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Application of Fictitious Domain Method
to the Solution of the Helmholtz Equation
in Unbounded Domain

Alexandre Bespalov
Institute of Numerical Mathematics, Russian Academy of Sciences,
32a Leninskij Prospect, Moscow 117334 Russia.

Abstract

A specific variant of fictitious domain method for solving the Helmholtz wave equa-
tion is considered in the paper. Numerical experiments carried out for test 2D problems
presented this variant in a very good light. For example, a problem has been solved for
airplane-like obstacles with 90 wavelengthes on its body and 1 400 000 mesh nodes.

Key words : Helmholtz wave equation, unbounded domain, fictitious domain
method.

Application de la Méthode de Domaines Fictifs
a la Résolution de ’Equation d"Helmholtz
en Domaine Non Borné

Résumé

Dans cet article, on propose une variante de la méthode des domaines fictifs pour
les équations des ondes en formulation fréquentielle. Des tests numériques 2D sont
présentés sur de tres gros problemes, jusqu’a 1 400 000 points et 90 longueurs d’onde
par longueur d’obstacle.

Mots-clés : Domaine fictif, domaine non borné, équation de Helmholtz, solveurs
rapides.




0 Introduction

Computation of a wave (acoustic or electromagnetic) scattered by an obstacle is a problem
of great practical importance. Mathematically it consists in the solution of the Helmholtz
wave equation with some boundary condition at the obstacle and the Sommerfeld condition
at infinity.

Many numerical methods for solving this problem have been suggested (see [2, 3, 7, 6, 8,
12, 13, 17] and others) but their design is still an heavy task because a lot of actual problems
cannot be solved by means of the known methods (especially when the wavelength is much
less than the obstacle).

Fictitious domain (or fictitious components) approach for solving partial differential equa-
tions has been proposed and investigated in (1, 3, 3, 9, 10, 11, 12, 13, 14, 15] and others and
presented itself in a good light. Application of this method to solving the Helmholtz wave
equation has been already considered in [2, 3, 8, 12, 13].

This article continues these investigations especially begun in [13]. The author applied
to solving the problem a variant of fictitious domain method which was known earlier [9,
10, 11, 15] but as far as he knows had never been used for it before. This one is called “the
variant with a non-symmetric upper enlargement”.

Numerical experiments carried out for test 2D problems showed that this variant works
much well. It solved the problem faster than other known methods including other variants
of fictitious domain method. Moreover, some considered problems could be solved only with
this variant. For example, a problem has been solved for an airplane-like obstacle with 90
wavelengthes and 1 400 000 mesh nodes.

The plan of the paper is:

1) the problem;

2) method of its finite element approximation in coupling with fictitious domain approach;

3) approximation of the Sommerfeld condition and its transformation to an absorbing
boundary condition for a bounded domain;

4) the used variant of fictitious domain method and iterative procedure;

5) numerical experiments.

The author is grateful to Prof. Yu.A. Kuznetsov (Institute of Numerical Mathematics of
Russian Academy of Sciences) and to Prof. O. Pironneau (University Paris 6 & INRIA) for
formulation of the problem and permanent support of the work.

1 The problem

Scattering of the 2D flat stationary wave v = e'“® by an obstacle §) in a homogeneous
medium is described by the Helmholtz wave equation with the Sommerfeld condition at
infinity:
Au+w?n = 0 in R*\Q,
¥ = —v on o019, (1.1)
lim rl/z(a—: —wu) = 0.

r—00

Here, £ = (x,y)7 is a point of R? with Cartesian coordinates z,y, & = (wcosa,wsina)T
is a wavevector of the incident wave v where « is an angle of incidence, the complex-valued




function u = u(z,y) is the reflected wave, A is the Laplas operator, r is the distance to some
fixed point.

It is known [2, 16] that this problem is correct and has an unique solution.

Perhaps, the boundary condition on 9 in (1.1) is not completely realistic in many cases
but it can be used in the test problem.

