N

N

MADMACS: a tool for the layout of regular arrays

Eric Gautrin, Laurent Perraudeau

» To cite this version:

Eric Gautrin, Laurent Perraudeau. MADMACS: a tool for the layout of regular arrays. [Research
Report] RR-1670, INRIA. 1992. inria-00074887

HAL Id: inria-00074887
https://inria.hal.science/inria-00074887
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00074887
https://hal.archives-ouvertes.fr

INIA Rapports de Recherche

o ' COOR 1 iversaire
UNITE DE RECHERCHE N° 1670
INRIA-RENNES

Programme 1
Architectures paralléles, Bases de données,
Réseaux et Systémes distribués

MADMACS :
A TOOL FOR THE LAYOUT OF

REGULAR ARRAYS

Institut National

de Recherche .
Eric GAUTRIN

en Infor matique Laurent PERRAUDEAU
et en Automatique

Domaine de Voluceau
Rocquencourt
BP105
78153 Le Chesnay Cedex
France Mai 1992

161:(1)3963 5511 VAT

ol

a

IRISA

INSTITUT DE RECHERCHE EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042 - RENNES CEDEX FRANCE
Tél 199 84 71 00 - Telex : UNIRISA 950 473 F
Télécopie : 99 38 38 32

MADMACS: a tool for the layout of
regular arrays

MADMACS : un outil pour le dessin de

masques de réseaux réguliers

Eric GAUTRIN, Laurent PERRAUDEAU
IRISA, Campus de Beaulieu
35042 Rennes Cedex(France)
c-mail: gautrin@irisa.fr ou perraudeQirisa.fr

Projet API, Programme 1
Publication Interne n°® 641, Mars 1992, 12 pages
Soumis & : WG 10.5 IFIP Workshop on Synthesis, Gencration
and Portability of Library Blocks for ASIC Design

Abstract: This paper presents a tool for automatic layout of bidimensional processor arrays.
The general topology of such structures consists of a processor cells array and interconnections
restricted to nearest ncighbors. Automatic layout of such structures can be viewed as processor
cells tiling with regular routing between cells. The MADMACS design system is proposed as a
tool to generate such structurcs. MADMACS is a complete graphics layout editor that features
logical and coordinate free cursor movements. Furthermore, MADMACS provides a classical but
interactive macro-command mechanisim. This mechanism is particularly efficient for repetitive
tasks like tiling and regular routing. Finally, MADMACS is tightly coupled to a Lisp interpreter.
Each MADMAcs command has a functional form in the Lisp language. As the interpreter cval-
uates an editor command function, it calls MADMACS which executes the associated command.
The Lisp language is also available to develop the skeleton of generators. With MADMACS
coordinate free cursor movements, the designer is not concerned with the exact sizes of the ma-
nipulated objects, and so can develop re-usable code. Finally, a macro command can be saved as
a new Lisp function, and incorporated into a generator. The combined language and interactive
approach allows one to obtain fast definitions of generators.

Résumé: Ce papicr présente un outil de génération automatique de réscaux de processcurs.
La topologie générale de telles structures consiste en un tableau de processeurs et des intercon-
nexions entre voisins. Lc¢ dessin automatique des masques pour de telles structures peut étre vu

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIOUE (U.RA 227) UNIVERSITE DE RENNES! INSA DE RENNES
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE €T EN AUTOMATIQUE {UNITE DT RECHERCHE DE RENNES)

2

comme un pavage de processeurs avec un routage régulier entre processeurs. Le systéme MAD-
MACS est un outil pour la génération de réseaux. MADMACS est un éditeur graphique de dessins
de masques complet qui permet des déplacements logiques du curseur et indépendants des es-
pacements et tailles des objets. De plus, MADMACS comporte un mécanisme classique mais
interactif de macro-commandes. Ce mécanisme est particulierement efficace pour des taches
répétitives comme le pavage et le routage régulier. Finalement, MADMACS est étroitement lié a
un interpréteur Lisp. Chaque commande de MADMACS posséde une forme fonctionnelle dans le
langage Lisp. Lorsque linterpréteur évalue une telle fonction, il appelle MADMACS qui exécute
la commande correspondante. Le langage LisP permet également de développer le squelette des
générateurs. Avec les déplacements contextuels du curseur, le concepteur n’est plus concerné
par la taille exacte des ohjets manipulés et peut ainsi produire du code réutilisable. Finalement,
une macro-commande pecut-étre sauvegardée sous la forme d’une fonction LISp et incorporée
dans un générateur. L’approche combinée langage et éditeur graphique permet une définition
rapide de génératcurs.

