N

N

Automated mathematical induction

Adel Bouhoula, Emmanuel Kounalis, Michaél Rusinowitch

» To cite this version:

Adel Bouhoula, Emmanuel Kounalis, Michaél Rusinowitch. Automated mathematical induction. [Re-
search Report] RR-1663, INRIA. 1992. inria-00074894

HAL 1d: inria-00074894
https://inria.hal.science/inria-00074894
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00074894
https://hal.archives-ouvertes.fr

’,INIK

UNITE DE RECHERCHE
INRIA-LORRAINE

Institut National
de Recherche
en Informatique
et en Automatique
Domaine de Voluceau

b Rocguencourt
. BP105
., 78153 Le Chesnay Cedex
France

Tel(1)39635511

Rapports de Recherche

W nniversaire

1663

Programime 2
Calcul Symbolique, Programmation
et Géaie logiciel

AUTOMATED MATHEMATICAL
INDUCTICN

Adel BOUHOULA
Emmanuel KOUNALIS
Michaél RUSINOWITCH

Avril 1992

I

1663 =

Automated Mathematical Induction

Adel Bouhoula * Emmanuel Kounalis ** Michaél Rusinowitch *
* INRIA & CRIN , BP239, 54506 Vandceuvre-les-Nancy, France
** LIR, BP 118, 76134 Mont-St-Aignan, France

June 1, 1992

Abstract

Proofs by induction are important in many computer science and artificial
intelligence applications, in particular, in program verification and specification
systems. We present a new method to prove (and disprove) automatically in-
ductive properties. Given a set of axioms, a well-suited induction scheme is
constructed automatically. We call such an induction scheme a test set. Then,
for proving a property, we just instantiate it with terms from the test set and
apply pure algebraic simplification to the result. This method needs no comple-
tion and explicit induction. However it retains their positive features, namely,
the completeness of the former and the robustness of the latter. It has been
implemented in the theorem-prover SPIKE !.

Contents
1 Introduction 2
1.1 Motivation 2
1.2 Theaimsof thepaper 3
1.3 Layoutofthepaper. 5
2 Overview of our approach on examples 5
3 Preliminaries 7
3.1 Conditional theories 7
3.1.1 Terms and substitutions 7
3.1.2 Conditional equations and clauses 8
3.1.3 Inductivetheory 8
3.2 RewriteRelations L e e 9

'Preliminary versions of the results in this paper have been presented at the First International
Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida, January 1990 and
in the Bulletin of European Association for Theoretical Computer Science, {1:216-226, June 1990.

4 How to prove and disprove inductive theorems 11

4.1 Testsets e e 11
4.2 Inductive proofs by simplificationo L. 13
4.3 Disproving inductive conjectures oL L. 14
4.4 A general procedure for proof by induction, 15
4.4.1 Inference rules for inductive proofs 15

4.4.2 Refutation of conjectureso oL 17

5 How to get the convergence property 18
5.1 The saturation technique Lo 19
5.2 Hierarchical axiomatization techniques 21

6 How to get test sets 22
7 Implementation and experimental Results 26
8 Conclusion 30

1 Introduction

1.1 Motivation

Inductive reasoning is simply a method of performing inferences in domains where
there exists a well-founded relation on the objects. It is fundamental when proving
properties of numbers, data-structures, or programs axiomatized by a set of equations
and or conditional axioms. The use of conditional axioms as definitions is weltknown in
Computer Science, since programs in logical or functional style and data-structures can
be expressed in this framework. As opposed to deductive theorems, inductive theorems
are usually valid only in some particular models of the axioms. For instance, Herbrand
models or initial models fit nicely with the semantics of data-type specifications, logic
and functional programming. As a classical example, consider the data-structure of
nonnegative integers built up using the 0 and S function symbols. Every element of
this structure can be represented by a variable-free (ground) term that involves 0 and
S only. Suppose we define the addition operation + by the following axioms:

z+0 = =z
z+Sky) = Sx+y)

Clearly, given two integers, using the above equations for adding them yields a non-
negative integer. For instance, S(S(S(0))) + S(S(0)) equates to S(S(S(S(S5(0))))) by
deductive reasoning: apply just twice the second axiom and once the first. Consider
now the property of associativity of +:

(+y)tz = z+(y+2)

This is a typical example of an identity whose proof requires some kind of induction.
As everybody knows from his experience, it might be difficult, not only to find an

2

appropriate well-founded relation to support inductive inferences, but also to guess
suitable induction hypothesis. 'T'wo main approaches have been proposed to overcome
these difficulties. The first applies explicit induction arguments on the structure of
terms [Aub79, Bur69, BM79, BHHWS86, GG89, ZKK88]. The second one involves a
proof by consistency: this is the inductionless induction method [Mus80, HH82, KM87,
JK86, Fri86, KNZ86, Bac88, Kiic89, BK89, Gra89]. To prove the associativity of +
by explicit induction we can use the following scheme:

Basic Case: (z+y)+0=x+ (y+0)
Induction Step: (z +y) + Su=z+ (y + Su)

The proof of Basic Case is trivial, and the proof of Induction Step follows from the
defining axioms and the induction hypothesis (z + y) + u = z + (y + u). On the other
hand, to prove the same property by inductionless induction we first try to compile
the axioms into a convergent (i.e., terminating and confluent) set of rewrite rules.
In the above example it is sufficient to orient the axioms from left to right. Then
the associativity is added as a rule oriented from right to left and a completion-like
procedure is started in order to transform the whole set of rules into a convergent one
by superposing left-hand sides. Here, all superpositions lead to trivial identities and
therefore the associativity of + is proved.

However, both methods have many limitations, either on the theorems that could
be proved or on the underlying theory. For instance, explicit induction techniques
are unable to provide us automatically with induction schemes, and cannot help to
disprove false conjectures. Note also that guiding a proof by explicit induction requires
some skill for finding the right axioms or hypothesis to apply. On the other side, the
inductionless induction technique often fails where explicit induction succeeds. If the
associativity of 4+ were oriented from left to right in the example this method fails to
prove it, since the completion procedure loops in this case. Moreover, there does not
exist any realistic inductionless induction procedure for conditional theories. However
the main advantage of inductionless induction is that it does not require to build an
hierarchy of lemmas to be proved. All the conjectures and intermediate results are
considered at the same level (and proved in a same round) without any notion of
hierarchy.

In this paper we present an alternative proof system for automatizing inductive
reasoning in theories defined by conditional axioms. We show how to prove (and
disprove) equations and, more generally, clauses in Herbrand models. This proof
system combines the power of explicit induction and inductionless induction.

1.2 The aims of the paper

The presented method relies on the notion of test sets (which, in essence, is a finite
description of the initial model) and uses only pure algebraic simplification. The key-
idea of the simplification strategy is to use axioms, previously proved conjectures,
and instances of the conjecture itself as soon as they are smaller than the currently
considered proposition with respect to a well-founded relation. This last point captures

the notion of Induction Hypothesis in the proof by induction paradigm. The main

observation is that when the axioms are oriented as a terminating set of rules, they

provide a natural well-founded ordering which can be used to support induction.
The main arguments in favour of our method are:

e it works even when some functions are incompletely defined and when there are
relations between constructors which is not the case for Boyer-Moore system;

e for its correctness, it does not require the given theory to be turned into a
confluent set of axioms;

e it provides automatically induction schemes through algorithms for computing
test sets;

e it allows to refute false conjectures when the axioms are presented by a ground
convergent conditional rewrite system; it is also refutationally complete in the
following sense : any equation that is not valid in the initial model will be
disproved, provided that the axioms can be turned into a ground confluent un-
conditional rewrite system;

e it does not require any hierarchy for handling the induction hypothesis;
e it is not restricted to equational theories but also applies to conditional theories;

e it is not restricted to the proof (and disproof) of equations but also applies to
non-orientable equations and general clauses.

Hofbauer and Kutsche [HK88] were the first to notice that inductionless induction
techniques still work when the ground confluence property of the input set of equations
1s relaxed. However their procedure is still influenced by the completion framework
since it is based on computing critical pairs and testing conjectures for ground re-
ducibility. In the procedure we propose here, and whose first version appeared in
january 1990 in [KR90a], we rather combine these two steps through the use of test
sets. Qur approach is developed for general conditional axiomatizations and do not
require either the ground convergence property for correctness. Moreover, due to the
property of test sets, it can be easily proved to be refutationally complete when the
theory is presented by a ground convergent set of equational rules. Reddy presented a
related method for the nonconditional case in july 1990 [Red90]. He used a notion of
covering sets developed by [ZKK88], analogous to test sets, for computing induction
schemes. However, no procedure is known for deriving such covering sets. This is not
surprising since for any equational theory, a set of variables is always a covering set
(and such a set is particularly useless for induction). We do not understand how the
adepts of covering sets assert to perform induction automatically without providing a
constructive definition of induction schemata.

On the other hand, we give here, following [KR90b, KR90c], a procedure to obtain
test sets even in the conditional case. Moreover, the notion of covering set cannot be
used to disprove false conjectures. Reddy has to simulate his procedure by inductive
completion in order to prove its refutational completeness. Our proof of refutational

4

completeness is self-contained and can be extended to many strategies. For instance,
we allow simplification of conjectures by other conjectures, which is a fundamental
feature for efficiency as shown by computer experiments.

