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Stratified Least Fixpoint Logic
Kevin Compton

Abstract. Stratified least fizpoint logic, or SLFP, characterizes the expressibility of stratified
logic programs and, in a different formulation, has been used as a logic of imperative programs.
These two formulations of SLFP are proved to be equivalent and a complete sequent calculus
for SLFP is presented. It is argued that SLFP is the most appropriate assertion language for
program verification. In particular, it is shown that traditional approaches using first-order
logic as an assertion language only restrict to interpretations where first-order logic has the
same expressibility as SLFP.

Logique de Plus Petit Point Fixe Stratifiée

Résumé. La logique de plus petit point fire stratifiée, ou SLFP, caractérise l'expressibilité
des programmes logiques stratifiés et, dans une formulation différente, a été utilisée comme
logique de programmes impératifs. Nous prouvons que les deux formulations de la SLFP sont
équivalentes et nous présentons un calcul des séquents complet pour la SLFP. Nous soutenons
de point de vue que la SLFP est le langage assertionnel le plus approprié pour la vérification de
programmes. En particulier, nous montrons que les approches traditionnelles utilisant la logique
du premier ordre comme langage assertionnel se réduisent seulement 3 des interprétations la ou
la logique du premier ordre a la méme expressibilité que la SLFP.
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Abstract

Stratified least fizpoint logic, or SLFP, characterizes the expressibility of stratified logic
programs and, in a different formulation, has been used as a logic of imperative programs.
These two formulations of SLFP are proved to be equivalent and a complete sequent calculus
for SLFP is presented. It is argued that SLFP is the most appropriate assertion language
for program verification. In particular, it is shown that traditional approaches using first-
order logic as an assertion language only restrict to interpretations where first-order logic
has the same expressibility as SLFP.

1 Introduction

Although the logical foundations for both logic programming and program verification have been
widely studied (see Apt [4], Kanellakis [26], Cousot [15], and Kozen and Tiuryn {29]), there is
a close connection between the two that has generally gone unnoticed. We shall study a logic
that was introduced independently by researchers in these two areas for quite different reasons.
In logic programming, this logic characterizes the expressibility of stratified logic programs. For
that reason we will call it stratified least fizpoint logic or SLFP. This logic is equivalent to the
formally continuous p-calculus introduced by Park [38). We prove this equivalence, which is not
immediately obvious, and then present a sound and complete sequent calculus (or Gentzen-style
deductive system) for SLFP. From this we will derive some implications for program verification.
We then argue that SLFP, not first-order logic, is the most appropriate assertion language for
program verification. Finally, we prove some results about the expressibility of SLFP showing
that a widely used approach to the difficulties of using first-order logic as an assertion language
really just restricts to structures where first-order logic has the same expressibility as SLFP.
Stratified logic programming was devised as a means to introduce a limited form of negation
in logic programming. The idea was first discovered by Chandra and Harel [12] and has been
investigated, and sometimes rediscovered, by many others (see Apt and Blair 5], Apt, Blair,
and Walker [6], Barbuti and Martelli [9], Naish [36], Przymusiniski [39], and Van Gelder [44]).
For Chandra and Harel, the idea arose naturally from consideration of a logic they called
YE. We will call it ezistential least fizpoint logic or ELFP. This logic expresses the queries
of (unstratified) logic programs. It has a least fixpoint operator, but allows only existential



quantification. Also, negation may be applied only to atomic formulas containing no relation
variables. In logic programming, this corresponds to forbidding negation of intensional symbols.
(Definitions pertaining to logic programming are given in section 2.) No problems arise with the
queries expressed by such programs because intensional relations are defined by a least fixpoint
construction from extensional relations and their complements.

An obvious generalization is to consider programs whose relation symbols may divided into
strata so that the intensional relations in one stratum are defined by a least fixpoint construction
from relations and complements of relations defined in lower strata. This kind of reasoning led
Chandra and Harel to the notion of stratified logic programming. They did not go on to
formulate a logic that corresponds to stratified logic programs as ELFP corresponds to logic
programs without negation of intensional symbols, but it is straightforward to do so from their
paper. (They mistakenly asserted that stratified logic programs have the same expressive power
as least fixpoint logic; Dahlhaus [16] and Kolaitis [28] gave a counterexample to this assertion.)

Park [38] formulated the formally continuous p-calculus for entirely different reasons than
Chandra and Harel. Rather than extending the expressibility of a more limited logic, such as
ELFP, he sought to restrict the expressibility of a more general logic, the u-calculus or least
fixpoint logic. This logic is obtained by adding to first-order logic the capability to describe
least fixpoints or inductive definitions. Park had used the y-calculus earlier [37] as a formalism
to express induction principles for program proving. Later Aho and Ullman (2] rediscovered
this logic and proposed that it be used as a database query language. In Park’s formulation,
this logic has relation variables which interpret inductively defined relations: one may specify
.the least relation P(Z) holding whenever J(P, %) holds. To guarantee the existence of such a
relation, P is required to occur only positively in 9 (i.e., always within the scope of an even
number of negations). This is a sufficient condition for the function Fy(P), which maps P to
the set of values @ satisfying J(P, @), to be monotone. ' ‘

The least fixpoint construction justifies the term inductive definition: the least fixpoint of Fy
results from repeated application of Fy starting from the empty relation. It may be necessary
to apply Fy a transfinite number of times, taking unions at limit ordinals. If Fy happens to be
continuous (i.e., Fy(Unew Pn) = Unew Fs(Pn) whenever Po C P, C ---) then this construction
converges by stage w. This is often desirable from a computational viewpoint. Park’s idea
was to further restrizt the syntax of the u-calculus so that Fy will always be continuous, not
just monotone. He required that negation be applied only to formulas with no free relation
variables. This gives a logic between ELFP and least fixpoint logic. De Roever described a
similar logic around the same time and made the observation that the sentences of his logic
were “syntactically continuous” (see [17]).

It is not difficult to see that ELFP is strictly less expressive than SLFP even on finite
structures. Blass and Gurevich [11], for example, show that ELFP sentences are preserved
by extensions. But since SLFP contains first-order logic, there are SLFP sentences that are
not preserved by extensions. Dahlhaus [16] and Kolaitis [28] proved that SLFP is strictly less
expressive than least fixpoint logic on finite structures. In their proofs they considered the
“existential fragment” of least fixpoint logic. This fragment is equivalent in expressive power
to SLFP.