1 Introduction

Many signal or image processing algorithms demand regular computations which can be
implemented on massively parallel architectures such as systolic arrays. With the increas-
ing density of integrated circuits, ASIC implementation becomes an evermore attractive
solution. Kung [6] shows that a regular array of processors simplifies VLSI integration:
processors are identical, and interconnections are restricted to nearest neighbors. In fact,
the general topology of such regular circuits can be viewed as the tiling of processor cells
in an array combined with a regular routing to connect them. These interconnections can
be achieved by specific routing functions (river routing, bridge routing) instead of using a
general router. This regularity in tiling and routing is well suited to layout automation.
Many approaches to the layout automation have been presented in recent literature.

-

)

— In [4], an experiment with the standard cell generation of a systolic circuit is de-
scribed. These tools break the topology to fit a floorplan of basic cell rows, and so
loose regularity in tiling and routing. This leads to poor results in terms of area
and speed.

— Datapath compilers produce very dense layouts because they make use of the regu-
larity inherent in datapath circuits [5, 9, 14, 16]. Generally speaking, such compilers
lay out the different elements of the datapath in one dimension. Thus, these tools
can efficiently produce linear arrays. As regular arrays can be composed of many
processors, datapath compilation results in an unbalanced block. We do not know
of a compiler which is able to achieve a better ratio; this ratio improvement remains
a manual task. Moreover, the linear floorplan used by the datapath compilers does
not fit the bi-dimensional topology of some regular arrays.

The main problem with these tools is the fixed topology of the resulting layout. Some
other approaches are more flexible.

v

— Many CAD systems provide a module maker to generate customized regular struc-
tures such as RAM, PLA,... These tools are mainly based on cell tiling according
to a user-defined template. Routing, if necessary, must be embedded in the cells
themselves or in dcdicated cells. As simple routing must be generally broken into
several cells to fit parametrization purpose, thus resulting in a more complicated
template.

-

— In a procedural layout system [2, 3, 7, 8, 10, 13], the development of a generator is
a programming activity. With this approach, a designer can handle any topology.
However it can be very difficult to give a textual representation of some very simple
graphical structure. Morcover, there is poor interaction between the text editing
session and the visualization of the resulting design.

Some investigations [1, 11, 12, 15] have been made regarding the use of a procedu-
ral language interleaved with an interactive graphics editor. MADMACS is such a tool.
Basically, MADMACS is a graphics layout editor that includes, in addition to standard
facilities, the following powerful mechanisms:

— Contextual cursor moving and graphic variables, which allow the designer to
n move the cursor in a logical and coordinate free way;

— A classical but interactive macro-command mechanism allows the execution
and memorization of commands sequences in an intelligent way. This is particularly
. efficient for repetitive tasks such as regular tiling and routing;

+

B B B

a) initial context b) (cursor—up-in—cell) ¢) (cursor-left-in—cell) d) (insert—-bottom-left "A")

Figure 1: Example of abutment with contextual move

— MADMACS is tightly coupled to a LISP interpreter. Each MADMACS command
has a functional form in the LisP language. As the interpreter evaluates an editor
command function, it calls MADMACS which executes the associated command and
returns an execution status.

This paper gives an overview of the MADMACS system. The basic concepts are pre-
sented in section 2. An example of linear systolic array is detailed in section 3. Finally,
the implementation of MADMACS is presented in the last section.

2 MADMACS

2.1 Manipulated objects
Three types of objects are used in the MADMACS system.

— A rectangle is a picce of a layer and can be created, selected, moved, stretched,
colored, deleted and named;

— A figure is a collection of rectangles and/or instances of figures. This type of object
is used to manage the hicrarchy. A figure can be created, selected, moved, rotated,
mirrored, deleted, named. Moreover, the designer can move within the hierarchy;

— A connector can bc associated with a figure. It is a special named rectangle that
represents input/outputs.
2.2 Contextual cursor movement

Like many graphics editors, MADMACS offers facilities for graphic cursor motion: dis-
placement of N)\ in any direction; snap to absolute coordinates. In addition, the system
provides logical and coordinate free cursor movements commands.