1.3 Layout of the paper

The structure of the paper is as follows. In Section 2 we present our inference system
on a simple example. In Section 3 we introduce the essential notion used throughout
this paper. In particular, we define some useful rewriting relations. In Section 4 we
provide the basic theorems on proving and disproving inductive conjectures. In Section
5 we give a general inference system to perform induction and show its correctness.
We also prove its refutational completeness for convergent equational theories. In
Section 6 we introduce some methods to get a completely operational proof system.
In particular, we show how the convergence property (required for the refutational
completeness, but not for correctness) can be obtained either by a Knuth-Bendix like
procedure or by semantic techniques specific to hierarchical axiomatizations. Whereas
the computation of test sets is generally undecidable, in this section we also propose a
method to obtain test sets in conditional theories over a free set of constructors. The
Section 7 is dedicated to computer experiments with our SPIKE software.

2 Overview of our approach on examples

Before discussing technical details of the method that we propose for mechanizing
proofs of inductive theorems, we first describe our inference system on a simple ex-
ample, namely, positive integers with cut-off and gcd functions and the less predicate.
The arrow — just indicates how to apply a (conditional) equation for simplification:

r—0 — =z (1)
0—2 — 0 (2)
suce(z) — suce(y) — z—y (3)
(0 < suce(z)) — true (4)
(z <0) — false (5)
T <y = true = suce(x) < succ(y) — true (6)
z <y = false = succ(zr) < succ(y) — false (7)
T < y = true = ged(succ(z), suce(y)) — ged(suce(z),y — x) (8)
r <y = false = ged(succ(x),succ(y)) — ged(z — y, suce(y)) (9)
ged(z,0) — < (10)
gcd(0,z) — =z (11)
Consider the conjectures:
z—z = 0 (12)
r<z = false (13)

T < succ(r) = true (14)
x<y=true V xz<y= false (15)
r<y=false V y<z= false V © <z =true (16)
ged(z,z) = =« (17)

z < suce(z) = false (18)
T<y= false V y<z=true (19)

Except the two last ones all these propositions are valid in the standard arithmetic:
note that 13,15 and 16 state that < is a total ordering on integers. Let us prove
them by induction. With our method the first step consists in computing a test
set (see definition 4.1). Using techniques of section 6, we get the following test set:
{0, succ(z), true, false}. The next step consists in replacing variables of the conjecture
by the elements of the test set and checking these instances using pure simplification.

The simplification strategy may use azioms, previously proved conjectures, and in-
stances of the conjecture itself as long as they are smaller (w.r.t. a noetherian relation
that contains the rewriting relation) than the currently considered proposition. This last
point captures the notion of Induction Hypothesis in the proof by induction paradigm
(see theorem 4.1,4.2).

For the equation 12 two instances need to be checked: 0 — 0 = 0 and succ(z) —
succ(z) = 0. The first one reduces immediately to a trivial identity. For the second
one consider the reduction (notice the use of 12 as an induction hypothesis):

succ(z) — suce(z) —3 T — x 120
For 13 the only non-trivial instance is suec(z) < succ(z) = false
suce(r) < succ(z) —pg) false

For the last derivation, we have used an induction hypothesis to satisfy the condition
of 7 (cf., theorem 4.1). For 14 the same argument can be employed. For 15 there are
four instances by test set. The only non-trivial case is

suce(z) < suce(y) = true V suce(z) < succ(y) = false

Using case rewriting (cf., definition 3.3), we can split this formula into the conjunction
of 20 and 21:

~z <y =trueVirue = trueV succ(z) < succ(y) = false (20)
T <y=trueV succ(r) < succ(y) = trueV succ(z) < succ(y) = false (21)

20 is trivial and 21 is split again in:
z<y=trueV-cz <y = falseV false = falseV succ(z) < suce(y) = true(22)

r<y=true V z<y= falseV
succ(z) < succ(y) = false V suce(z) < succ(y) = true (23)

6

22 is trivial again and 23 is a subclause of the initial conjecture: this is the induc-
tion step (cf., theorem 4.2). The 16 and 17 are proved exactly in the same way.
Consider now 18. To disprove it, we are going to use the convergence property of
the initial system. Note that theorem 5.1 proves the ground convergence of the
given set of axioms. The instances to be considered are : 0 < succ(0) = false,
succ(z) < succ(succ(z)) = false. The first one reduces to true = false whose mem-
bers are irreducible and different. By theorem 4.3 the conjecture is false. For 19
consider the following instance 0 < suce(z) = false V succ(z) < 0 = true. It can be
reduced to true = false V false = true and therefore 19 is not valid.

3 Preliminaries

We assume that the reader is familiar with the basic notions of Horn theories and
rewrite systems. We introduce the essential terminology below and refer to Huet-
Open [HO80], and Padawitz [Pad88b] for more detailed presentations.