Kolaitis also showed that SLFP is strictly less expressive than least fixpoint logic on infinite
structures. We will give another proof of this in section 5 as a corollary to a result on the
expressive power of SLFP. This result is analogous to a theorem of Aczel [1] on systems of
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positive existential inductive definitions. These are equivalent to ELFP formulas containing a
single simultaneous inductive definition. Chandra and Harel showed that every ELFP formula is
equivalent to a formula with just one such inductive definition, so Aczel’s result may be viewed as
a result about ELFP definability. From this perspective, it says that in ezistentially acceptable
structures, the ELFP definable sets are precisely the £9 sets. A structure is existentially
acceptable if contains an existentially definable copy of the natural numbers and an existentially
definable relation coding all finite sequences of elements. We will show that on existentially
acceptable structures the sets definable by SLFP sentences corresponding to programs with n
strata are the L0 sets.

Aczel’s result was inspired by a result of Moschovakis [35] stating that on acceptable struc-
tures the inductively definable sets are the II! sets. Acceptable structures (sometimes also called
arithmetical structures in program verification) are defined in the same way as existentially ac-
ceptable structures except that the condition of existential definability is relaxed to first-order
definability. We will show that on the acceptable structures the SLFP definable sets are the
first-order definable sets. This, combined with a result of Blass and Gurevich [11] showing that
weakest preconditions and strongest postconditions for a programming language with recursive
procedures are expressible in ELFP, explains why acceptable structures often arise in program
verification (see, e.g., Cook [14] and Harel [23]).

Hoare [24, 25] originally used first-order logic as the assertion language for program verifi-
cation. Attempts to find a complete Hoare logic for program verification uncovered a variety
of problems. Cook [14] found a way around some of these problems by showing that if inter-
pretations (structures on which programs operate) are required to be ezpressible (i.e., strongest
postconditions are first-order definable), then Hoare logic is complete for proving partial cor-
rectness. Unfortunately, Lipton [32] showed that expressible interpretations are quite restricted.
One approach to this difficulty has been to use logics other than first-order logic as the assertion
language. In this direction Stavely [41] considered monadic logic with second-order quantifica-
tion, Back (7, 8] concidered L,,,,, and Leivant [31] considered full second-order logic. These have
certain theoretical advantages, but are unsuitable for practical program verification. Monadic
logic is expressively meager and second-order logic does not have a complete deductive system.
Sentences of L, may not even be recursively enumerable, let alone finite.

It is natural, in light the expressibility result of Blass and Gurevich, to ask if ELFP is a
reasonable assertion language. ELFP seems at first to hold promise as an assertion language
since it has a deductive system, although, as with L, an infinitary one. However, besides the
obvious drawbacks of an assertion language with no universal quantification, ELFP has a very
conspicuous deficiency: program correctness is not a logical property with respect to ELFP.
By this we mean that a pair of structures may satisfy precisely the same ELFP sentences, but
still there may be a an asserted program true in one and false in the other. When we consider
the modifications reeded to rectify this, we discover that we must be able to negate formulas
with no free relation variables. This leads directly to SLFP. Both partial correctness and
total correctness are logical notions with respect to SLFP. This demonstrates the superiority
of SLFP over first-order logic as an assertion language. Partial correctness is a logical notion
with respect to first-order logic, but total correctness is not.

The infinitary nature of the deductive system for SLFP cannot be avoided. Neither ELFP
nor SLFP is compact (see Compton [13]), so neither has a finitary deductive system. The
sequent calculi we present for these logics contain just one infinitary rule. Since they do not



contain the cut rule (see Takeuti [42]) it will follow that the infinitary rule can sometimes be
avoided. As an example, we show rather easily that there is a finitary deductive system for
total correctness proofs of programs with first-order assertions.

The idea of using infinitary rules for programming logics and, in particular, of embedding
the logics in L, ., has a long history. Engeler [20, 21] was the first to do this in formulating
an extension of first-order logic in which algorithmic properties could be expressed. Salwicki
[40] took up and extended these ideas. Infinitary rules for programming logics have been used
extensively since that time (see the summaries in Harel {23] and Kozen and Tiuryn [29]). We
will suggest ways of dealing with infinitary rules.

2 Description of the Logic.

To describe SLFP, let us first look at a standard textbook example: a Datalog query about
membership of a pair (¢,d) in the reflexive, transitive closure of a binary relation £. (Datalog
is pure Prolog with no function symbols.)

P(x,y) « x=v,.

P(x,y) « Elx,y).

P(x,y) « Pix,z),E(z,y).
-? P(c,d).

This program consists of three rules which constitute an inductive definition of a relation
P, followed by a query about membership in P. In ELFP we would write

[P(z,y)==z = yVE(a:,y)vBz(P(x,z)/\E(z,y))] P(c,d).

The part of the formula within the square brackets is an inductive definition of the relation
P. This definition is used in the formula that follows. (Blass and Gurevich use the notation
LET .- . THEN rather than [---).) Notice that an inductive definition binds variables just as a
quantifier does, so it goes before the formula.

Now suppose that we wish to make a query as to whether there are at least three components.
We would like to a1d the following to the program above.

Q) ~ -P(x,y),~P(y,z),-P(z,x).
-7 QQ).

This would not be allowed in Datalog because negation is forbidden. This restriction avoids
problems of convergence in examples such as

P(x,y) — -P(x,y).

One solution to this problem is to divide the rules defining relations into strata. Within
each rule the only symbols that may be negated are those defined in lower strata. Thus, the
query about three components would be allowed since the definition of @ may occupy a higher
stratum than the definition of P, but the program where P appears negated within its own
definition is not allowed. This is the essential idea behind stratified logic programs.

Let us make this precise. Fix a vocabulary V of constant, function, and relation symbols.
The symbols in V are the eztensional symbols. Also fix a set of relation symbols, disjoint
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from V. These are the relation variables or, in database parlance, the intensional symbols.
Element variables will be specified by lower case letters such as z, y, z, z,, 22, while relation
variables will be specified by upper case letters such as P and Q. Each relation variable P has
a specified arity and we assume that we have a potentially infinite number of relation variables
of each arity. We now form terms in the usual way using function and constant symbols in V
and element variables. We form atomic formulas by applying either intensional or extensional
relation symbols to tuples of terms, or by equating two terms.

Definition. A rulzis an expression of the form P(£) — ay,...,a; where P is an intensional
symbol, the elemerts of £ are distinct, and each a; is an atomic or negated atomic formula.
P(Z) is the head of the rule and the formulas «; form the body of the rule.

This definition may appear to be more restrictive than the usual definition in logic program-
ming where arbitrary terms rather distinct variables may occur in the head of a rule. However,
since we allow equality, it can be shown that a rule of the form P(¢,...,¢;) « ay,...,0x may
be replaced with

P(zy1,..,z;) = T1=1,...,Z; = t;,a1,...,Qk.

Definition. A general program is a finite set of rules in which every intensional symbol that
occurs appears at least once at the head of a rule.