— move to a edge of the current celll, such as (cursor-left-in-cell),
— move to a neighboring cell, such as (cursor-to-upper-cell),
— align with a box edge, such as (align-with-the-right-cell).

These commands are size-independent and rely on the local context of the layout
around the cursor location. Therefore, they allow the designer to ignore the absolute
coordinates of layout picces and to define size-free command sequences. For example,

1The current cell is defined by the cursor location.

L

L)

vt

<

K]

1s 1s

a) Initial position b) (goto-mark "A")
(current—mark)
There is no constraints (cursor-down-—in—cell)
on cursor location (mark—horizontal—-alignment "B")
A
- ':' vvvvv
c) (create~wire) d) (create—~wire)

(current—-mark)
(goto—mark "B")

(cursor-left-in—cell)

Figure 2: Creation of a right angle connection

to abut a cell A on the top of a cell B with left edges alignment, it requires only three
commands. This command sequence is illustrated in figure 1. In fact, this sequence
performs the abutment of cell “A” with any cell. If the cell name is a parameter, the
sequence becomes even more general. Generalization is achieved with a LISP function
and will be explained later.

2.3 Graphic variable

A designer will frequently return the cursor to the same location. The coordinates of this
position can be identificd by a named graphic variable. MADMACS provides commands
for direct cursor movement such as (goto-mark “BEGIN”), or cursor alignment commands
to a graphic variable such as (mark-horizontal-alignment “BEGIN”). In particular, these
last commands are very useful for laying out a manhattan wire between two rectangles.
The rectangles are identified by graphic variables A et B. One right angle connection
is achieved by the command sequence illustrated in figure 2. Note that a wire creation
needs two reference points: the current mark and the actual cursor location.

Since graphic variables value can be modified, the previous sequence can be used to
connect two N bit busses A and B in the same routing style:

1. Identification of the first bit line of each bus by graphic variables A and B;

O 0O Ell:l'[_n_

(a) Initial position of the graphic variables (b) Result of the macro execution

Figure 3: Multiple executions of (right-angle-connection) macro

2. Iteration on each bit:
Execution of the sequence;

Transfer of graphic variables A and B to the next bus line.

This example of bus connection leads naturally to the notion of macro-command.

2.4 Macro-command

Like many systems, MADMACS can memorize a sequence of commands called a macro-
command (macro for short). To build a macro, the user enters the Macro Learning
mode. The system executes and stores each command issued. The macro construction is
finished when the user leaves the Macro Learning mode. The macro is then available as
a single new command. Using contextual cursor movement and graphic variables, it can
be coordinate free, and so can be executed in different locations as long as the execution
context remains similar to the dcfinition one.

Macros are mainly used for repetitive tasks where the same sequence must be executed
several times. For example, the connection between two sets of four connectors, as shown
in figure 3, is performed by four successive executions of the following macro:

(goto-mark “A”)
(cursor-to-bottom-cell)
(put-mark “A”)

(goto-mark “B")
(cursor-to-left-cell)

(put-mark “B”)
(make-a-right-angle-connection)

The (make-a-right-angle-connection) command performs a right angle connection as
illustrated in figure 2.

The macro mechanism is powerful, but does not provide execution control. For ex-
ample, if the macro is executed five times to connect two four bit busses, the layout result
will be incorrect. To introduce control, the macro is saved in its equivalent L1SP form and
control statements are added to this form, as illustrated in next section.

2.5 LISP interpreter

MADMACS provides the designer with an interface through a high level interpreted lan-
guage (LisP). Each MADMACGS command has a functional form in the LISP language. As

s,

LA

v

Ll

7

the interpreter evaluates an editor command function, it calls MADMACS which executes
the associated command and returns an execution status. For instance, (cursor-to-upper-
cell) returns 0 if there is a cell above, 1 otherwise. ‘

With LisP, a designer can define very powerful functions with parameters and ex-
ecution control. For example, the following function is a generalization of the previous
macro. The nbconnector paramcter represents the width of the bus. The previous macro
uses two marks. In this function, one verifies whether these marks exist, and whether the
next connector exists before moving a mark.