3.1 Conditional theories
3.1.1 Terms and substitutions

A signature ¥ is a pair (S, F') where S is a set of sorts and F is a finite set of function
symbols such that F is equiped with a mapping type: FF — 5* x S. For any ¢ € F
the value type(g) is the type of g, sort(X) will denote S, fun(X) will denote F' and
g : a — s will denote g € F with type(g) = a,s. Constants are represented by nullary
function symbols. From now on we assume that a given signature ¥ is sensible, i.e., it
admits at least one ground term of each sort.

Every signature ¥ defines a set of formulas that can be built from function symbols
taken from ¥ and free variables taken from a denumerable set X of variables. Let X
be a family {X,},es of sets of free variables indexed by S that is disjoint with X.
For every sort s € ¥ let T(X, X), be the set of X-terms of sort s constructed using
function symbols in F of type a,s and variables in X. X-terms will be denoted by
t, s, I, r, ... Var(t) stands for the set of all variables appearing in ¢. If ¢ is a E-term
and z € Var(t) then f§(x,t) denotes the number of occurrences of the variable z in t.
If Var(t) is the empty set then t is a ground term. By T(X), we will denote the set
of all ground terms constructed using function symbols in F of type a,s. A term ¢ is
linear iff §(z,t) = 1 for all variables in Var(t).

Furthermore, let N* be the set of sequences of positive integers, € the empty se-
quence in N* and - the concatenation operation on sequences. We call the elements
of N* positions and denote them u, v, w, p, ¢ ... We now define the prefiz ordering
<in N* by u < v iff there exists w such that v = u.wj; in this case we define v/u = w.
We write u < v iff v < v and u # v. Positions u and v are said to be disjoint, denoted
u|v, iff neither u < v nor v < u.

For any term t dom(t) C N* denotes its set of positions and the expression t/u
denotes the subterm of t at a position u. Also let ¢(u) denote the symbol of ¢ at position
u. A position u in a term ¢t is said to be a strict position if t(u) = f € F, a variable

position if t(u) = « € X and f(x,t) = 1, a non-linear variable position if t(u) =z € X
and f(z,t) > 1. We use sdom(t) to denote the set of strict positions in . We write
t[s]. to indicate that s is a subterm of ¢ at position u. We denote s[t] the term s whose
a subterm is ¢.

A ¥ — substitution n = {21 — {1, 2 — t3, ..., Tk — U}, where z; # t;, as-
signs X — terms of appropriate sorts to variables. It is applied to a ¥ — terms {,
by simultaneous replacement of all occurrences of each z; in t by t;. The ¥ — terms
t1, t2, ... ,ty are the values of 5. Greek letters o, 7, ... denote substitutions. Com-
position of substitution & and 5 is denoted by on. The ¥ — term tn obtained by
applying a substitution 7 to ¢ is called an instance of t. If 5 is a ground substitution,
we say that 7 is a ground instance of t. A term t unifies with a term s if there exists
a substitution o such that to = so.

3.1.2 Conditional equations and clauses

Let £ = (S5, F') be a signature. A T-equation is a pair e =, €’ where e, ¢’ € T(Z, X),
are terms of the same sort sort s. A conditional ¥-equation is either a ¥-equation or
an expression of one of the following forms: e; A...Ae, = e;oreg A...Ae, =, or =
where e, ey, ... e, are L-equations. Given a conditional ¥-equation , e,,...e, are said
to be the conditions and e is the conclusion. A L-formula (or a ¥-clause) is built from
Y-equations using the symbols — and V. In other words, a ¥-formula is an expression
of the form —e; V —ez V ... V —e, V €] V ... V e,. When X is clear from the
context we omit the prefix ¥ in ¥ — {ezpression}.

In this paper axiomatizations are built from conditional equations and goals to be

proved are clauses, i.e. disjunction of equational literals, since = is the only predicate
2

3.1.3 Inductive theory

Given a set of conditional equations Az of the signature ¥, we remind that a Herbrand
model of Az is a model of Ar whose domain is the set of ground terms (axioms for
equality are implicitly assumed to be valid, too). A formula F is a deductive theorem
of Az if it is valid in any model of Az. This will be denoted by Az = F. Deductive
theorems can be proved by refutation, by deriving a contradiction from -F A Az.
Usually =F is transformed into a universal sentence U by introducing skolem functions.
Hence the signature ¥ has to be extended. Most theorem-proving techniques rely on
Herbrand’s theorem, which implies that U A Az is unsatisfiable iff it has no Herbrand
model (w.r.t. the extended signature). The notion of inductive theory can be related
to special kinds of models: Herbrand models, initial models, or constructor models
[Pad88a, Pad88c, Pad88b, Zha88]. We study here the initial and the Herbrand model

approaches:

?we identify a conditional equation and its corresponding representation as a clause

Definition 3.1 Let Az be a set of conditional equations of the signature . A clause

e ts an inductive theorem of Ax iff for any ground substitution o, eo is valid in Azx.
This will be denoted by Az |=inq €.

