moyen est sous-additif, c'est-a-dire qu'il est inférieur a la somme des temps de
cycle des deux graphes d'événements obtenus en affectant & chaque transition une des
deux séquences de variables aléatoires correspondants. A partir de ces propriétés,
nous obtenons des bornes supérieures du temps de cycle moyen d'un graphe
d'événements quelconque. En particulier, nous obtenons des bornes supérieures qui
convergent vers le temps de cycle moyen exact lorsque les variances des temps de
franchissement décroissent. Enfin, nous étudions les graphes d'événements dans
lesquels les temps de franchissement sont bornés.

Mots-clefs : Réseaux de Petri, Graphes d'événements stochastiques, Bornes des
performances




Superposition Properties and Performance Bounds of
Stochastic Timed Event Graphs

Xiaolan XIE’

ABSTRACT

This paper addresses the performance evaluation of stochastic timed event graphs.
The transition firing times are random variables with general distribution. We first
consider a stochastic timed event graph in which the transition firing times are
generated by the superposition (or addition) of two sets of random variables.
Properties of this system are established. Especially, we prove that the average cycle
time is sub-additive, i.e. it is smaller than the sum of the average cycle times of the
two stochastic timed event graphs obtained by assigning to each transition one of the
two related random variables. Based on these superposition properties, we derive
various upper bounds of the average cycle time of a general stochastic timed event
graph. Especially, we obtain upper bounds which converge to the exact average cycle
time as the standard deviations decrease. Finally, we derive performance bounds for
stochastic timed event graphs with bounded transition firing times.

KEYWORDS: Petri Nets, Stochastic Timed’Event Graphs, Performance Bounds
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1. INTRODUCTION

The dynamic behaviour of many real-life systems is characterized by synchronization,
concurrency, common resources, etc. Tools are needed for modelling the dynamic
behaviour of such systems, for checking the properties of the systems and for
evaluating the system performances of interest such as throughput rate, queue
lengths, waiting times and utilization ratios of resources. Petri nets provide a unified
tool for system modelling, property checking and performance evaluation. Petri nets
have been applied to communication systems, computer systems, manufacturing
systems, etc. Excellent surveys can be found in [10, 15].

In this paper we limit ourselves to stochastic timed event graphs. An event graph, also
called marked graph, is a Petri net in which each place has exactly one input transition
and one output transition. A strongly connected event graph has some important
properties, specifically: (i) the number of tokens in any elementary circuit is constant,
and (ii) the system is deadlock free iff each elementary circuit contains at least one
token (see for instance (4, 5, 7, 8] ).

In the deterministic case, it has been proven [4, 11] that: (i) the cycle time of an
elementary circuit is given by the ratio of the sum of the firing times of the transitions
of the circuit by the number of tokens in the circuit; (ii) the cycle time of a strongly
connected event graph is equal to the greatest cycle time among the ones of all the
elementary circuits. Furthermore, a specified cycle time o being given, algorithms
have been proposed in [9] to find an initial marking which leads to a cycle time less
than o while minimizing a linear criterion which is a p-invariant.

In the stochastic case, it is no more possible to take advantage of the elementary
circuits to evaluate the behaviour of the event graph and to reach a given
performance. Previous work mainly focused on ergodicity conditions and
performance bounds. Ergodicity conditions have been obtained for timed event graphs
[1], for stochastic timed Petri nets (6] and for max-plus algebra models of stochastic
discrete event systems [13].

For a strongly connected stochastic timed event graph, it has been proven that an
average cycle time exists under some fairly weak conditions (see section 2). Both upper
bounds and lower bounds have been proposed (see {2, 3, 11, 12]). The existing lower
bounds are usually very tight and all of them are equal to the exact average cycle time
in the deterministic case. Unfortunately, the upper bounds are usually loose and they
are greater than the exact average cycle time even in the deterministic case.

The stochastic marking optimization problem, which consists in obtaining a specified
cycle time while minimizing a linear criterion depending on the initial marking, has
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been addressed in [11, 12]. It has been proven that any cycle time greater than the
maximal mean transition firing time can be reached provided that enough tokens are
available. Heuristic algorithms for solving the stochastic marking optimization
problem have been proposed.

The purpose of this paper is to introduce some superposition properties of stochastic
timed event graphs which can be used to derive tight upper bounds. The firing times
of any transition of a stochastic timed event graph are generated by a sequence of
random variables with general distribution.

Section 3 considers a stochastic timed event graph in which the transition firing times
are generated by the superposition (or addition) of two sets of random variable
sequences. Properties of this system are established. Especially, we prove that the
average cycle time is sub-additive, i.e. it is smaller than the sum of the average cycle
times of the two stochastic timed event graphs in which the transition firing times are
generated by one of the two sets of random variable sequences, respectively.