(defun connection (nbconnector)

(COND ((= nbconnector 0) t)
((AND (= (goto-mark “A”) 0) (= (cursor-to-bottom-cell) 0))
(put-mark “A”)
(COND ((AND (= (goto-mark “B”) 0) (= (cursor-to-left-cell) 0))
(put-mark “B”)
(make-a-right-angle-connection)
(connection (- nbconnect 1))

)
(t NIL)

(t NIL)

This example illustrates the generalization of a macro in a LISP function by addition of
parameters and control. The same methodology is used to define generators, one example
of which is presented in the next section.

3 A linear array generator

To achieve a better ratio for the layout, the array is broken into several columns of
processors. The general floorplan is presented in figure 4: processor cells are abutted in
columns, data signals arc routed vertically from column to column in metal 2 layer, and
control signals are distributed horizontally through the columns in metal 1 layer. Note
that the last column can have fewer cells than the others.

The linear array generator uses several parameters: nbcell is the number of processor
cells, nbcolumns and nbrows are respectively the number of columns and rows of the
resulting layout. A processor cell is considered as a figure with connectors: nbdata is the
number of data signal connectors, and nbcontrol the number of control signal connectors.
Finally, the generator uses four parameters: width and spacing parameters for both metal
1 and 2 layers.

3.1 Processor cell constraints.

Data signals run across the cclls for vertical abutment without routing. Control signals
run horizontally through cclls for distribution to a next column. The generator considers
a processor cell as a figure with connectors on each side: vertical connectors for control
and horizontal connectors for data.

3
k]
t
4
|
]
*
L]
2
]
ssassy

CELL

CELL

Vesssssfiadrbaguon@difidife@eun@roiagdebgrannan
Qoffsdrany

\llllllll

Figure 4: Linear array floorplan

3.2 Processor cell tiling.

] -
cer = pecsescsasas « 5
E i =r ------ = E E
CELL CELL
CELL CELL
CELL I s : E s
- S, iid : L...
S Sieeucnccsas - = Z Reea-o
~ > Smessssssse

A LisP function is defined to abut automatically a cell on top of one another.

equivalent to the following command sequence.

(defun top-left-abut (cell-name)
(cursor-up-in-cell)
(cursor-left-in-cell)
(insert-bottom-left celi-name)

)

This simple LISP function can be generalized for the creation of a column:

(defun create-column (nbcell cell-name)
(COND ((# nbcell 0)
(top-left-abut cell-name)

(create-column (- nbcell 1) cell-name)

(t NIL)

It is

There are different ways to deal with the processor column spacing. In this example, it
is computed from nbdata parameter and width-spacing parameters.

3.3 Control signal routing.

There are two different routing strategies for the control signals: distribution between the
columns and connection to the global control lines.

a

o

v)

9

Distribution: Processor ccll constraints guarantee that a control connector and its op-
posite on next column are on the same line. Distribution is accomplished by an horizontal
wire from a connector to the next column. The following function creates an horizontal
wire for distribution:

(defun horizontal-wire
(connector-down)
(current-mark)
(cursor-to-right-cell)
(cursor-down-in-cell)
(create-wire)
(cursor-to-left-cell)

)

As shown previously, this simple function can be generalized to perform multiple horizon-
tal connections.

Global connection: The first step for these connections is to create vertical global
lines on the left of the array (except for vdd). A graphic variable is associated with
each line. Indeed, a correspondence between connectors and graphic variable names is
required. The cursor being located on the connector, the wire is laid out through an
horizontal alignment to the global line graphic variable.

(defun global-connection

(connector-down)

(COND ((# (name-connector) “vdd")
(current-mark)
(cursor-down-in-cell)
(mark-horizontal-alignment (name-connector))
(create-wire)
(goto-current-mark)

)
(¢t nil)

If one adds more control, this function can perform two different types of wire de-
pending on the connector name. gnd wires are routed in metal 1 layer, while others must
use metal 2 layer. A similar function is used for vdd connections.