For clauses validity in all Herbrand models differs, in general, from validity in
the initial model. However, these two notions of validity coincide for unconditional
equations:

Proposition 3.1 ([Pad88b]) A clause e is an inductive theorem iff it is valid in
any Herbrand model of Az. An unconditional equation e is an inductive theorem iff it
ts valid in the initial model of Az.

3.2 Rewrite Relations

Given a binary relation —, —* denotes its reflexive and transitive closure. Given two
binary relations R, S, let RoS denote their composition. A relation R is noetherian
if there is no infinite sequence t; R t; R In the following we suppose given a
reduction ordering > on the set of terms, that is, a transitive irreflexive relation that
is noetherian, monotonic (s > t implies w(s] = w(t]) and stable (s > t implies so > to).
We write s < t if s is a strict subterm of t and ¢t > s. If neither t{ < s nor ¢t > s nor
t = s then we say that s and t are incomparable and we denote this by ¢ ¥ s.

A reduction ordering can be extended to literals by comparing the multisets of their
members using the multiset extension of > (see [DM79]). Formulas are compared using
the multiset extension of this last ordering to the multiset of their atomic subformulas.
Since there is no ambiguity, all these extensions will be denoted by >, too.

An equation s = t will be written s — t provided that so > to for all ground
substitutions o. In that case we say that the equation is orientable and that s — t
is a rule. A conditional equation a; = b A...a, = b, = s = t will be written as
ag =bA...an =b, = s — tif {so} = {to,a10,b10,...,a,0,b,0} for all ground
substitutions o; in that case we say that the conditional equation is orientable and
that a; = by A...a, = b, = s — t is a conditional rule. The term s is the left-hand
side of the rule. A set of conditional rules is a rewrite system.

Conditional rewriting

The idea of rewriting is to impose a direction when using equations in proofs. This
direction is indicated by an arrow when it is independent from the instantiation: { — r
means that we can replace [by r in some context. When an instance of a conditional
equation is orientable and has a valid conditional part it can be applied as a rule.
The conditions are checked by a recursive call to the theorem-prover. Termination is
ensured by requiring the conditions to be smaller (w.r.t. the reduction ordering >)
than the conclusion. Various conditional rewrite relations have been studied in the

literature ([KR89, DOS88, Vorg9]).
Definition 3.2 Let H be a set of conditional equations and let A be a term. We write:

Also] =y Alto]

9

if there exists a substitution o and a conditional equation a; = by A...\ a, = b, =
s =1 in H such that :

1. so > to;
2. Vi€ {l...n} 3c such that a0 —} c and bio—j c;
3. {A[sa]} > {a10, bio, ... ano, b0}

A term A is reducible w.r.t. +—y if there is a term B such that A~y B. Otherwise
we say that A is R-irreducible we denote that by ¢ V.

The system H will be qualified as convergent if
Va,be T(F) HlEa=b = 3Jc such that a—~y"c and b—y"c.

Note that when H is a set of conditional rules then the relation — g is similar to the
notion of decreasing rewriting of Dershowitz, Okada and Sivakumar [DOS88].

The relation — g will be extended to sets of clauses in a natural way: by definition,
SU {c} —u SU{d} whenever c —y d.

Case rewriting

Case reasoning is a technique, which is the basis of many theorem proving strategies.
It 1s most important rule in the context of inductive theorem proving where case
splitting arises naturally from an induction hypothesis. We propose here a notion of
case rewriting, which is well-suited to inductive reasoning.

Definition 3.3 (Case rewriting) Let H be a set of conditional equations and let
¢ = s =1t be a conditional equation in H (where ¢ is a posttive literal). Let A[so], be
a clause (where o is a substitution) and let S be a set of clauses. The case rewriting
rule can be stated as follows

SU{A[so).} —u SU {(co V A[sa],),(—ca V Alto],)}

if neither co nor —co is a subclause of Also],, n is a position of a maximal literal of
A, so = to, (s =t)o = co and Also), > co

This definition can be generalized to the case where c is a conjunction of positive
literals in a straightforward way. Let us denote —y U vy by — 5. The following
proposition 1s the basis for proving (or disproving) clausal theorems.

Proposition 3.2 The case rewriting rule is sound (the derived set of clauses is logi-
cally equivalent to the initial set provided S contains H). The relation —py is noethe-
rian.

The first part is trivial. To prove the second one we use the following complexity
measure on clauses: For a clause C define s(C) = (a, b, c) where a is the set of maximal
atoms of C, b is the number of literals of C, and c is the set of atoms in C. Given
C and C’ we say that s(C) = (a,b,¢) < s(C') = (d/,0/,c) if a < a’ or a = a’ and
b>b,ora=a"and b =¥ and c < ¢’. Clauses sets will be compared by the multiset
extension of this ordering.