2 Variational formulation and approximation

We will use the usual Galerkin’s formulation of the problem for its finite element approxi-
mation, i.e we replace (1.1) by:

/R (Ve V- Wuw)d =0 Yw eH' (R?\ ), (2.2)

where H' (R?\ Q) is the Sobolev’s space of functions in R?\ Q equaled zero on 9 and the
function u satisfies the boundary condition on 92 from (1.1). Hereafter we will use for u the
following equivalent form of the Sommerfeld condition at infinity [3]:

twr

u(r,8) = G(6)<

where (r,8) is some polar system of coordinates.
To solve (2.2)-(2.3) we apply the finite element method, i.e. we build a mesh (R?\ ), and

for r — oo, (2.3)

consider a subspace H} ((R?\ Q),) of piecewise-polynomial functions in (R? \ Q) equaled
zero on 0€);. Let us introduce a basis w;‘, J =1,2,...,00, of this subspace and some function
g* € HY((R?*\Q),) such that its value on 9%, approximates the boundary condition in (1.1).
Let us find the approximate solution u* in the form:

ut = g" + 3 wwl. (2.4)
1=1
Thus we get the infinite-dimensional system of grid equations:
/;RQ\Q) (Vuh - Vw;‘ - wzuhw;‘)dﬂ =0, 7=12,..,00. (2.5)
h

Concrete choice of the mesh (R?\ ), approximation of condition (2.3) and reducing of
(2.5) to a finite-dimensional system of equations will be considered in the next Sections.

3 Fictitious domain (fictitious components) approach

The main idea of fictitious domain approach (in the treatment of [9, 10, 11, 14, 15] followed
by the author) consists in using for solving the arising algebraic system iterative methods
with separable preconditioner which corresponds to an approximation of the same differential
operator in some enlarged domain. To introduce separable preconditioner we have to use
rectangular mesh for rectangular domain. This method is most effective when the last mesh
coincides almost everywhere with the mesh used for approximation except for the near-
boundary region when the rectangular mesh is locally fitted to the boundary for its better
approximation.

Implementation of the fictitious domain method for our problem includes the following
stages.




3.1 Mesh constructing

Let us fix some polar system of coordinates (r,#) and construct in R? a corresponding
rectangular mesh R? = {(r;,60:), 7 =0,1,...,00, k=0,1,...,n4}, where

O=ro<r<r<..,, 0=6<0,<..<8,, =2r.

The couples [(r;,8k), (rj+1,0k)] and [(r;,6k),(r;,0k41)] will be refered as "grid edges” and
the quadrangles with vertices (r;,60k), (7j4+1,0k), (Tj41,0k+1), (7;,6k4+1) as "grid cells”.

Now let us shift on 9€2 some mesh nodes neighboring to it and triangulate all the modified
grid cells in such a way that edges of the new mesh should approximate this boundary.
Description of algorithms of this local modifying is beyond this paper (you can find one of
them in [5]).

It should be emphasized that all lines of this mesh satisfy the equation

C]T‘ + 020 + Ca = 0 (36)

with some constants Cy, C3, Cj.

Thus, the mesh (R?\ Q)4 is built as a union of non-modified cells and triangles belonging
to R?\ Q (see examples in Fig. 1,6).
3.2 Choice of H} and construction of the preconditioner

For approximation (2.5) we will use the subspace H;((R? \ )x) of continious functions u”
bilinear in each non-modified cell:

u = (aur + Bi)( b + B2) (3.7)
and linear in each triangle of (R? \ Q)x:
u® = ar + 6 + 7, (3.8)

with the usual finite element basis w;‘, 7 =1,2,...,00.

Together with it we consider the subspace Hj(R?) of piecewise-bilinear functions v
defined on the non-modified mesh R} and build the following auxiliary system of equations
“without obstacle”:

h

/Rz(vv'*  ViDh — WMty d = 0, j=1,2,..., 00, (3.9)
h

where W are the corresponding basic functions.

It is easy to see that the last system is separable. Its solving will be used as the precon-
ditioning procedure for solution of (2.5) (see Section 3.4).

3.3 Approximation of the Sommerfeld condition
and its transformation

Hereafter we will suppose that the mesh R} is uniform in the both directions:

2
ri=jhey §=0,1,.,00, Ok = khg, k=0,1,....,n5— 1, where hg= n—: (3.10)




Let us denote n, the maximum index j of nodes neighboring to 0€2,. For j > n. we can look
for the solution ujx of (2.5) in the form:

ng-—

1
Uk = Z ugcpi, (311)
i=0

where (denoting mg = [Qﬁf—l] - the integer part of the number 25—2_—1)

(/1 — 0
Tl_g for | = 0,
%sin 27# for 1 =1,2,...,my;

!
Pr ={ _ (3.12)
,/,%9cosgzgl—mm—("E forl=me+1,me+2,...,2my;

1
n_g(_l)k for l =ng — 1.