The dependency graph of a general program is a directed graph whose vertices are the relation
variables of the program, with (P, Q) as an edge whenever there is a rule in the program with
P at the head and @ somewhere in the body. An edge (P, Q) is negative if there is a rule in
the program with P at the head and @ negated somewhere in the body. P is dependent on
Q if there is a pat1 from P.to @ in the dependency graph and negatively dependent if there
is a path from P to () containing a negative edge. A logic program is a general program in
which no occurrence of an intensional symbol is negated. This is equivalent to saying that the
dependency graph contains no negative edges. A stratified logic program is a general program
such that no cycle of its dependency graph contains a negative edge; i.e., no relation symbol is
negatively dependeri on itself.

A query is a pair (S, P(Z)) where S is a logic program, P is intensional symbol occurring
in §, and 7 is a sequence of distinct element variables. A stratified query is defined in the same
way except that S is a stratified logic program.

We can now give the semantics for a stratified logic program §. The intensional symbols of
S (and thus, using their head symbols, the rules in §) may be stratified (or partitioned into a
linearly ordered set of classes) so that a relation variable in a particular stratum depends only
on variables in its own or lower strata, and depends negatively only on variables in lower strata.
The interpretations of relation variables are then given by the usual least fixpoint construction
beginning at the lowest stratum and working upward. Apt, Blair, and Walker [6] show that the
resulting interpretations of intensional symbols are independent of the particular stratification
used. The stratified juery (S, P(£)) is interpreted by the set of tuples satisfying P(Z) when P
is interpreted according to S.

It is useful to nave a canonical stratification for a stratified logic program S. Let V,
contain the intensicral symbols P such that in the dependency graph the maximum number of
negative edges along any directed path beginning at R is n. It is not difficult to see that the



canonical stratificasion is of minimal size. The depth of a stratified query (S, P) is the number
of elements in the canonical stratification of S.

Now let us define the FLFP and SLFP formulas. As before, we assume that we have a fixed
vocabulary V and a set of relation variables.

Definition. The set F of ELFP formulas ¢ over V is the least set containing the atomic
formulas and satisfying the following conditions.

(i) If ¢ is a formula in F containing no relation variables or quantifiers, then (=%) is in F.
(i) If 4 and 9 are in F, so are (¢ V 9) and (¢ A 9).
(iii) If 4 is in F and z is an element variable, then (3z 9) is in F.

(iv) If ¥ and 9 are in F, P is a relation variable of arity k, and & = (z,,...,2) is a sequence
of distinct element variables, then ([P(Z) = 9] ) is in F. The initial part of the formula,
viz., [P(£) = 9}, is called an inductive definition.

We follow the usual conventions for deleting parentheses in formulas.

Definition. For each ELFP formula ¢ define free(¢), the set of free variables in ¢, and the
free occurrences of variables in ¢. When ¢ is atomic, free(¢) is the set of element and relation
variables in ¢; all occurrences of variables in ¢ are free. Free variables in formulas constructed
using logical connectives and quantifiers are handled in the usual way. Finally,

free(|P(z) = 9] %) = ((free(d) = {z1,- -, 2;}) U free(w)) - {P}.

The free occurrences of variables in [P(Z) = 9] ¢ are the free occurrences of variables of free(¥) -
{P,zy,...,z;} in ¥ and the free occurrences of variables from free(y) — { P} in 9. As usual, a
sentence is a formula with no free variables.

Let us now give the analogous definitions for SLFP. Strictly speaking, the notions of formula
and free variable should be defined by simultaneous induction.

Definition. Inductively define the set F of SLFP formulas by making two modifications in
the definition of ELFP formulas above. First, condition (i) is replaced with the following.

(i) If ¥ is a formula in F containing no free relation variables, then (=) is in F.

In addition, it is convenient (though it does not increase expressive power) for formulas to
contain universal qiantifiers. We add the following condition.

(v') If ¥ is a formula in F containing no free relation symbols and z is an element variable,
then (Vz ¢) is in F.

To define the notion of a free variable and a free occurrence of a variable in an SLFP formula,
add the obvious condition to cover universal quantification.

When we write ¢(z/t) we mean that term ¢ has been substituted for all free occurrences of
the element variable z in . All uses of this notation are subject to the proviso that occurrences
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of variables in t be free wherever ? is substituted. In the case where t is just a single variable
y we often write ¢(y) rather than ¢(z/y). The notation -y is defined only when ¢ contains
no free relation variables. The notation ¢(P/p) means that all subformulas of ¢ containing
free occurrences of the relation variable P are replaced by formula p. (To be precise, we
should specify a sequence of k distinct element variables in p, where k is the arity of P; the
correspondence between element variables of P and element variables of p will always be clear
from context.) All uses of this notation are subject to the proviso that free occurrences of
variables in p remain free wherever p is substituted.

We now give the semantics of ELFP and SLFP formulas. As usual, we define by induction
on ¢ the relation & |= p[a] (A satisfies ¢ at @), where a is an assignment in 2. More precisely,
suppose ¢ has free relation variables Py,..., P., with respective arities j;,...,Jk, and free
element variables z;,z,,...,z;. Fix a structure 2. An assignment a for ¢ can be represented
as a sequence (Ry, Ro, ..., Ry, ay,...,a;), where each R; is a j;-ary relation on ¥ and each q; is
an element of 2A. With ¢ we will associate a function F, mapping sequences (R;, R2,..., Rk)
to l-ary relations on U;

F‘p(Rl,Rz,...,Rk) = {(al,...,a1)|Ql '= QO[RI,Rz,...,Rk,(l],...,(l]]}.

Simultaneously with our definition of satisfaction, we also show that F, is continuous; i.e.,

that

U Fo(Riar- -, Rka) = Fo( | Riay- s | Ria)

alA agh a<
for all chains (R, | @ < A) of j;-ary relations. Notice that if F, is continuous, it is monotone as
well; i.e., Fy(Ry,...,Rx) C F (R, .., R}) whenever Ry C R{,..., Ry C R}. By a continuous
(or monotone) formula, we mean a formula ¢ such that F, is continuous (or monotone).

If ¢ is atomic, A = p[a] is defined in the usual way and F,, is clearly continuous. Also, if ¢
is a disjunction, coajunction, negation, or quantified formula, % | ¢[a] is again defined in the
usual way, and it is rot difficult to see that ¢ is continuous. (Notice, however, that it is crucial
that negations are not applied to formulas with free relation variables.)