Based on these superposition properties, we derive in section 4 various upper bounds
of the average cycle time of a general stochastic timed event graph. Especially, the
mean values of the transition firing times being given, we provide an upper bound
which depends on the standard deviations of the transition firing times. This upper
bound converges to the exact average cycle time as the standard deviations tend to
zero. Since the standard deviations are small in most real-life systems, this bound can
be applied to provide a fast evaluation of the average cycle time.

Section 5 attempts to improve the upper bounds obtained in section 4. Tighter upper
bounds are obtained. We further investigate three particular cases in which the
transition firing times are random variables with uniform distribution in the first
case, exponential distribution in the second case and normal distribution in the third
case. Upper bounds are obtained for each case. These upper bounds show that the
firing time randomness of transitions belonging to elementary circuits with small
average cycle time has little impact on the average cycle time of the net.

Section 6 is devoted to stochastic timed event graphs in which the transition firing
times are bounded. Characteristics and tighter upper bounds are provided. These
upper bounds converge to the exact average cycle time as the bounds of transition
firing times converge.

2. NOTATIONS AND ASSUMPTIONS
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Let N = (P, T, F) be the strongly connected event graph considered. P is the set of
places, T is the set of transitions, and F ¢ (P x T) U (T x P) is the set of directed arcs. We
denote by My the initial marking of N.

Since N is an event graph, each place has exactly one input transition and one output
transition. Without loss of generality, we assume that there exists at most one place
between any two transitions. The following notations will be used :

*t (resp. t*) : set of input (resp. output) places of transition t

*p (resp. p®) : unique input (resp. output) transition of place p

in(t) : set of transitions which immediately precede transition t, i.e.
int)={se T/3pe P, *p=sand p°® =1t}

out(t) : set of transitions which immediately follow transition t, i.e.
out(t) ={se T/Ipe P,*p=tand p*® =5}

(t, s) : place connecting transition t to transition s

I': set of elementary circuits of N

Mo(y): total number of tokens contained initially in ye I’

We assume that no transition can be fired by more than one token at any time (i.e.
recycled transitions), i.e. (t, t) € P and Mp((t,t)) =1, V t e T. We further assume that,
when a transition fires, the related tokens remain in the input places until the firing

process ends. They then disappear and one new token appears in each output place of
the transition.

The following notations are used throughout this paper :

X(k) : nonnegative random variable related to the time required for the k-th
firing of transition t
St(k): instant of the k-th firing initiation of transition t

By convention, Xi(k) =0, V k <0 and Sik) =0, V k < 0. As shown in [4], the transition
firing initiation instants can be determined by the following recursive equations :

Se(k)= Max {S(k-Mp((7,1)))+X(k - Mo((z,1)))} (1)

Tein(t)

We assume that the sequences of transition firing times {Xt(k)}:=1 forte T are

mutually independent sequences of independent identically distributed (i.i.d.)
integrable random variables.

It was proven in [1] that, under the foregoing assumptions, there exists a positive
constant t(Mg) such that:
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lim Sy(k)/ k= lim E[S{(k)]/k=n(Mg), as.VteT @)
koo koo

n (Mp) is the average cycle time of the event graph.

Since {Xt(k)}:=1 are sequences of i.i.d. random variables, the index k is often omitted
and we use X; to denote the firing time of transition t whenever k is not necessary.
We further assume that the first and second moments of X; exist and denote by my its

mean value and by oy its standard deviation, i.e. m; = E [X{] and ot2 =E[(X; - mt)2].

Since any stochastic timed event graph is completely characterized by its net structure,

its initial marking and the set of transition firing time sequences, it can be denoted by
the triplet (N, Mg, {X¢(k)}).

Finally, we assume that the stochastic timed event graph is deadlock free, which
implies that each elementary circuit contains at least one token, i.e. My(y) 21, Vye T.

In the remainder of this section, we present some important properties of live
strongly connected stochastic timed event graphs.

Property 1. (Commoner et al. [5])
In a strongly connected event graph, a marking M can be reached by firing from a live
marking M’ iff they have identical circuit counts, i.e. M(y) = M'(y), Vye T.

Property 2. (Commoner et al. [5])
In a strongly connected event graph if a marking M' is reachable from a live marking
M, then M is also reachable from M'.

Property 3.
In a strongly connected stochastic timed event graph if M is a marking reachable from
a live marking My, then it holds that

(M) = n(My).

These properties claim that the two stochastic timed event graphs (N, M, {X(k)}) and
(N, M, {Xi(k)}) have the same average cycle time if M and Mg have the same circuit

counts.