10

Supported rewriting

We introduce now a new rewrite relation, which will be useful for expressing that an
inductive hypothesis can help the proof of the premises of a conditional rule.

Definition 3.4 (Supported rewriting) Let H be a set of conditional equations, W
be a set of equations and A be a term. We define the supported rewriting relation
Also] »uw Alto]

if there exists a substitution o and a conditional equation a, = by A...A a, =b, =
s =1t in H such that :

1. so > to

2. Vie {1...n} 3c such that ajoc —jyw ¢ and bjo —j,w ¢
3. {A[so]} > {a10, bio, ... a,0, byo}

If W is empty or H is a set of unconditional equations we write —y instead of
> R[W]-

Relaxed rewriting

The following rewrite relation will be useful to handle non-orientable equations.

Definition 3.5 (Relaxed rewriting) Let H be a set of unconditional equations. We
define the relazed rewriting relation by: g[uf] ~y g[vl)] if there is (u =v) € H and
there is a substitution 0 such that uf * v6.

4 How to prove and disprove inductive theorems

In this section, we propose general methods to prove (and disprove) automatically that
sets of clauses are inductive consequences of theories axiomatized by sets of conditional
rules. This technique allows us to replace inductive reasoning by pure (algebraic)
simplification. This mechanization of inductive proofs is based on the notion of test
set, which, in essence, provides a finite description of the initial model of a given
conditional theory.

4.1 'Test sets

A rewrite rule ¢ = s — r is left-linear if s is linear. A rewrite system R is left-linear if
every rule in R is left-linear, otherwise R is said to be non-left-linear. A term is strong
R-irreducible if none of its non-variable subterms matches a left-hand side of R.
Further, if u is a position, then |u| (the length of the corresponding string) gives
us its depth. If t is a term, then the depth of ¢ is the maximum of the depths of the
positions in ¢ and denoted depth(t). The strict depth of t, written as sdepth(t), is the
maximum of the depths of the strict positions in t. The depth of a rewrite system R,
denoted depth(R), is defined as the maximum of the depths of the left-hand sides of

11

R. Similarly, the strict depth of R, written a sdepth(R). is the maximum of the depths
of the strict positions in the left-hand sides of R.

If R is a rewrite system, then R can be partitioned into left-linear rules R; and
non-left-linear rules R, i.e, R = Ry U R,. depth(Ry) denotes the maximum of the
depths of the left-linear rules Ry of R and depth(R,;) denotes the maximum of the
depths of the non-left-linear rules Ry, then the number D(R) is equal to depth(R)
if depth(R.;) < depth(Ry) and sdepth(R) < depth(Ruy), otherwise D(R) is equal to
depth(R)+1. D(R) is said to be a bound for R.

Definition 4.1 If R is a set of conditional rules, then a test set S(R) for R is a finite
set of R-irreducible terms that has the following properties:

completeness: For any R-irreducible ground term s there exists a term t in S(R)
and a ground substitution o such that to = s;

transnormality: For any non-ground term t in S(R) and for any position u in t for
which t/u is a non-ground term and |u| = depth(R), there exist infinitely many
strong R-irreducible ground instances to, ty, ... of t such that to/u # t1/u, ... ;

coveredness: Any non-ground term in S(R) has variables only at depth greater or

equal than D(R).

Let us show that this notion of test set is what is really needed for automating induc-
tion. First, the completeness property allows us to prove theorems by induction on
the domain of irreducible terms rather than on the whole set of terms (see theorem
4.1 and 4.2). Second, the transnormality and coveredness properties are crucial for the
refutation of inductive conjectures (see theorem 4.3). In order to derive useful lemmas
we must be able to apply the rewrite rules to some instances of the conjecture. For this
reason, these instances have to be deep enough: this is also ensured by the coveredness
property.

For left-linear rules the transnormality property may be weakened: it is sufficient
to consider non-ground terms that admit at least one strong irreducible instance.
Moreover, D(R) can be taken equal to depth(R) —1 in left-linear theories defined over
a free set of constructors. This is important for efficiency purpose.

It is possible to compute test sets for equational theories in a relatively efficient
way (see [Kou90, Hub91]). Unfortunately no algorithm exists for the general case of
conditional theories. However, in the last section, we will give a method to compute
test sets in conditional theories defined over a free set of constructors.

Example 4.1

a) If F = {a, {,g} and R = {f(z,2) — 3, {(z,9(c)) = g(2), f(g(c),2) — =, 9(g(a))
— a}, then the set S(R) containing the terms {a, g(a)} is a test set for R.

b) Let us come back to the introductory example. Let H be the set of azioms 1,2,...,11.
As we pointed out, S(H) = {0, succ(z),true, false} may be considered a test set. Note
that the set of ground instances of the members of the test set contains all ground irre-
ducible terms w.r.t. the relation —y. Moreover, the three properties of the definition
are verified.