The function ¢;°~" of the last type exists iff g is an even number.

Having substituted (3.11)-(3.12) into (2.5) we obtain the set of ng independent tridiagonal
systems of equations for uﬁ, [=0,1,...,np— 1:

—Bj_lu;»_l + aju§ — ﬂjU;_*_l =0, yj=n.,n,+1,...,00,
05 = (1= Lu)(2 — 2h%)jho + (G +1)?In EL 4 (j — 171n =L - 27)hy ",

Bi = (1= gu)(1+ §h2®) (G + Pho — i + 5 — 57 + 1) In )Y,

(0 for | = 0; (3.13)
4 sin? ;’{—5 for 1 =1,2,...,mg;
Hi = 9 _
4 sin® ﬂin—g’”’”‘—"l for l = mg+ 1,mg + 2,..., 2my;
| 4 for | = ng — 1 if ng is an even number.

Now let us choose some number n,, > n, and suppose that for r > R, = neh, the
exact solution of (1.1) takes its asymptotic form (2.3) with a sufficient precision. Thus, for
J > ne we may present the solutions of (3.13) in the form:

(flz)j
u; = Glh (Jhg)ln (314)

We can take the value of ¢; directly from (2.3):

qi = et (3.15)

But it seems to the author to be more natural and correct to deduce this one from equations
(3.13) themselves. Substituting (3.14) into (3.13) and neglecting terms of the order of ;=2
we get the equation for ¢

232 2
— shiw

14 éhzwz !

gt —vqi+1=0,where v = (3.16)




from which we have

a=g+iy1- = (3.17)

This number is complex iff the condition

Vs,

hr < \/éw_l = - =~ 0.4A
27
is satisfied (hereafter A = QU” is the wavelength). Of course, it must be actually so for the

sake of approximation.
Some remarks:

1) the value of ¢; does’nt depend on ! and |g| = 1 in both expressions (3.15) and
(3.17);

2) the conjugate value §; corresponds to the wave moving from infinity towards the
centre;

3) the error of representation (3.14) with ¢ taken from (3.17) is of the order of

(n-/5)?.

Thus, we have obtained the following boundary condition:

U4y = QI”].]?ULOO. (3.18)

Now let us transform it to a boundary condition on the mesh line j = n, by means of the
usual Gauss elimination in (3.13) for each [, i.e. we substitute (3.18) into (3.13) and then
move towards the centre:

L B; . (3.19)

] =Ne — 1,0 — 2,...,0,.

Aj+1 — ﬂj+12§+1 ’
Thus, we get the needed boundary condition:

! ;o
Up 41 = 2 Uy - (3.20)

It has been proved that process (3.19) is numerically stable. The proof is not complicated
but rather cumbersome.

Let us order equations of (2.5) and corresponding nodes with j < n, and represent this
problem in the algebraic form (using (3.20) for excluding u!, ,):

Au = f. (3.21)

Then let us prolong the node ordering onto R: and introduce the matrix B corresponding
to system of equations (3.9). Of course, the dimension N of the matrix A is less than the
dimension Ny of the matrix B. Hereafter we will identify the Ny-dimensional vectors and
the grid functions on R? using the introduced node ordering.



3.4 Enlargement of the problem and iterative process

As it has been mentioned in Section 3, fictitious domain method consists in using the matrix
B~! as the preconditioner in an iterative process for solving problem (3.21). But before that
we have to enlarge (3.21) to obtain an equivalent Ny-dimensional algebraic problem:

o

Av=1 . (3.22)

Let us represent the matrix B in the block form:

Bll 312
B = , 3.23
[ Ba B ] (3:23)

where B;; is an N x N matrix.
The following ways of enlargement (3.22) are known [11, 15]:

0 A 0 o f
a=1 2 D f= , 3.24
[&an] f[o] (3:24)
with some submatrices By, By (“lower enlargement”) and
° | A Blg S f
A= [ 0 By ] , f= [ 0 ], (3.25)

with some submatrices Bu, Bn (“upper enlargement”).
Let us represent the vector @ from (3.22) in the same form:

u= [ U ] . (3.26)

Uz

Obviously, the vector u; and the solution u of (3.21) always coincide in the first case and
they coincide in the second case if the matrix Bn is not degenerate.