Proof of Property 3 :
Let us first prove that n(M) = ©{My). Since M is reachable from M, there exists a finite
sequence of transitions v € T* which leads to marking M from My, i.e. Mg (v > M.
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Starting from My, consider the following operating mode. We first fire that first
transition of the sequence v. At the end of the firing of this transition, the second
transition of v is fired. At the end of the second firing, the third transition of v is fired,
and so on and so forth. The sequence v is completely fired and the marking M is
reached at instant £ with
Dy
£=2 2 X(k)
teT k=1
where ©; is the number of occurrences of transition t in the sequence v. After instant

€, the earliest operating mode which consists in firing the transitions as soon as they
are firable is used.

Let S?(k) be the k-th firing initiation instant of transition t in this constrained
operating mode. We also consider another stochastic timed event graph (N, My,
{Y(K)}) with Y(k) = Xi(k+&,) and let SZ(k) be the k-th firing initiation instant of

transition t in the earlist operating mode of this new system. From the above
definition,
SOk +@)=E+St(k),  Vk20,VteT

Since {X¢(k)},_; are mutually independent sequences of i.i.d. random variables, we

have :
1
sl(x E{Si(k)
lim—t(—)=limL—]-=7t( ), VteT
Combining the above two relations,
sO(k sO(k 1
lim —t(—)- = lim ——t—(—)- = lim 6 + k_Silk) = (M), VteT

k—oo K k>0 k + &It koo k+ &)t k + wt kt

Starting again from Mg and using the earliest operating mode, the average cycle time

is equal to n©(Mp) and the k-th firing initiation instant of t is Sy(k). As shown in [4],
S(k) < SY(k), Vk20,vteT

which leads to :

0
itg(—)Slimi(—k—z VteT
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lim

k—oe k>0
or:

n(Mo) < (M)

Thanks to Property 2, My is also reachable from M. Using similar arguments than

above, it can be shown that
(M) < n(Mp)

which finally implies that




(M) = n(Mp)

3. SUPERPOSITION PROPERTIES
This section presents some superposition properties of stochastic timed event graphs.
We first consider a stochastic timed event graph in which the transition firing times
are generated by the superposition of two sets of random variable sequences. The
firing initiation instants are shown to be sub-additive. From this property, the
superposition properties of some long term performance measures are established.
Finally, these properties are generalized to the case where the transition firing times
are generated by the linear combination of several sets of random variable sequences.

3.1. Superposition property of the firing initiation instants
_ . : XV~
Let us consider two sets of non-negative random variable sequences {"“t\*/f, _, and
2 oo
{Xt (k)}k=0. Consider the stochastic timed event graph STEG = (N, My, {X¢(k)}) with

X¢(k)= X} (k) +X3(k), VteT,Vk 3)

Let us also consider two stochastic timed event graphs STEG1 and STEG 2 defined as
follows:

STEGI1 = (N, My, {X}(k)}) and STEG2 = (N, My, {X?(k)})

These two stochastic timed event graphs have the same net structure and the same
initial marking as STEG. However, the transition firing times of STEG1 are generated

by {Xz(k)} while those of STEG2 are generated by {X%(k)}.

Let S!(k) (resp. S?(k)) be the instant of the k-th firing initiation of transition t in
STEGI1 (resp. STEG2). The following property claims that the firing initiation instants
are sub-additive.

Theorem 1.
S (k) <SH(k)+S2(k), Vtand Vk @

Proof of Theorem 1 :
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The proof is based on equation (4) and it is done by induction on (t, k). First, equation
is clearly true for all t and for all k < 0. Let us assume that relation (4) holds up to (t, k)
at the exclusion of this point.

By equation (1),
Se(k)= Max {S;(k—My((7,1))) + Xz (k - Mo((z,1)))} ©)

rein(t)

By induction assumption,
S, (k') <SLKk)+S2(k), Vrein(t)and Vk'<k
which leads to
S (k—Mg((7,1)) ST (k = Mg((z, 1))+ S3(k —Mp((z,1))), Vrein(t)

Combining with relations (3) and (5),
su09= Max [SH) o sE{i ) xi{ic) 237}

Tein(t)

where k* = k - My((t, t )). This leads to :
02 g [SHK ) g ) )

Tein(t) Tein(t)

By equation (1), we obtain

St(k) < S (k) + S{ (k) QED.

As it can be noticed, Theorem 1 is very general and no assumption about the
transition firing times is needed. Especially, the transition firing times are not needed
to be mutually independent, stationary and ergodic.

3.2. Superposition properties of long term performance measures

In this subsection, we consider the three stochastic timed event graphs defined in
subsection 3.1. The purpose of this subsection is to establish the superposition
properties of three long term performance measures : the average cycle time, the
queue lengths and the utilization ratios.

We first consider the average cycle time. Let us assume that the average cycle time of
both STEG1 and STEG2 exists. Let n1(Mg) (resp. n2(Mg)) be the average cycle time of
STEG1 (resp. STEG?2). The following theorem claims that the average cycle time of
STEG is also sub-additive.