Let us define 2 = p[a] when ¢ is of the form [P(Z) = J] ¢ assuming that ¥ and ¢ are
continuous and their truth values have been defined for the assignment a. Let the assignments
to variables other than P and £ = (z;,...,2) be given by the assignment a. We thereby obtain
from Fy a continuous mapping G from k-ary relations to k-ary relations. G is monotone and
hence has a least fixpoint by the Least Fixpoint Theorem (or at least by one of the theorems
that go by this name; see Lassez, Nguyen, and Sonenberg [30]).

The well known construction of the least fixpoint of a monotone function is as follows. Let
G°(R) = R, GP*(R) = G(GP(R)) and if § is a limit ordinal, G?(R) = U,<; G"(R). By
induction GP(9) C G"(9) whenever 8 < 4. On each structure there is a smallest ordinal
(called the closure ordinal of the inductive definition [P(Z) = 9)) such that GA(0) = G*(0)
whenever § > k. G*(0) is the least fixpoint of G. Since G is continuous, it follows that k < w
(see [30]). Thus, A  ¢[a] holds in case A = P[a’], where o' is identical to a except that it
assigns G“(0) to P.

It will be useful to define, for each nonnegative integer m, the formula

[P(Z) = 9], ¥.



A | [P(Z) = 9], ¥[a] holds just in case A |= [a”], where o is identical to a except that
it assigns G™(0) to P. We regard this formula as an abbreviation. Construct a sequence of
formulas po, p1, p2, - - ., where pg is the formula 32 (~z=z) and pm4; is the formula 9(P/pm).
Then [P(£) = ¥}, % is an abbreviation for ¥(P/pm). Call this formula ¢,,.

Since continuity is preserved by composition, each of the functions F,, | is continuous. More-
over, the sequence F,,, F, , F,,,...is a chain (in the partial order of function dominance) with
supremum F,. Since the supremum of a chain of continuous functions is continuous, F,, is
continuous. (See Theorem 4.18 of Loeckx and Sieber [33].) It follows that [P(£) = J]v is
equivalent to the infinite disjunction

V [P(&) = 9], ¥

mew

We summarize our observations in the following theorem.

Theorem 2.1 The following hold for ELFP and SLFP.
(i) All formulas are continuous (and hence monotone).
(1) The closure ordinal of any inductive definition is at most w.

(iii) [P(Z) = 9] 9 is equivalent to \/, ¢ [P(Z) = 9], . Thus every sentence is equivalent to a
sentence of L,

This theorem is due to Park [38]. Part (ii) of this theorem was observed by Aczel [1] for
systems of existential inductive definitions. Blass and Gurevich [11] observed that (ii) is true
for ELFP formulas.

In practice we extend the definitions of ELFP and SLFP to cover simultaneous inductive
definitions, as Blass and-Gurevich did in their definition of ELFP. By this we mean that rather
than a single relation variable P and formula ¥, we allow multiple relation variables and formulas
in inductive definitions. Thus, we allow formulas of the form

where we make the obvious modifications to define several relations simultaneously. This does
not change the expressive power of the logic, nor any of results above. A formula with si-
multaneous inductive definitions may always be transformed into an equivalent formula with
only simple inductive definitions. This was first proved by Chandra and Harel [12]; their proof
was based on a similar result of Moschovakis [35] for inductive definitions. Exactly the same
construction works for SLFP. We also define the formula

[Pi(Z1) = 15+ Pu(Te) = Oilm ¥
analogously to the formula [P(Z) = 9], .

Definition. The negation rank of an SLFP formula is defined as follows. The negation rank
of a formula containing no quantifiers or inductive definitions is 1. The negation rank of p vV ¢
and ¢ A ¥ is the maximum of the negation ranks of ¢ and 3. The negation rank of
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is the maximum of the negation ranks of ¥,,...,7: and 9. The negation rank of 3z ¢ is the
negation rank of ¢. If ¢ contains a quantifier or inductive definition, the negation rank of —¢
is one more than the negation rank of ¢.

Now we show that SLFP formulas have the same expressibility as stratified queries.

Theorem 2.2 Let n be a positive integer. For every stratified query (S, P) of depth n, there
is an equivalent SLFP formula v of negation rank n. Conversely, for every SLFP formula of
negation rank n without free relation variables, there is an equivalent stratified query of depth
n.

Proof. The first half of the theorem is proved by induction on n. The base case n = 1 is easy.
It was essentially proved by Chandra and Harel [12].

Suppose that (S, P(¥)) is a stratified query of depth n and that the theorem is true for all
stratified queries of smaller depth. We we must produce an SLFP formula ¥p(Z) of negation
rank at most n equivalent to (S, P(%)).

Let V},...,V, be the canonical stratification of the intensional symbols in & and S; be the
set of rules in & whose heads are in V;. Notice that &' = §; U---U 8,1 is a stratified logic
program of depth n — 1 and that any relation symbol in V! = V; U -.-U V,,_; has the same
interpretation in &’ as in §. Thus, if P is in V’, we know by the induction hypothesis that
there is an SLFP formula ¥p equivalent to the query (S§’, P). Note that ¥p has no free relation
variables and has depth at most n — 1,

Now consider the case where Pisin V. Let Pj,..., P be the relation variables in V,, where
P is Py, say. Without loss of generality we may suppose that the heads of all rules where P;
appears are of the form P;(£;) for fixed sequences of variables £;. Consider one such rule. It has
a sequence of atomic and negated atomic formulas in its body. In each formula of the body that
mentions a relation symbol @ from V', replace @ with the formula #g described in the previous
paragraph, then take the conjunction of the resulting sequence of formulas and existentially
quantify all element variables not appearing in ;. For each rule with P; at the head this gives
an SLFP formula. Its negation rank is at most n since we have applied negation at most once
to formulas of depti at most n—1. The free relation variables in each such formula are included
in Py,...,P.. Now take the disjunction of all such formulas over rules with P; at the head to
form a formula J; of depth at most n. The formula

[Pi(&1) = D1+ Pe(E) = 9k) Pi(Z1)

is of depth at most n and is equivalent to P(Z).

Now we need to prove the other half of the theorem. We show by induction on formula
complexity that every SLFP formula of negation rank at most n with free relation variables in
V' is equivalent to a stratified query of depth at most n with extensional symbols in V U V’
and with no intensional symbol negatively dependent on a relation symbol in V’. This is clear
for atomic formulas.

Let 1, and 12 be SLFP formulas equivalent to stratified queries (S, Pi(£1)) and (Sz, P2(Z2))
respectively. We consider the various operations for building SLFP formulas from 1, and ,.