Now we can apply to solving (3.22) an iterative method with the preconditioner B™!,
e.g. the generalized minimum residual method (GMRES):

0 o
u=BlF,

P
)= = YamE T, m 21, (3.27)
m=1

on on—1

B(u —u

[+] (]
where £" =Au - f is the nth residual, p is some number and the parameters v, are
chosen from the condition

I€" |2 = min.

To implement this method it is necessary to solve system of equations with the matrix
B at each step. It can be done by means of the well-known fast direct method that uses
separation of variables (see Section 5).

It is well known [1, 9, 11, 15] that the convergence of the iterative method strongly
depends on the chosen way of enlargement (3.22) and on the choice of Bn, Bn, B,;. The
first way (3.24) is usually used with ég]_ =0, ng = 0 because it is the best choice of them

7




for self-adjoint problems [9, 11, 15]. Application of this variant to solving the Helmholtz
wave equation has been considered in [12, 13].

The second variant (3.25) of the method had not been applied before to the problem
under consideration. The author has implemented it and carried out numerical experiments
for the both variants with comparison of results (see Section 7).

_ Remark. If for some number jg all the nodes (r;,60;), 7 < jo, k =0,...,n5 — 1 belong to
(1, then we can decrease the dimension of B prescribing v;x =0, k¥ =0,...,n — 1 in (3.9).

4 Implementation within the subspace

Let us suppose that all the rows of submatrices B;2 and Bj; coincide except for (maybe) the
rows corresponding to nodes of 32, and neighboring ones. Let us introduce the matrix

C=B-A. (4.28)

It is easy to see that all the rows of B and ;1 coincide except for the rows corresponding
to nodes of 9§ and neighboring nodes of R2. We denote by S, the union of these sets of
nodes. Thus, all the rows of C are equal to zero except for the rows corresponding to nodes
of Si. The total number of such nodes is of the order of N1/2,

It follows from (3.27) that

£ =_CB¥. (4.29)
Hence, £° € imC, i.e. this residual vector is equal to zero everywhere except on the nodes
Of Sh.
Method (3.27) can be rewritten as follows:
€ =-CB™'f, C¥'=CB7],

p °
="~ mmABTIETT, n 21,

— (4.30)
n on— P
Ci'=C8" =3 YamCB ™™ n > 1,
m=1
and .
AB ¢ = (I -CB™')¢ (4.31)

for any vector £ (using the definition of C). It is easy to see from (4.30)-(4.31) that all the

o
vectors (", A B™'¢™ belong to the image of C, i.e. are equal to zero everywhere except on
the nodes of S4.
Thus, we can implement this iterative process by storing only O(/N'/2) components of

vectors &7, ZB"E" (because the other components are equal to zero). Calculation of
linear combinations of vectors in (4.30) and scalar products in GMRES requires p O(N'/?)
arithmetic operations. The last property of the method is very important especially when p
is a big number.

It is easy to see from (4.31) that to calculate vector A B~1¢ we need values of B¢ only
at nodes of S, (because a value of C B~'¢ depends only on them). While a vector B™¢ is

known the calculation of A B=1¢ requires O(N'/?) arithmetic opcrations.

8




It follows from above that the implementation of the method under consideration requires
O(N'?) computer memory locations and p O(N'/?) arithmetic operations per step except
for calculation of vector v = B~'£. The last problem is considered in the following Section.

Remark. We don’t know exact values of some coefficients of the matrices A and B due
to the used approximation of the Sommerfeld condition. But it is not necessary for us to
know them. It is sufficient that they coincide in the both matrices.

5 Partial solution algorithm
To implement the considered method the linear system of equations

Bv=¢, (5.32)

should be solved at each step, where a right-hand side £ belongs to the subspace imC, i.e.
it can be distinct from zero only at nodes of S,. It is necessary to calculate a solution v only
at the same nodes. This problem is called “the partial solution problem”.