Theorem 2.
7(Mp) < ' (Mo)+ 7% (Mo)

Proof of Theorem 2 :
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From Theorem 1,

1

si(k) _Si(k) | S3(K)
k k k

By letting k — oo and from the ergodicity of the stochastic timed event graphs,

(M) < z'(Mo )+ % (M)

QED.

Consider now the other performance measures of STEG. For each place p, let ®(Mg,p)
be the average number of tokens waiting in place p (not including the one being
served). For each transition t, let v(Mjg,t) be the utilization ratio of transition t. These
two measures can be determined as follows :

. 1 ¢H
oy )= i L)) »
and
. 1 ¢H
v(MO,t)=]§1m ﬁ s_Oat(s)ds ®)
—300 =

where Mg is the marking at instant s, a(s) = 1 if transition t is busy at instant s and
o(s) = 0 otherwise.

Let us first derive some relations between the three performance measures which will
be used for deriving other superposition properties. From the definition of the
utilization ratios, it holds that

mg
H(Mo) (9)

U(Mo,t) =

From the definitions of average cycle time n(Mg) and w(Mg,p), in any time period of
length n(Mo) of the steady state, ®(Mg,p) * n(Mp) is the average accumulated waiting
time of tokens in place p and m, is the average busy time of transition t. Since the total
number of tokens in any elementary circuit remains invariant whatever the
transition firings, it holds that

Y o(Mg,p)n(Mg)+ Y, m¢ =Mg(7)r(My), Vyel
pey tey
which leads to :

o(Mo,7)x(Mg)+ 2, ., m¢ =Mo(¥)a(My), Vyel (10)

where

o(Mo,7)=2. ., ©(Mo.p)

(11)
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We can now introduce the superposition properties of average queue lengths and
utilization ratios. For each place p, let @!(Mg,p) (resp. ®?(Mg,p)) be the average number
of tokens waiting in place p of STEG1 (resp. STEG2). For each transition t, let v1(Mg,t)
(resp. vV2(My,t)) be the utilization ratio of transition t of STEG1 (resp. STEG2).

Theorem 3.
my < m} + m% ,
@ (Mg, t) ~ v (Mg,t)  v2(Mg,t)

(b) ®(Mg,y) t(Mp) < 0!(Mp,y) *!(Mp) + @2(Mg,y) t2(Mp)  Vyel (13)

Vit

(12)

Proof of Theorem 3 :
From relation (9),

1 2
__ My Ay MG 20 ME
ﬂ(MO) U(Mo,t), T ( 0) vl(MO,t) and & ( 0) vz(MO,t)

By replacing these terms in Theorem 2, property (a) can be proved.

Now let us prove property (b). From relation (3),
m; = m} + mtz, Vit

Replacing it in relation (10), we obtain
oMo, 7)7(Mg) = Mo(7)n(Mo) - Zteyﬁd - Zteym‘f

From theorem 2,
(Mg, y)r(Mp) < Mo()’)ﬂl(Mo)" Zteynﬂ + MO(Y)”Z(MO)_ teymg

Applying relation (10) to STEG1 and STEG2, we obtain :
@(Mo,y) ®(Mo) < 0!(Mo,y) T1(Mo) + @2(Mo,y) ©2(Mo)
QE.D.

From theorem 3, the following corollary can be easily proven.

Corollary 1.
(a) v(Mp,t) 2 Min{v!(Mg,t), v2(Mg,1)}, Vte T
(b) ®(Mp,y) < 0!(Mp,y) + 02(Mo,y), Vyel'

3.3. Generalization

Instead of the superposition of two sets of random variable sequences, this section
considers a stochastic timed event graph in which the transition firing times are
generated by the linear combination of several sets of random variable sequences.
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i oo
Let us consider n sets of non-negative random variable sequences {xt(k)}k=0 and n

positive coefficients «; fori =1, 2, ..., n. Consider the stochastic timed event graph
STEG = (N, My, {X(k)}) with

n
g k), VteT,Vk (14)

We give without proof the superposition properties of this stochastic timed event
graph:

Theorem 4.
<a>St(k)S§ai51(k), vteT,Vk (15)
(b) m(Mg) Zal (16)
n mi
(©) (Mo, E Mo, Mo vt (17)
(d) #(Mg)(Mg, 7) < Za, ®'(Mg,7), Vyel (18)

Corollary 2.
(@) v(Mg,t) = Min{viM,t) fori=1,2,...,n}, Yte T
(b) Mg, V) < wl(Mp,y) + ... + @™(Mp,7), Vyell

4. UPPER BOUNDS OF THE AVERAGE CYCLE TIME

In this section, we assume that both the first and the second moments of the transition
firing times exist. The purpose here is to derive upper bounds of the average cycle
time n(Mg) by using the superposition properties developed in the previous section.