12

Definition 4.2 Let R be a set of conditional rules and let C be a clause. A variable
x € C is an induction variable if it occurs in a subterm s of C such that t) s is unifiable
with the left-hand side | of a rule c = | — r of R, 12) the position of z in s is a strict
or a non-linear variable position of | or the position of a variable of | that also occurs
n c.

Terms in test sets are used to build test-substitutions.

Definition 4.3 If S(R) is a test set for a set R of conditional rules and C s a clause,
then a test instance of C with respect to S(R) is an instance of C obtained by substi-
tuting renamed terms of S(R) for the induction variables of C. A test-substitution is
a substitution that maps any variable from its domain to a renaming of an element of

S(R).

Example 4.2 Let R be {z + 0 = 2,2 + succ(y) = succ(x + y)}. Consider for C,
the associativity property (x +y) + z = + (y + z). The induction variables are
y and z. The test instances of C with respect to {0,succ(z')} are (z +0) + 0 =
4+ (040),(0+y)+ suce(z') =+ (0 + suce(2')), (x + suce(y’)) + 0 = z + (succ(y’) +
0), (z + suce(y’)) + suce(z') = z + (suce(y’) + suce(2'))

4.2 Inductive proofs by simplification

Our notion of induction uses a noetherian ordering on ground terms that contains the
conditional rewriting relation. We can use as an inductive hypothesis any instance of
the theorem we want to prove, as soon as this instance is smaller (w.r.t. =) than the
one that is currently considered. We propose here a rewriting relation which is sound,
with regard to the use of induction hypotheses. For instance, an inductive hypothests
can help to satisfy the conditions of a conditional rule. The following theorem shows
how to prove equations in initial models of conditional theories.

Theorem 4.1 Let R be a set of conditional rules, S(R) be a test set, and « = v be
an equation. In this case we define »—» as the reflexive closure of the relation:

(HR[uzv])O(HRU{uzv})'

If for all test-substitutions v there is a term a such that uv»+a and vv»+»a then
u = v 1s an inductive theorem for R.

It is straightforward to generalize the previous method to prove clauses. In the follow-
ing, we call a tautology a clause that contains either two complementary literals or an
instance of z = z.

Theorem 4.2 Let R be a set of conditional rules, S(R) be a test set, and C be a
clause. If for all test-substitutions v we have {Cv} —pg* {p1,p2---,pn}, and every
clause p; is either a tautology or is subsumed by an axiom or contains an instance of
C that is strictly smaller w.r.t. > than Cv, then C is an inductive theorem of R.

13

Example 4.3 Let us prove the transitivity of < (see axioms of the introductory ezx-
ample).
r<y=falseVy < z= falseVz <z=Ilrue

The only non-trivial test instance among eight of them is C':
suce(z) < succ(y) = false V succ(y) < suce(z) = false V succ(x) < suce(z) = true
After three steps of case-rewriting we get only one non-tautological clause, namely:
r<y= falseVy < z= falseVz < z = trueV

succ(z) < succ(y) = false V succ(y) < suce(z) = false V succ(z) < succ(z) = true

This clause contains a subclause that is a strictly smaller instance of the property C
to be proved. Hence by thcorem 5.2, the proof of transitivity is achieved.

4.3 Disproving inductive conjectures

The notion of a test set is particularly useful for refuting inductive properties. The next
definition provides the criteria to reject conjectures that are not inductive theorems.

Definition 4.4 Suppose that we are given a set of conditional rules R and a test set
S(R). Then a clause ~e; V...V —e,, Vg, =dy V...V g, =d, is quasi-inconsistent
with respect to R if there is a test instance Co such that for all 1 < m e;0 is an
inductive theorem and for all 7 < n at least one of the following is satisfied:

® g;0 #d;o, and both g;o and d;o are strong irreducible by R.
® g;o0 = d;o, and gjo is strong irreducible by R.
® g;0 < djo, and djo is strong irreducible by R.

The next result shows that, when the set of axioms is convergent, a quasi-inconsis-
tent clause cannot be inductively valid. This is proved by building a well-chosen
ground instance of the clause, that is false in some Herbrand model of the axioms. In
particular, if the clause is an equation then it is not valid in the initial model.

Theorem 4.3 Let R be a convergent set of conditional rules and S(R) be a test set
for R. If C is quasi-inconsistent w.r.t. R then C is not an inductive theorem of R.

The proof is given in the appendix.

Example 4.4 Consider the following conditional azioms for integers with +, odd, and
even.

zt+0 — z (24)

4s(y) — s@+y) (25)

even(0) — true (26)

even(s(0)) — false (27)

even(s(s(z))) — even(x) (28)

even(z) = true = odd(z) — false (29)
even(z) = false = odd(z) — true (30)

14

Here the test set is {0,s(0),s(s(z)),true, false}. Note that the azioms satisfy the
convergence property. Consider the conjecture even(z) = trueV odd(z) = false. It is
quasi-inconsistent as shown by the following instance even(s(0)) = trueV odd(s(0)) =

false.