The formula ¥, V ¥, is equivalent to (S, P(Z)), where & contains all the variables in £; and
£,, and S contains all the rules in &) and S; and, in addition, the rules P(Z) « P,(Z,) and
P(Z) «— P,(Z;). We suppose here that S; and S; have disjoint sets of intensional variables. To
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obtain a stratified program for ¥, A ¥, we do the same thing except that we instead add the
rule P(Z) «— Py(Z,), P,(%;). Notice that in both these cases the depth of S is the maximum of
the depths of S; and S;. Also, no new negative dependencies arise in constructing S.

Formula 3y v, is equivalent to (S, P(&)), where & contains all the variables in Z; except y
and S contains the rules in S; and the rule P(Z) — Pi(&;). Here depth is unchanged and no
new negative deperdencies arise in the construction of S.

Now -1, is defined only if ¥, has no free relation variables. Thus, it is equivalent to
(S, P(Z,)), where & contains the rules in S; and the rule P(Z) «— = P;(£;). Here depth increases
by one, as does th2 negation rank of the formula. Also, no intensional symbol in & can be
negatively dependent on a free relation variable in -1, because there are none.

Finally, consider the formula [P(F) = ] 2. To avoid trivialities we may suppose that P
is free in both ¢ and ;. We would like to do something like the following. By the induction
hypothesis, ¥; and % are equivalent to the stratified queries (S, Pi(Z1)) and (S2, P2(ZF2)),
respectively, where the extensional variables in &; not in V are free in ;. P is an extensional
variable in both §; and S;. Form S by taking the union of §; and S; and adding the rule
P(Z) «— Py(&£,). The problem with this is that there may be variables in &, not in £. These
extra variables are like global variables (in an imperative programming language) whose values
may affect the return value of a procedure P even though they are not parameters of P.
Logic programs do not have global variables: as we have seen, extra variables are existentially
quantified.

We use a standard technique for eliminating global variables. Let § be the sequence of
variables of £ not in . Increase the arity of P by an amount equal to the length of ¥ and add
the variables ¥ to the variable list of each occurrence of P in ¥, and ;. (It may be necessary to
change some of the b rund.variables in 1; and ¥ to avoid conflicts.) We thereby obtain formulas
¥} and ¥ having t\1¢ same negation ranks as ¢; and ;. By the the induction hypothesis, there
are stratified querics (81, P{(£1)) and (S}, P3(£2)) equivalent to 9] and v5. We may suppose
that S and S; have disjoint sets of intensional variables. Also, by the induction hypothesis,
we suppose that in 5] symbol Py is not negatively dependent on P.

We now form S by taking the union of S; and S} and adding the rule P(Z,§) «— P\(&).
What we have done, in effect, is add new parameters § to the definition of P (in the theory
of programming languages, these are the formal parameters), and also new parameters (the
actual parameters) wherever P is invoked. It should be clear that (S, P;) is equivalent to
[P(£) = 1] ¥2 and that no intensional symbol in S is negatively dependent on any free variable

in [P(f) = ’(ﬁ]]‘(/)g. =]

3 A Deductive System for SLFP.

We now present a sequent calculus, which we call LS, for SLFP. The rules of this calculus are
not difficult to formulate once we have Theorem 2.1 showing that SLFP formulas may be easily
translated into L, formulas. We need only make suitable modifications of a deductive system
for L,,.. C. Karp [27] was the first to prove the completeness of a deductive system for L.
Our system is based on a sequent calculus for L, due to Lopez-Escobar {34]. One notable
feature of this calculus is a proof rule for equality that circumvents some of the usual problems
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with equality in cut-free sequent calculi. Lopez-Escobar attributes this rule to Maehara and
Takeuti.

We observe the following conventions. Lower case Greek letters denote SLFP formulas.
Upper case Greek letters denote sets of SLFP formulas. I', A denotes I' U A. T, denotes
T'U {y}. A sequentis an expression of the form I' F A. In general, a formula ¢ occurring as
part of a sequent denotes the set {¢}. Finally, ¢; = ¢, indicates that either ¢;=t; or t3=t; may
be used.

We may regard the rules of the calculus as inductively defining a binary relation  holding
between sets of SLFP formulas: the lower sequent (located below the line) holds if the upper
sequents (above the line) hold. The azioms of the calculus are the base cases for the induction.
Gentzen’s sequent calculus LK used sequences of formulas rather than sets. By working with
sets we may ignore two of the so-called “weak” rules of inference, viz. the rules of contraction
and exchange. (See Takeuti [42].)

The rule ([ ] F) in our calculus is infinitary: it has countably many upper sequents. In
Compton [13] it is shown that ELFP is not compact, so SLFP is also not compact. It follows
that we must have some sort of infinitary rule in any complete sequent calculus for SLFP.

As usual, T | ¢ will mean that every model of T satisfies ¢ and I' | A will mean that
every model of I' satisfies some formula in A. (When A is empty, this is interpreted to mean
that T’ has no models).

Definition. The azioms of LS are sequents of the form ¢ - ¢, where ¢ is a formula of ELFP,
and @ F t=t, where t is a term.

Definition. The rules for LS are as follows.

(+ F) Ira (F #) Ira
I X+A F'kAE

(S *_) I‘,s”(l‘/tl) FA (|— S) I't As ‘P(x/tl)
[t = ty,p(z/tz) F A Loty =ta b A p(z/t2)
TFHFA I''yFA

(r) A (- Dot
, Y FEA T'FA, -y

(V) FLLvykFA T,9FA (FV) kA, ¢,9
FLyvik A FTFA, VY

(nr) Lwaara a) [EOG THAY
FLyAdr A F'FAYAD
Iyp(z)F A ' A Y(z/t)

) TUA 3 _—

OP Tapmra “HMUYA I 50

(V) Lg(=/t)F A (FV) THAY(@) z ¢ free(T U A)
L,Vyyg(y) - A L'EA,Vy¥(y)
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I[PE)=VmvFA (mew) 1) THA[P(E) = O o
T,[P(Z)=9) ¢+ A THA,[PE) =)y

{1k

Rules (x F) and (F %) are, respectively, the left and right weakening rules. Rules (S F) and
(F S) are the left and right substitution rules. The other rules introduce the various operations
on formulas on the left and right sides of sequents. Notice that in the rule (& [ ]) there is just
one upper sequent: m is a fixed nonnegative integer. We have stated the rules ([ ] F) and (F [])
for formulas with sir ple inductive definitions, but we intend the rules to apply also to formulas
with simultaneous inductive definitions.

Definition. The tequent calculus LE for ELFP is defined exactly as above except that the
rules (V) and (F V) are deleted. The set of theorems of LS is the least set of SLFP sequents
containing the axioms and closed under the rules of inference of LS and similarly for LE.

We have not included the familiar cut rule

LA TEA,p
'FA

in either LE or LS. In Compton [13], we prove completeness of LE without the cut rule. The
same proof works for LS. We have the following results.