To this end, let us consider two sets of random variable sequences { t(k)} -o and

2 (o ]
{Xt (k)}k=0 defined as follows :

Xi(k)=E[X{(k)]=m
X¢ (k) = (X¢(k)—my)"
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Consider two stochastic timed event graphs STEG1 = (N, My, {X}(k)}) and STEG2 = (N,

My, [X%(k)}). The assumptions of section 2 guarantee that the average cycle times of

these two stochastic timed event graphs exist. Let n1(Mp) be the average cycle time of
STEG1 and n2(Mp) the average cycle time of STEG2.

As shown in [4, 13],

te My
7l(Mg)=Max—=

yel' Mo(7) (19)

Let us now consider a new stochastic timed event graph STEG3 = (N, M), {Xt3 (k)}) with
X3 (k)= X{(k)+ X?(k), VteT,Vk

The assumptions of section 2 ensure the existence of the average cycle time of STEG3
and we denote it by n3(Mg). From Theorem 2,
m3(Mp) £ nl(Mo) + n2(Mp) (20)

Since for all t and for all k,

X3 (k) = X{(K)+ XF (k) = m¢ + (X (k) - mg)" 2 X (k)
it holds that

n(Mp) < t3(Mg)

Combining with relations (19) and (20), we obtain

n(M )<Max;t—€&+ 7% (Mg)
7 er Mo(7) ’ @

The RHS term of relation (21) is an upper bound of the average cycle time. Its first
term depends only on the first moment of the transition firing times while the second
term depends on the higher moments. The following theorem shows that the second
term is in turn upper bounded by the sum of the standard deviations.

Theorem 5.

Z m;
tey
(M) SMax =Y _ 1 V6
(Mo) rer Mo(y) S

Proof of Theorem 5 :
Thanks to relation (21), we only need to prove that

7*(Mp)< Y oy

teT
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The proof is based on the upper bound proposed by Campos et al. [3]. Since the event
graph is strongly connected and the transitions are recycled,
2 2
n°(Mp) < ZE[Xt] (23)
teT

Since

g 0 -]’ - o] " -(Eet] 2o
it holds that :

(E[xf])z < E[(th)z] - E[((Xt - mt)+)2} < E[(xt - mt)z] =(0,)?
which yields that :

E[x';’-] <o,
Combining with relation (23),

n%(Mg) < Y o

teT
Q.ED.

As it can be noticed, this upper bound decreases as the standard deviations decrease.
The following theorem shows that it converges to the exact average cycle time which
is equal to the average cycle time of the related deterministic timed event graph. Since
the standard deviations are small in most real-life systems, this upper bound can be
used to provide a fast performance evaluation of a system subject to perturbations.

Theorem 6.

Let 0=, _1Ot. It holds that :

zte my
lim 7(Mg)=Max—-L
-0 yel My(7)

Proof of Theorem 6 :
As shown in {2, 3],
zteymt
n(Mp) 2 Max————
yel Mo(7)
Combining with Theorem 5, we obtain :

2fte my
lim 7(Mg)=Max =<1 _
60 yel Mg(7)

Q.ED.

The following corollary is a generalization of Theorem 6. It shows that the average
cycle time of a stochastic timed event graph converges to that of another stochastic
timed event graph if the transition firing times of the first stochastic timed event
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graph converge to those of the second stochastic timed event graph in both the first
and second moments.

Corollary 3.
Let n0(Mp) be the average cycle time of the stochastic timed event graph STEGO = (N,

Mo, (XP(K)}) and let $= 2, et Var(Xt - X?)‘ Then it holds that :

lim ﬂ(Mo) = ﬂO(Mo)

s—0

Proof of Corollary 3 :
We first show that :
lim ﬂ(Mo) < ﬂO(Mo)

s—0

1117 217
To this end, consider two sets of random variable sequences {Xt(k)}k=0 and {Xt (k)}k=0

defined as follows :

X{(k) =X} (k)
+
X (k)= (X (k) - XP(K))
As in the proof of Theorem 5, it can be shown that :

7(Mo) < 7°(Mo) + ¥/ Var(x, - X{)
teT
Which implies that :

lim (M) < 7°(Mg)
s—0

We then show that :
lim (Mg) 2 7%(M)

s—0

[~

1
To this end, consider two other sets of random variable sequences {Xt(k)}k=0 and
X,y defi
t\®f, _o defined as follows :

Xi (k) = Xy(k)
2 +
X3 (k) = (X) (k) - X¢(k))
As in the proof of Theorem 5, it can be shown that :

7°(Mg) < (M) + Yo/ Var(X, - x})

teT
Which implies that :
lim (M) > z%(My)

s—0
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5. IMPROVING THE UPPER BOUNDS
This section attempts to improve the previous bound by adequately choosing the two
random variable sequences which have been used to derive the upper bound of
theorem 5.