3.4 Data signal routing.

Data signal routing is achieved using three routing functions: input, inter-column and
output. Input and output routing functions are similar to the routing example presented
in section 2. The inter-column routing function is based on the same methodology, but
requires four graphic variables (one for each turn of a connection). This routing is done
in metal 2 layer, respecting minimal width and spacing constraints.

All these functions and the previous ones have been built using the same methodol-
ogy. First the designer crcates a macro (using contextual cursor movements and graphic
variables). When the macro is validated, he saves it in a LISP form, and adds control and
parameters to generalize it. This approach leads to the fast definition of generators. In a
few hours, one can create an initial version of a linear array generator.

10

B0 madmacs
] i) o] forez) foow] [cvin) (O] (e (o)] (o]
¥
a Aal 8 | 8 a8 E a s n

LISP INTERFRCE

> {load “CDEMTERS/, 1rcurt. lep®)
s loading “GEWERA gercireuit, lop®
%

> {pan2)
> (pen2)
> (placorote 14 44353355

> (rect-left)
> (rect-left)
> (rect-left)
> (zoom2)

- -

Figure 5: MADMACS interface

4 Implementation

MADMAGS is written in the object-oriented language C**. Object oriented languages [17]
are well suited for object manipulation such as MADMACS operations. Ctt allows one to
easily develop new commands and to reuse code. The MADMACS interface is constructed
on top of the X Window system, and illustrated in figure 5:

— At the top, there are a set of buttons to select a layer, or to quit the application.
— The graphics window displays the layout and the effects of MADMACS commands.
— Through the textual window the designer can interact with the LISP interpreter.

Commands can be issued in two ways: in their LISP form through the textual window,
or directly in the graphics window with a keystroke. This technique, used in text editors
like Emacs, provides a very high interactivity. The main problem is that the user has to
memorize many single key commands. However in most cases, the key associated with
a command is related to its name and therefore easy to remember. Our experience has
proven that such an interface is not a drawback. A designer does not use the MADMACS
system to design cells as with a classical graphics editor. MADMAGCS is dedicated to the
development of generators. A designer works with the graphic interface to interactively
capture his methodology for structure construction. Then, most of the time is spent with
a text editor, writing a LISP generator.

-)

11
5 Conclusion

In this paper, we have described a highly interactive circuit layout system. The system
combines in an intelligent way, graphics and programming facilities. An important feature
is the possibility of defining size-independent command sequences. With the interactive
macro mechanism, the designer is able to memorize such a sequence as a new command.
Then, when validated, the sequence is saved in a LISP form and can be generalized by
addition of control and parameters.

This approach has several advantages. The ability to define size-independent functions
is particularly important. The designer can define libraries of functions, and use them
to define new generators with less effort. Furthermore, if it is difficult to give a textual
version of graphical structure or construction, the designer can handle it easily with the
interactive macro mechanism. Indeed, it is a good method for capturing the designer’s
methodology.