Now we will describe an algorithm for solution of this problem which was proposed in
(4, 9]. It is a modification of the well-known fast direct method that uses separation of
variables.

We will try the solution to (5.32) in the form (3.11) for j < n,:

719—1

Uik = ) Ui (5.33)

=0

Let us represent a right-hand side of (5.32) in the same form:

ng—l
Ein=3 bl (5.34)
=0
It is well known that
ng—1
6; = (Sol,é_y) = Z f]k‘foﬁw ] = 0, ceey Ny l= 0, 1, .y Ng. (535)
k=0

Substituting (5.33) and (5.34) into (5.32) we obtain ng independent linear systems of
equations with the tridiagonal matrices:

0 0 0
aovg — Povy = &,
. l ST R JPN B y—
_ﬂj_lvj_l + aij ﬂjvj_*_l —_ j’ j — 1,..., n,—,
l= 0,1, ey g — 1,

{ — 1
ne4+1 = znrvnr’

(5.36)

v
where
ag = 0.5(1 — Lh2w?)hg, fo=0.5(1 + £h%w?)hy,

vy = 0 for I # 0 and the coefficients a;, B; for j > 0 have been presented in (3.13).
Thus, we have the following algorithm for solving (5.32):




Algorithm. For I =0,1,...,ny — I
1. Calculate f;-, 7 =0,1,...,n,, for a given | by means of formula (5.35).

2. Solve system (5.36) for a given [ by means of the Gauss elimination method for
tridiagonal matrices, i.e. we calculate the coefficients v;-.

3. Add the Ith items in (5.33) only for vertices of S.

Let us estimate the number of arithmetic operations in this Algorithm. The first step
requires O(N'/?) operations for each I because ;i can be nonzero only at vertices (r;,8;) € Sy
and dim S, = O(N'/?). The third step requires O( N'/2) operations for cach [ as well because
we calculate v, only at the same nodes. The second step obviously requires O(n, ) operations
for cach I. Hence, partial solution of problem (5.32) requires O(N'/2? 4 n,) - ng = O(No)
arithmetic operations.

It is easy to see that it requires O(N'/2) computer memory locations.

It follows from the present and previous Sections that the method under consideration re-
quires O(N'/?) computer memory locations and each step requires O( Ny + pN'/?) arithmetic
operations.

Remark. To be numerically stable the first stage of the Gauss elimination method should
be implemented in the direction “from the boundary ;7 = n, to the centre”. But it is
attractive to implement it in the opposite direction because then we would get recal matrix
coefficients (except for the last one) and hence less computing time. Maybe, the latter variant
with non-monotonic pivoting can be used.

6 Calculation of an approximate solution and post-
processing

After completion of the iterative method (4.30)-(4.31) we don’t yet have the approximate

iterative solution @ itself. We only have the vector C # ™. To calculate @ we use the following
obvious relation for the precise solution :

Bi=Cu+f. (6.37)

max

Substituting C4 " by Ct in (6.37) we obtain

o Mmax o0

+f)=BCd™ 44 (6.38)

o max

i=B"Cu

Only some components of & are usually needed in practice for postprocessing. To calculate
them we can solve the corresponding partial solution problem (5.32) with the right-hand side

0 Mmax

Cu + }

In practice it is often necessary to calculate the values Gxn, & = 0,1,...,n9 — 1 in the
asymptotic expression (2.3). Obviously, the corresponding Fourier coefficients G} satisfy the
relations (sec (3.19):

Ho= (2l 2l 2k (ne + D)YE gL, 1=0,.,mp — 1. (6.39)

10




Thus, we can calculate the multiplications of z§ for cach [ in advance (during process (3.19)),
use them in (6.39) and then obtain G, by means of the reverse Fourier transformation:

ngl

Gkh —_ E Gh(pk (6.40)

=0

7 Numerical experiments

The author has carried out a lot of numerical experiments where the considered problem
was solved by means of the methods described above. Variant (3.24) was considered with
By = 0, By, = 0, both without and with the strengthening from [13]. Variant (3.25) was
considered with Bn = Blg, 322 = 322

Here the main conclusions from these experiments are:

1. Iterative method (4.30) with p = 100 and upper enlargement (3.25) converged for all
the considered obstacles §2 and values of w.