1 °° 2 *
Let us consider again two sets of random variable sequences {Xt(k)}k=0 and {Xt (k)}k=0

defined as follows :

where z, is a non-negative constant.

Let n1(Mop, Z) be the average cycle time of STEG1 = (N, M, {X}(k)}) and n2(My, Z) the

average cycle time of STEG2 = (N, My, [th(k)}) where Z denotes the vector of constants
zt,ie.Z=(212y... z ... zg)T where K = card(T).

As in section 4, it can be shown that
(Mo, Z) < 7' (Mg, Z) + n* (Mg, Z) (24)

where the two RHS terms satisfy the following relations :

2tos)rzt

7'(Mg, Z) = Max

yel Mo(7) 2
7*(Mg,Z) < ZE[(Xt _Zt)+] (26)
teT

Since relation (24) holds for all z; 2 0, the smallest upper bound can be obtained by
adequately choosing the value of z; as shown in the following theorem.

Theorem 7.

yel' My(7y)

z
@ m(Mo)< Izvtig(‘;{Max ztey - n*(My, Z) 27)
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(b) 7(Mp) < Min MaxztEyZt + ZE[(X -z )+]
07 220] ver Mp(y) S L0 (28)

This upper bound can be easily obtained by solving a linear programming problem.
Since the upper bounds of section 4 can be obtained by taking z; = m;, the new upper
bounds are better than the upper bounds of section 4. As a result, it also converges to
the exact average cycle time as the standard deviations decreases.

Moreover, these new bounds also shows that the firing time randomness of
transitions belonging to elementary circuits with small average cycle times has little
effect on the average cycle time of the whole system. The effect of their randomness
can almost be completely canceled by taking large values for z,.

The remainder of this section is devoted to three special cases where the transition
firing times are random variables with uniform distribution in the first case,
exponential distribution in the second case and normal distribution in the third case.
Upper bounds are given in the following corollaries.

Corollary 4.
If the transition firing times X; for all t € T are random variables with uniform
distribution defined on [ay, by], then it holds that :

(bt+at) b _
(a) (Mp) < Max &Y + 24 (29)
(Mo) vl 2Mg(7) gr 8

(b) ﬂ(M )< Min {Max =1 t+ (b t)z
0/=
ay<zy<by | yvel Mo(y) teTz(bt - at) (30)

Proof of Corollary 4 :
As claim (a) can be obtained from claim (b) by taking z; = m; (i.e. z; = (a; + by /2), we
only need to prove (b).

Since X; are random variables with uniform distribution, it holds that for all z; € [a,,
by)

E[(Xt _Zt)+]= E[(Xe—2¢) / Xy 22e]*P{X; 22}
by —2z¢ , b -2z
2 bt-‘at

_(be— z)"
2(by —ay)
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Combining with relation (b) of Theorem (6), the claim (b) is proved.

QED.

Corollary 5.
If the transition firing times X, for all te T are random variables with exponential
distribution, then it holds that :

m,
(a) n(Mg) < Maxz—t——

+ex m (31
yer My(7) P> tezT t )

(b) 7(Mp) € Min{ Max ztey Stey’?, Y m exp( 2t )
20| yeI' Mp(7) teT t m; (32)

Proof of Corollary 5 :
The proof is similar to that of Corollary 4 and we only need to prove that :

S e

Since X; has exponential distribution,
E[(Xt - Zt)+] =E[(X¢-2) / Xe22)*P{X, 22} =m, *exp(—%)
t

QE.D.

As the random variables with normal distribution may not be positive, the transition
firing times in the third case are generated as follows :

w\t+
X, =(X}) (33)
where X: is a random variable with normal distribution with parameters (m,, ¢,). We

assume that m;/o, >> 1 which ensures that X; and X: have almost the same

probability distribution.

In the following, we denote by ®(x) the standard normal distribution function and by
¢(x) its density, i.e.

2 X
¢(x) = \/%;r—exr{—fz—} ®(x)= [@(x)ds (34)

Corollary 6.
If the transition firing times X, for all t € T are random variables defined by relation
(33), then it holds that :
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(a) n(M )<Max£n—t+-—l—— Yo (35)
0= vel MO(Y) mteT t

z
(b) n(M) < Min{Max Ziey™ +Y atf[zt 2 J} (36)

2¢20| yeI' Mp(7) teT Ot

where f(x) = ¢(x) - x (1- O(x))

Before giving the proof, let z; = m; + n 6; and consider the related bounds. In this case,

relation (b) of Corollary 5 leads to :

Zte (mt +n0t)
n{Mqg) < Max Y + Y of(n (37)

Let us observe the values of function f(.) given in table 1. We notice that the value of
f(.) converges rapidly to zero.