Theorem 3.1 (Soundness and Completeness Theorem for LE and LS)

(i) Suppose I' ard A are sets of ELFP sentences. Then T+ A is a theorem of LE if and
only if T' = 2.

(ii) Suppose T ar.d A are sets of SLFP sentences. Then T F A is a theorem of LS if and
only if T = A.

4 A Logic for Program Verification?

In this section we will look at verification of programs written in an imperative language. The
term program will no longer mean logic program or general program as it did in earlier sections.
Let us first review some of the basics of program verification.

The state of a program is represented by an assignment « of elements from a structure 2 to
the program variables. In the literature of program verification, an assignment is called a state
and a structure is called an interpretation. Program execution changes the state: it assigns new
values to the program variables. A logic such as first-order logic or ELFP serves as an assertion
language; it is used to make assertions about states. Verification is a matter of showing that
if certain assertions hold of the initial state a program, then other assertions hold of the final
state. :
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Definition. Let ¢(Z) and ¢(Z) be formulas and S be a program with variables . An asserted
program is an expression of the form {¢} S {v}.

By % E {¢}S{¢} we mean that if S begins in state @, A |= ¢[a], and S halts in state
B, then A |= ¥[B]. Notice that if § does not halt, then % = {p}S (¥} is true by default.
This defines the notion of partial correctness of an asserted program in an interpretation %A. By
E {¢} S {¥} we mean that % |= {p} S {¥} holds for every .

By 2 | {¢} S {¢¥} we mean that if S begins in a state a and % |= p[e], then S halts in a
state 3 such that % = (6]. This defines the notion of total correctness of an asserted program
in an interpretation 2. By |l= {¢} S {¢} we mean that 2 |= {¢} S {¥} holds for every .

Fix an ordering of the variables of S so that a state may be represented as a sequence & of
elements from 2. The state transformer of a program S under an interpretation @ is the relation
consisting of all pairs (&,5) where S halts in state b whenever it begins in state @ Blass and
Gurevich [11] showed that the state transformers for programs written in a while-language with
recursive procedures can be defined in ELFP. That is, for every program &, there is an ELFP
formula 75(Z, §) that defines the state transformer of S on every interpretation. ELFP is well
suited for defining the state transformers of programming languages with continuous semantics,
including languages with recursive procedures, and even some nondeterministic, parallel, and
distributed languages. Fixpoint constructions are fundamental in defining the semantics of these
languages, and in most cases ELFP suffices to describe these constructions. We note, however,
that the example given by Clarke [19] of a programming language whose halting problem is
undecidable on firite interpretations is not amenable to this approach.

We illustrate these ideas using the simple while-language in section 2 of Apt [3]. A program
consists either of a single assignment statement x;:=t, where t is a term, or is built from simpler
programs according to the following rules.

(i) i S and T are programs, then so is S; 7.

(ii) If B is a first-order quantifier free formula and S and 7 are programs, then so is
if B then § else 7 fi.

(iii) | If B is a first-order quantifier free formula and § is a program, then so is while 8 do S od.

The results in the remainder of this section will be respect to this programming language, but
there is no difficulty in extending to more general languages for which Hoare logics have been
worked out.

It is a simple matter to define the state transformers 7s(zy,...,Zk, 41, .., ¥x) for programs
in this language. Th: state transformer for z;:=t is

/\a:jzyj/\ygzt.
J#

The state transformer for ;7 is
BZ(TS(fa Z) A 77(2" g‘))
The state transformer for if §(Z) then S else 7 fi is

(B(2) A 7s(2,9)) V (-B(Z) A 71(Z, 7))
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Finally, the state transformer of while 8 do S od is
SB(H A [P(2) = (F = 5V I (B(W) A P(F) A 1s(18, 2))] P(%).

Here the inductively defined relation P “collects” the states the program is in whenever the
Boolean expression § is evaluated. Notice the similarity to the logic program for computing
reflexive, transitive closure at the beginning of section 2. Notice also that if Boolean expressions
in if-statements and while-statements were allowed to contain quantifiers then it would be
necessary to use SLFP to express the state transformer.

It is well known that partial and total correctness may be expressed in terms of state
transformers (see Tucker and Zucker [43)).

The statement 2 k= {¢} S {1} is equivalent to the statement that if A = 3% (@(£)ATs(&, b)),
then 2 |= ¥(b). It follows by the Completeness Theorem for LE (or LS) that whenever ¢ and
¢ are ELFP (or SLFP) sentences then = {¢} S {%} is equivalent to

3F ((£) A 7s(Z, 7)) F ¥(9).

The formula 3% (p(Z) A 75(&, 7)) is called the strongest postcondition of ¢ and S.

Similarly, the statement 2 | {©} S {¥} is equivalent to the statement that if A | ¢(&),
then 2% | 37 (¥(9) A 7s(d, ). Again by the Completeness Theorem for LE (or LS), whenever
@ and 9 are ELFP (or SLFP) sentences then | {¢} S {¢} is equivalent to

@(Z) F 37 (0(9) A 75(Z, 9))-

The formula 37 (¥(9) A 7s(Z, 7)) is called the weakest precondition of ¢ and S.

It might seem that we do not need SLFP because we can verify programs by translating
partial or total correctness statements into ELFP. We encounter difficulties if we do this. First,
it is quite likely that we would want to make assertions containing universal quantifiers. Also,
we are usually interested in verification for a particular interpretation, such as the natural
numbers, or for a restricted class of interpretations. In the case of a particular interpretation
2 it is customary ‘o take Th(2l), the set of sentences of the assertion language true in 2, as
given. For partial correctness, then, we would want to establish something like

Th(24), 37 (p(Z) A 75(£, §)) F H(H)-

The problem with this is that partial correctness is not a logical notion with respect to ELFP.
By this we mean that two interpretations % and ‘B may satisfy precisely the same ELFP
sentences, but differ as to partial correctness of some asserted program.

Here is a simple example. Let 2 be the set of rational numbers in the open interval (0,1)
with the usual order. Let B be the set of rational numbers in the closed interval [0, 1] with
the usual order. Note that % and B embed into each other. Blass and Gurevich [11] showed
that ELFP sentences are preserved by embeddings, so it follows that ¥4 and B satisfy the same
ELFP sentences. Let ¢ be the formula z = z, ¥ be the formula 3y (y < z), and S be the
program z:=z. Then 2% = {¢} S {%¥} but this is not the case for B.

One solution to this problem is to modify the definition of proof for LE to allow the intro-
duction of sequents true in ¥. Unfortunately, for practical applications this will not work. We
should not expect tc have all sequents true in 4 at our disposal. More realistically, we would
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have a small set of sequents from which other sequents might be derived. The difficulty is that
we would have to add the cut rule to LE to have a complete deductive system. From a proof
theoretic point of view this is undesirable. In some cases we might then be able to prove a cut
elimination theorem, but in general this is difficult.