References

(1] J. Batali, N. Mayle, H. Shrobe, G. Sussman, D. Weisse. The DPL/Daedalus Design Envi-
ronment. In VLSI’81, John P. Gray ed., Academic Press, pages 182-193, 1981.
{2] IM. Berge, L. O. Donzelle, J. Rouillard, D. Rouquier. LOF. Technical note, CNET-
FRANCE, 1985.
[3] M. R. Burich. Programming language makes silicon compilation a tailored affair. Electronic
Design, December 1985.
[4] C. Dezan, E. Gautrin, H. Le Verge, and P. Quinton. Synthesis of systolic arrays by equation
transformations. In ASAP 91, Barcelone, Spain, September 1991.
[5]) P. Drenth and C. Strolenberg. Datapath layout generation with in-the-cell routing and
optimal column resequencing. In Euro ASIC’ 91, pages 373-376, IEEE, May 1991.
[6] H.T. Kung. Why systolic architectures? IEEE Computer, Vol 15(n° 1):pages 37, 1982.
[7] J. A. Lewis, A. A. Berlin, A. J. Kuchinsky, P. K. Yip. Integrated Circuit Procedural
Language. Hewlett-Packard Journal, pages 4-10, June 1986.
(8] R.J. Lipton, S.C. North, R. Sedgewick, J. Valdes, G. Vijayan. ALI: a Procedural Language
to Describe VLSI Layouts. In ACM IEEE 19" Design Automation Conference Proceedings,
Las Vegas, Nevada, pages 467-474, June 1982.
[9] T. Mashburn, I. Lui, R. Brown, D. Cheung, G. Lum, and P. Cheng. Datapath: a CMOS
data path silicon assembler. In 28" Design Automation Conference, pages 722-729, 1986.
[10] R. Mathews, J. Newkirk, P. Eichenberger. A Target Language for Silicon Compilers. In
Digest of Papers COMPCONS82, San Francisco, California, pages 349-353, February 1982.
{11] R.N. Mayo, J.K. Ousterhout. Pictures with Parentheses: Combining Graphics and Proce-
dures in a VLSI Layout Tool. In ACM IEEE 20** Design Automation Conference Proceed-
ings, Miami Beach, pages 270-276, June 1983.
[12] P. Petit. Chipmonk: An Interactive VLSI Layout Tool. In Digest of papers COMPCON82:
High Technology in the Information Industry, pages 302-304, February 1982.
[13] S. Sastry, S. Klein. Plates: a Metric-Free VLSI Layout Language. In Proceeding Conference
on Advanced Research in VLSI, Cambridge, Massachusetts, pages 165-174, January 1982.
[14] H.E. Shrobe. The datapath generator. In CompCon82 High Technology in the Information
Industry, pages 340-344, IEEE Computer Society, 1982.
[15] S. Trimberger. Combining Graphics and a Layout Language in a Simple Interactive System.
In ACM IEEE 18" Design Automation Conference, Nashville, pages 234-239, June 1981.
[16] VLSI Technology Inc. Datapath Compiler. Technical Report, VLSI Technology Inc., San
Jose, CA, USA, June 1989.

(17) W. Wolf. Object-Oriented Programming for CAD. In IEEE Design and Test of Computers,
pages 35-42, March 1991.

PI

PI

PI

PI

PI

Pl

Pl

PI

PI

Pl

632

633

634

635

636

637

638

639

640

641

LISTE DES DERNIERES PUBLICATIONS INTERNES IRISA

L-STABLE PARALLEL ONE-BLOCK METHODS FOR ORDINARY DIFFEREN-
TIAL EQUATIONS

Philippe CHARTIER, Bernard PHILIPPE

Janvier 1992, 28 pages.

ON EFFICIENT CHARACTERIZING SOLUTIONS OF LINEAR DIOPHANTINE
EQUATIONS AND ITS APPLICATION TO DATA DEPENDENCE ANALYSIS
Christine EISENBEIS, Olivier TEMAM, Harry WIJSHOFF

Janvier 1992, 22 pages.

UN NOYAU DE SYSTEME REPARTI POUR LES APPLICATIONS GEREES
PAR UN TEMPS VIRTUEL

Philippe INGELS, Carlos MAZIERO, Michel RAYNAL

Janvier 1992, 20 pages.

A NOTE ON CHERNIKOVA'S ALGORITHM
Hervé LE VERGE
Février 1992, 28 pages.

ENSEIGNER LA TYPOGRAPHIE NUMERIQUE
Jacques ANDRE, Roger D. HERSCH
Février 1992, 26 pages.

TRADE-OFFS BETWEEN SHARED VIRTUAL MEMORY AND MESSAGE
PASSING ON AN IPSC/2 HYPERCUBE

Thierry PRIOL, Zakaria LAHJOMRI

Février 1992, 26 pages.

RUPTURES ET CONTINUITES DANS UN CHANGEMENT DE SYSTEME
TECHNIQUE

Alan MARSHALL

Mars 1992, 510 pages.

EFFICIENT LINEAR SYSTOLIC ARRAY FOR THE KNAPSACK PROBLEM
Rumen ANDONOV, Patrice QUINTON
Mars 1992, 20 pages.

TOWARDS THE RECONSTRUCTION OF POSET
Dieter KRATSCH, Jean-Xavier RAMPON
Mars 1992, 22 pages.

MADMACS : A TOOL FOR THE LAYOUT OF REGULAR ARRAYS
Eric GAUTRIN, Laurent PERRAUDEAU
Mars 1992, 12 pages.

12

Imprimé en France
r
.I"Institut National de Recherche en Informatique et en Automatique.

ISSN 0249-6399