Table 1 : The values of function f(e)
n 0 1 2 3 4
f(e) 0.398 0.083 0.008 0.001 0.000

Taking n = 3, we obtain a very tight bound :

n(Mp) < Max ztey(mt +39) +0.001 Z Oy (38)
yel' MO(Y) teT

As the second term of this upper bound is small enough in real-life systems, this new
upper bound further confirms that the firing time randomness of transitions
belonging to elementary circuit with small average cycle time has little impact on the
cycle time of the whole system.

Moreover, as 6, are usually small compared to m;, this upper bound proves the
conjecture which claims that the average cycle time of a stochastic timed event graph
mainly depends on the mean transition firing times.

Proof of Corollary 6 :
The proof is similar to that of Corollary 4 and we only need to prove that :

E[(xt -—zt)+] = otf(zt "mt)

Ot
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Since the means of X; is m; and its standard deviation is o,. its density function is

given by
1 X“mt
Ot ¢( Ot ]
Therefore,
+o0
1 X—m
E[(Xt—zt) = (X—Zt)—fi’( t)d
Ot
zt
T +
— jx_¢(x m; Zt)d
0 ot o-t

+o0 2
=0 J’¢ X-mt+zt d l x—mt+zt
to Oy 2 O,

+o00
m;—2z X—Mm; +2Z
+J’ t— %ty t T2t lax
o Ot Ot

Taking into account the definition of ¢, we obtain :
+o0 2 2
1 1{x-my+2z I{x—mi+z
E[X—z +]:0 ——exp| ——| m——1"t | [d| = t v Lt
( t t) t '([ '\/ﬁ p[ 2( Oy 2 Oy

+(mt _Zt)+f°¢(x—mt +ZtJd(X—mt +Zt)

(o]
0 t
= O, ] exp _l zt;ml.z +(m _Z)l_(p Zt_mt
tV2r 2 Lo v (o

= O’tf(zt _mt J
Ot

Q.ED.

6. CASE OF BOUNDED TRANSITION FIRING TIMES
In this section, we consider stochastic timed event graphs with bounded transition
firing times. Characteristics and performance bounds are presented.

Let a;, 2 0 be the lower bound of the firing times of transition t and b; > 0 the upper

bound, i.e.
a; £ X((k) b, Vt, Vk

For this stochastic timed event graph, some results are immediately available as
shown in the following property.
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Property 4.

zte)/mt S Zteyat

(@) i(Mp)=M >M - (39)
2 #(Mo) yer Mo(7) yer Mo(7)
t
(b) n(Mp) € Max —<Y _ (40)
m(Mo) sMax—4 57 |
m
(c) i(Mg) < Max;a—i + Y oy a1

ret Mo(y) &

The purpose of the remainder of this section is to derive new upper bounds based on
the stochastic comparison properties proposed by Baccelli and Liu [2} and the
superposition properties presented above.

For this purpose, we consider random variables Y(k) € {a;, b} defined as follows :

Pr{Y(k) = ay = p; and Pr{Y(k) =by} =1-p,

b; —m
where p, = btt - a:
Lemma 1.
(@) E[Y{(k)] =m,, Vt, Vk

®) X(K) Siox Yok, VYK

2
(0) Var(X,(k)) = (0y)? < Var(¥y(Kk)) = (b, ~ m)(m, - a,) s(bt;at) , Vit

In this lemma, <., denotes the convex ordering relation and Var(e) is the variance of
the related random variable. This lemma shows that the random variables X, (k) and
Y,(k) have the same mean and that Y(k) is stochastically more variable than X(k).

Proof of Lemma 1 :
Since claim (a) is obviously true and claim (c) follows directly from (b), we need only
to prove claim (b).

Let F be the probability distribution function of X (k) and G be the one of Y,(k). These
two probability distribution functions are defined as follows :

0, if y <ay 0, if x < ay
G(y)={p;, ifay<y<by and F(x)=<F(x), ifa,<x<by
1, if y 2 by 1, if x 2 by
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Since F and G are identical everywhere except in the interval [a;, by[, since G remains
constant in this interval and since F is a non-decreasing function, there exists § € [a,,
by} such that

F(x) £ G(x) Vx<§
F(x)2G(x) Vx>§

which means that the random variables X (k) and Y(k) satisfy the cut criterion of
Karlin and Novikoff (see [16]). As a result, X{(k) <jcx Y(K).
QED.

Let =*(Mj) be the average cycle time of the stochastic timed event graph STEG*=(N,
My, {Y(k)}). The following theorem shows that n*(My) is an upper bound of n(My).