2. It always required less computing time than variant with lower enlargement (3.24).
In many cases the latter one didn’t converge at all (even if the strengthening from [13] was
used).

3. If an obstacle was fixed then the number of iteration in the variant with upper
enlargement weakly depended on the meshsize for a fixed value of w but was approximately
proportional to the last one for a fixed value of A/h.

4. This variant of fictitious domain method works sufficiently faster than other known
methods for solving the problem.

5. It is able to solve huge problems with big values of N and number of wavelengthes
per obstacle.

Results of the experiments with this variant for several concrete obstacles §) are presented
below. All of the experiments were carried out with p = 100 (see (4.30)) and no = 50n,
(see Section 3.3).

7.1 Circle

This obstacle was considered for testing the approximation and the computer program be-
cause the exact solution of (1.1) was known. In the experiment we took A = 2R, h, = R/10
and ny = 80 where R was the radius of the sphere. The iterative method was stopped when
the following criterium was satisfied:

_ Lt
1711

The comparison of the calculated solution and the exact one was carried out within the
ring R < r < 2R in the C%norm (courtesy of F.Baron). We got the precision equaled
1.2 %. The same comparison for the piecewise-linear approximation of the problem gave the
precision equaled 2.6 %.

<1078, (7.41)

7.2 The Il-shaped open resonator

This obstacle is presented in Fig. 1 together with the locally fitted mesh used for the calcula-
tions. In the experiment we took A equaled to the inner width of the resonator, h, = A/20 and

11




ng & 2rn, (i.e. the grid cells near the artificial boundary r = n,h, were approximately equi-
lateral). The mesh in Fig. 1 has the following parameters: n, = 47, ng = 280, Ng = 13161.
The experiments were carried out for various values of the incidence angle o (see Section 1),
from a = 0° to @ = 90°, with computer Apollo-DN5500.

The curve “log,, -H%lll versus CPU time” for a = 30° is presented in Fig. 2. It doesn’t
2

start from zero due to an overhead cost = 20 sec (including mesh generating and calculation
(3.19) of the coefficients 2}, , | = 0,1,...,ng — 1). To obtain the precision ¢ = 107° (see
(7.41)) computing time was about 5 min and number of iterations was from 55 to 60 for all
values of a.

The calculated solution for a = 30° is presented in Fig. 3 (20 isolines of the real part)
and in Fig. 4 (20 isolines of the imaginary part).

Besides that the same problem was solved on the finer mesh with n, = 93, ny = 560, Np =
52081. Computing time was about 25-30 min and number of iterations was about 60-70.

The calculated solution for a = 30° is presented in Fig. 5 (20 isolines of the real part).

7.3 The airplane-like obstacle

This obstacle is presented in Fig. 6 together with the locally fitted mesh. The experiments
were carried out for various values of the incidence angle a and of the coefficient w, with
computer Apollo-DN10000.

Parameters and results of three experiments for this obstacle are presented in the follow-
ing Table:

w | Wavelengthes f\: o € n., | ng No Number Computing
per obstacle of iterations time

1.2 3.6 26 [ 90° [ 107° [ 53 | 320 14400 33 41 sec

8 24 10| 0° [107¢ | 130 | 750 | 83250 213 23 min

15 45 10| 0° {106 | 259 [ 1500 | 330000 406 3h

30 90 10| 0° [107* | 518 | 3200 | 1414400 401 10 h

Table 1. Results of calculations for the airplane-like obstacle

The corresponding solutions are presented in Fig. 7-10 (isolines of the real part)

8 Conclusion

Thus, the considered variant presented itself in the numerical experiments in a very good
light. But there are still several open questions concerning to it:

1. Correctness of the method. As it has been mentioned in Section 3.4 the method
with upper enlargement is correct if the matrix By, is non-degenerate. But, generally speak-
ing, it is not always so. We can only say that the degeneracy of Baa (or existing of its
eigenvalues very close to zero) has a little probability in real practical problems.

2. Convergence of the method. It has not been yet theoretically proved saying
nothing about theoretical estimations of its rate.

3. Optimal choice of the matrices B]Q, Bn for better convergence.

All of them require subsequent investigations.
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