A better approach is to extend the assertion language. It is reasonable to suppose that
assertions contain nc free relation variables. Now 2 | {¢} & {¥} is equivalent to

A E (32 (p(2) A 7s(,7))) V $(7)
and A | {¢} S{¥; is equivalent to

A ~p() v IF(H(TA 75(Z, §))-

We see that we need to be able to negate formulas without free relation variables. In other
words, we need SLFP. From our discussion we have the following result.

Proposition 4.1 Partial correctness and total correctness are logical notions with respect to
SLFP, provided that assertions contain no free relation variables.

Partial and total correctness of asserted programs can be proved by translating to SLFP.
Of course, we then have the problem of dealing with an infinitary rule. We will say more about
this in the next section.

It is interesting to contrast Proposition 4.1 with the situation for first-order logic as an
assertion language. Partial correctness is a logical notion with respect to first-order logic (see
Lemma 8.7 of Loeckx and Sieber [33]), but total correctness is not, as this example from the
proof of Theorem 3 in Apt (3] shows. Let ¢ and ¥ be tautologies and S be the program
while 2 > 0 do z.=:t — 1 od. We are using = — 1 as a notation for predecessor of z. Then
A | {¢} S {¥}, whzre ¥ is the standard model of Peano arithmetic, but this is not the case
for any nonstandard model elementarily equivalent to 2.

The difficulties researchers have encountered with total correctness arise precisely because
total correctness is not a logical notion with respect to first-order logic. We believe that this is
a strong argument for SLFP as an assertion language. The the most widely accepted approach
to total correctness when first-order logic is the assertion language is due to Harel [22]. It
assumes that we work over a class of structures in which the natural numbers are first-order
definable. The proof rule for while-statements then takes advantage of the well-foundedness
of the natural numbers. This may seem to be a reasonable approach, especially since it does
not introduce an infinitary rule, but as we shall see in the next section SLFP has the same
expressibility as first-order logic on acceptable structures, which, by definition, are structures
on which the natural numbers and finite sequences are first-order definable. Thus, if we make
a similar restriction to Harel’s, we can dispense with the infinitary rule in LS.

The lack of a cut rule in LS has a rather surprising consequence in the classical total
correctness framework where first-order logic is the assertion language. We show that total
correctness over all interpretations can be proved in a finitary deductive system.

Theorem 4.2 Let ¢ and 3 be first-order formulas and S be a program whose state transformer
is expressible in ELFP. Then |i= {¢} S {¥} if and only if

©(Z) b 3IF(B(F) A 75(2, 7))

can be proved in LS without the infinitary rule ([ ] F).
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Proof. The forward direction is a direct consequence of having no cut rule in LS. Since ¢
is a first-order formula it contains no inductive definitions. Since 75 is an ELFP formula, it
contains no inductive definition within the scope of a negation. Thus, in the LS proof we do
not use ([ ] F). The converse direction is immediate. o

This theorem may appear to be good news, but in fact is shows how little can be said
about total correctness over all interpretations. Monotonicity is the only property of inductive
definitions used. This theorem may be viewed as a generalization of an early theorem of Engeler
(20] showing that total correctness of simple while-programs can be determined by bounding
the number of loop iterations in a program. This is essentially what the rule (- [ ]) does.

We close this section with a results on Hoare logic for partial correctness. Hoare logic
[24, 25] is a deductive system for inferring correctness of asserted programs. Cook [14] showed
that a Hoare logic similar to the one presented below is complete for proving partial correctness
on ezpressible interpretations (interpretations where strongest postconditions are first-order
definable) when first-order logic is the assertion language. Lipton [32] showed that expressible
structures are either finite or satisfy a very strong condition, viz., that the natural numbers with
addition and multiplication be first-order definable. This kind of problem with expressibility
led Blass and Gurevich [11] to search for a logic in which strongest postconditions are definable;
they found ELFP. As we have seen, it is not possible to go further and use ELFP as an assertion
language. However, it is natural to ask if SLFP is a good assertion language for Hoare logic.
The answer, we believe, is yes.

Consider the following Hoare logic for the programming language introduced in this section.
(This is based on the presentation in Apt [3].) It has one axiom {¢(z/t)} z:=t {(z)} and four

rules of inference:
{e}S{v} {¥}7{J}
{e} ST {9},

{pAB}S{¥} {pA-B}T {4}
{@}if B then S else T fi {¢}

{e B} S {p}
{®} while 8 do S od {@ A -8},
ok {¢)S{¥'} Y'Y
{p}s{¥}.
In the last rule, known as the consequence rule it is customary to have formulas ¢ — ¢’ and
3’ — 1 rather than sequents ¢ + ¢’ and ¥’ F 1. The reason for this is in partial correctness
proofs for a particular interpretation or class of interpretations we may assume that the formulas

@ — ¢ and ¥’ — 9 are accepted by an oracle that decides validity in this interpretation or
class. We take the point of view here that program verification should not assume an oracle to

determine validity of formulas: formulas (or sequents) should be proved. We can fix a set of .

sentences I' (possibly the set of sentences true in a particular interpretation or class, or possibly
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a much smaller set of sentences) and obtain the lollowing modified consequence rule.
Loty {¢}S{y} Td'+9
{e}s{¥}

Let us call the deductive system consisting of the rules and axioms of LS together with the
rules of Hoare logic above (with the modified consequence rule) Hp.

Theorem 4.3 (Coirpleteness Theorem for Hoare Logic) Hy is a complete deductive
system for proving partial correctness of asserted programs on interpretations satisfying I' pro-
vided assertions have no free relation variables.

Proof. The proof is very much like Cook’s proof [14] except that we use identities between
SLFP formulas rather than Cook’s expressiveness hypothesis. The idea of the proof is to show
by induction on the structure of § that if A | {@(Z)}S{¥(&)} for all A satisfying T', then
{p}S{¥} is a theorem of Hr. We follow the presentation of this proof in section 2.8 of Apt
[3] for the simple programming language presented in this section. Cook’s original proof for
a more general programming language, and proofs for programming languages given in later
sections of Apt’s paper, can be treated similarly.