Theorem 8.
K(M()) < R*(Mo) 42)
Proof of Theorem 8 :

Since {X¢(k)},_, and {Y;(k)},_, forall te T are mutually independent sequences of

i.i.d. random variables, Lemma 1 and Corollary 5.1. of [2] imply :
R*(Mo) 2 K(Mo)
QED.

In the following we derive upper bounds of n*(Mg) which are also upper bounds of
n(Mp). The following theorem presents the first upper bound which is similar to the
upper bound of Theorem 5.

Theorem 9.

2otey ™t (by —my)(m; —a,)
m(Mp) € m*(Mg) s Max—=L—+ t tATt X 43)
(Mo) <% (Mo) < Ve Mo(7) E:I“ by -2

Proof of Theorem 9 :
As in the proof of Theorem 5, it can be shown that

. 2icy™ .
n (MO)SI\ydeaI}—Mt;('—y)—+t%E[(Yt—mt) ]

Since my € {a, byl,

E[(Yt - mt)+] =(1-p¢)(bt —my)= (b= my)(m, ~a,)

by —a,
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which completes the proof.
Q.E.D.

As can be noticed, this upper bound decreases as the bounds of the transition firing
times converge, i.e. by = a;, V t € T. The following theorem shows that it converges to

the exact average cycle time which is equal to the average cycle time of the related
deterministic timed event graph.

Theorem 10.
Let s= ), r(by—2a). It holds that :

lim ﬂ(M )= Iimn "’(M )= Max Eteymt
s—0 0 s—0 0 yel Mo(y)

The proof of Theorem 10 is similar to that of Theorem 6 and it is omitted.

In a similar way as in section 5, the remainder of this section attempts to improve the
previous bound by adequately choosing the two random variable sequences which
have been used to derive the upper bound of theorem 5.

1 oo 2 o0
Let us consider two sets of random variable sequences {Yt (k)}k=0 and {Yt (k)}k=0
defined as follows :

Y{ (k) =z
Y2 (k) = (Yy(k)-z;)"

where z, is a constant belonging to interval [ay, by].

Let n1*(Mo) be the average cycle time of STEG1* = (N, My, {Y{(k)}) and n2*(My) the
average cycle time of STEG2* = (N, My, {YZ(k))).

As in section 4 and in the proof of Theorem 9, it can be shown that

DI (my —ay)(by —zy)
7% (Mp) < Max —5¥ _ 4 L ATt
(Mo) rel' Mo(7) Z{ by —ay 45

Since relation (45) holds for all z; € [ay, by], the smallest upper bound can be obtained
by adequately choosing the value of z; as shown in the following theorem.

Theorem 11.
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n(Mo) < K*(MO) < ﬁ(Mo)

where

= DI (my —ay)(bg —2¢)
Mn)= Mi M tey t t t t
”( 0) atSZ:ISlbt ‘)'EaIZ( MO(}') * tGZT bt —ag 47)

This upper bound can be easily obtained by solving a linear programming problem.
Since the upper bound of Theorem 9 can be obtained by taking z; = m,, the new upper
bound is better than the upper bound of Theorem 9. As a result, it also converges to
the exact average cycle time as the bounds of the transition firing times converge.

This new bound also shows that the firing time randomness of transitions belonging
to elementary circuits with small average cycle times has little effect on the average
cycle time of the whole system. The effect of their randomness disappears by taking z;
= bt'

7. CONCLUSION

This paper presents a method for obtaining performance bounds of stochastic timed
event graphs. To apply this method, we consider the set of transition firing time
sequences as the input of the system. Superposition properties of a stochastic timed
event graph, whose input is the superposition of two (or more) sets of random
variable sequences, have been established. The most important property is the sub-
additivity of the average cycle time which claims that it is smaller than the sum of the
average cycle times of the two stochastic timed event graphs with one of the two sets
of random variable sequences as input.

This method has first been used to obtain upper bounds of general stochastic timed
event graphs. Especially, we have obtained a simple upper bound which converges to
the exact average cycle time as the standard deviations decrease.

The improved upper bounds presented in section 5 show that the firing time
randomness of transitions belonging to elementary circuits with small average cycle
time has little impact on the average cycle time of the net. They also show that in most
real-life system, the average cycle time mainly depends on the mean values of the
transition firing times.

This method has also been used to stochastic timed event graphs with bounded
transition firing times. Upper bounds of the average cycle time which depend on both
the bounds of the transition firing times and their means are obtained. These bounds
also converge to the exact average cycle time as the bounds of firing times converge.
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Further research work includes the extension to other performance measures, the

extension to other classes of timed Petri nets and the extension to stochastic models.

We believe that similar results can be obtained for generalized semi-Markov models.
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