We consider only the case where S is a program of the form while 3 do &’ od, the other
cases being straightforward. Suppose that 2 = {¢(Z)}S{¥(Z)} for all A satisfying I'. We claim

that it is enough to show that there is a loop invariant p(Z) such that these three conditions
hold:

T, ¢(Z) F p(2),
L, p(£), -B(%) F ¥(2),
T, p(f)v ﬂ(f)aTS'(fv g) + p(f)‘
The last condition is equivalent to saying that % = {p(Z) A B(Z)}S'{p(&)} for all A satisfying
I'. By the induction hypothesis, {p(Z) A 8(£)}S'{p(Z)} is a theorem of Hp and thus, by the
while-rule, so is {p(£)}S{p(£) A ~B(Z)}. The first two conditions and the modified consequence
rule imply that {¢(£)}S{¥(Z)} is a theorem of Hp.

How do we construct p(#)? Regard the first and third conditions above as parts of an
inductive definition: we would like p(Z) to hold if either ¢(Z) or p(Z) A B(Z) A Ts/(Z, §) hold.
Hence the first and third conditions are satisfied if we take p(%) to be

[P(2) = w(2) v 36 (P(@) A (D) A 75/(5, )] P(2).
By hypothesis,
L, 90(5)9 7s(Z, ) |= YY),
so by the definition of the state transformer for § we have

L, ¢(2), -B(¥), [P(2) = £ = ZV 35 (P(@) A B(D) A 75:(, £))] P(£) | ().

This is equivalent to

L, -8(9), [P(2) = ¢(2) v 35 (P(0) A B(D) A 7s:(, 2))] P(§) | »(D),

which implies to the second condition above. D
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The close connection between inductive definitions and loop invariants in this proof is not
surprising. It is well known in the literature of program verification that invariants are fixpoints

(see Clarke [18]).

5 Expressibility on Acceptable Structures.

We have argued that SLFP is the appropriate assertion language for program verification. The
difficulty with SLFP is in finding ways to deal with the infinitary rule ([ ] F). We saw in
the last section that the lack of a cut rule in LS sometimes allows us to show that ([ ] }) is
unnecessary. In this section we show that the most widely used restriction to deal with the
problems of first-order logic as an assertion language also eliminates the need for an infinitary
rule in SLFP.

We mentioned in the last section that to handle total correctness Harel [22] suggested re-
stricting to interpretations in which the natural numbers are definable. He proposed a similar
restriction to handle the problem of expressibility of strongest postconditions for partial correct-
ness proofs. He called interpretations satisfying this restriction arithmetical. Moschovakis [35]
had earlier shown taat the same restriction is a sufficient condition for the inductively definable
sets on a structure to be precisely the the I} sets. He called structures satisfying this condition
acceptable. An acceptable structure 2 is one on whicl the natural numbers with addition and
multiplication are frst-order definable and also there is a first-order formula 8(z, y,n) defining
all finite sequences on 2. Intuitively, 8(z,y,n) says that z codes a finite sequence whose nth
element is y. Here n is in the copy of the natural numbers defined on %.

Aczel [1] later defined the notion of an ezistentially acceptable structure by making the fur-
ther restriction that the formulas in the definition of acceptability be first-order existential. He
showed that on existentially acceptable structures sets definable by positive ezistential induction
are precisely the XY sets. Sets definable by positive existential induction are those definable by
ELFP formulas of the form

[Pi(Z1) = Y155 Pe(Zx) = 0] 9

where ¥;,...,9 and ¥ are existential first-order formulas. Chandra and Harel [12] showed
that every ELFP formula is equivalent to a formula of this form so on existentially acceptable
structures, the ELFP definable sets are precisely the & sets. The ELFP formulas are the
SLFP formulas of negation rank 1. We state a generalization of Aczel’s theorem.

Theorem 5.1 On ezxistentially acceptable structures, the sets definable by SLFP formulas of
negation rank n are precisely the £9 sets (i.e., sets in the nth level of the arithmetic hierarchy).

Proof. The theorem follows by induction on n. The case n = 1 is Aczel’s theorem. Let
n be greater than 1. We know by Theorem 2.2 that SLFP formulas of negation rank n are
equivalent to stratified queries of depth n. But if we take the canonical stratification we see that
a stratified query of depth n is equivalent to a logic query (i.e., a stratified query of depth 1)
applied to negations queries of depth n — 1. By the induction hypothesis this shows that sets
definable by SLFP formulas of negation rank n are precisely sets that are £¢ over complements
of £2_, sets; i.e., they are the L2 sets. @]
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If a structure is just expressive, rather than existentially expressive, we can still carry out
Aczel’s proof but of course we lose the correspondence between levels of the arithmetic hierarchy
and the negation ranks of sentences. We obtain the following theorem.

Theorem 5.2 On acceptable structures, SLFP and first-order logic have the same erpressibil-
ity.

A consequence of this is the following result of Kolaitis [28].
Corollary 5.3 SLF? is strictly less expressive than least firpoint logic on infinite structures.

Proof. Moschovakis showed that the inductively definable sets are the IT] sets. These sets are
definable in least fixpoint logic. But on the natural numbers, I1} strictly contains the arithmetic
hierarchy, so SLFP is strictly less expressive than least fixpoint logic. a

Another consequence is that we do not need an infinitary deductive system to reason about
SLFP definable sets on acceptable structures since we can use first-order logic instead.

6 Conclusion.

There are still many connections between stratified logic programming and program verification
left to be explored. It would be interesting to develop a verification system that relies on the
evaluation of stratified logic programs.

The biggest problem of program verification is handling the infinitary proof rule ([]F). We
have seen that having no cut rule helps in some cases. Also, on certain kinds of structures the
need for an infinitary rule disappears. There are other avenues still to be explored.

One direction is to replace the infinitary rule in SLFP with a weaker finitary induction
rule. The resulting deductive systems will be incomplete if we work on all structures, but
many significant mathematical theories are incomplete. Here is an example of a rule that might
replace ([ ] F):

LO(P/p)F Ap  T,e(Plp)F A

[[P(Z)=d]vF A,

The rule is useful when p defines a relation containing the inductively defined relation P (so
the upper left sequent true), but p is a close enough approximation to P to be used in place of
P in the sequent we are trying to prove (so the upper right sequent is true). It is easy to show
that the rule is sound. Notice that the rule could be used in cases where an inductive definition
can be replaced with a first-order definition.

Another direction is to develop a system for actually working with infinitary rules. Harel
(23] notes that many programming logics embed in LS}S‘,, which is a restriction of L, in which
conjunctions and disjunctions are recursively enumerable. In the realm of infinitary logics, Lgfﬁ,
is considered one of the tamest logics after first-order logic because all mathematical objects
associated with the logic — formulas, proofs, and structures needed to prove completeness —
exist below the level of the first nonconstructible ordinal wS¥. SLFP is a sublogic of Lgff‘, and
is even tamer. At this level, an infinitary proof rule may not be so hard to deal with. Here it
may be useful to use techniques from the study of admissible sets (see Barwise [10]).
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