4.4 A general procedure for proof by induction
4.4.1 Inference rules for inductive proofs

In the previous subsection we have given a technique for proving inductive theorems
in one step. However, most of the time several rounds are needed before getting a
proof. For instance, several successive instantiations by test sets may be necessary.
The easiest way to present this process is to use the formalism of inference rules as in
Bachmair [Bac91] and Reddy [Red90]. The main advantage of this approach is that
there is no hierarchy between the intermediate lemmas to be proved, and therefore no
difficulty for the management of inductive hypotheses: every intermediate lemma to
be proved will be put in the same set as the initial conjectures and no priority will be
(a priori) attached to them. In that sense our procedure can be viewed as being close
to inductionless induction.

Let R be a system of conditional rules. Our proof by induction procedure (which
is detailed in [Bou91]) modifies incrementally two sets of equations:

1. E, the set of equations to be proved.

2. H, the set of equations that have been reduced to equations of E, and therefore
can be used as induction hypotheses.

Let us give now the set of inference rules I:

For any test — instance ed = €'o, there is b such that :
Eu{e=e'}.H if either e £ €' and (e0 = gyuEu{e=e}) b) and E; = {b = €'a}
(Lo ko), Hu{e=e’ or e % ¢ and (€0 - pyuBu{e=ey) b) and E, = {eo = b}
or ed =€eoand E, =9

R . Eu{a=b},H .
Simplify, ((EU%;;%—;;% if ¢ = RHUEU{a=b}) @

algo), — g d = alho),
goda or g > h

Generale

.) Eu{a=b} Hu{g=h}) .
Simpli fy, 3:’:!;) l:s.:z: if {
Simplify3 {(Eu{c=d}u{a’=b},H) coda

Eu{c=d}u{a=b},H if { a[ca]u —gad = a[dO’]u

a~ya

Simplify, {Fo=h if { awb
a <b
Delete !EUja:ai,H!

15

, there is a test — instance eo = €' such that ec # €¢'c and :
Fail LE—U{%}-'EI if (e > € A €0 VRIHUEU{e=e")]) OT
(e % ¢ N ed YpiHuEU(e=e)] N €0 YRiHUEU{e=¢")])

The rule Generate allows to initialize inductive steps by replacing conjectures by
implicitly smaller conjectures. The rule Simpli fy, simplifies a conjecture with condi-
tional axioms from R, using conjectures from H U E when checking the convergence of
preconditions. The rules Simplify,, Simplify,; and Simplify, apply to a conjecture
using either induction hypotheses or other conjectures. Note that Simplz fy, allows
one to handle non orientables equations. The rule Delete helps getting rid of tautolo-
gies. The rule Fail applies when Generate cannot be applied.

An [-derivation is a sequence of states:

(Eo,Ho) by (B, H) by oo b1 (Eny Hy) Fr e
An [-derivation is failed if it ends with an application of the Fazl rule.

Example 4.5 Let R = {p(0) = True, p(z) = True = p(s(z)) = T'rue}. The initial
state is ({p(z) = True},B). We have:

({p(z) = True}, D) FGenerate ({True = True},{p(z) = True}) Fpetete (8, {p(z) = True})
The Generate step is justified by noting that p(s(x)) — p(p(z) = True)) TTue since

RU {p(z) = True} = (p(z) = True)

Definition 4.5 An [-derivation (Eo,8) F; (Ey, H\) b1 ... is fair if either it is failed
or the set of persisting equations (U; N;»i E;) is empty.

Lemma 4.1 Let (Eo, Ho) F; (Ey, Hy) ¥y ... be a fair I-derivation such that R g
Ey. Then there exists k such that the rule Fail is applied to (Ex, Hy).

This lemma is proved by considering the smallest invalid ground equation that is an
instance of an element of U; E;. See appendix.

Theorem 4.4 (Soundness) Let (Eo,0) b1 (Ey, Hi) by ... be a fair derivation. If
this dertvation is non failed then R |=inq Fo.

Note that Ej is valid even when the derivation is infinite (and Fa:l never applies).

Corollary 4.1 Given a set of equations E and a set of conditional equations R, if
there is an I-derivation from the state (E,Q) to some state (8, H), where H is any set
of equations, then any element of E is an inductive theorem of R.

Let us emphasize that we deal here with conditional theories, and that we allow
simplification of conjectures by conjectures, unlike Reddy (see Simplify3).

The failure to prove some theorem with the above procedure may be due to the
absence of some inference rule for case reasoning. We propose to enhance the procedure
by allowing case reasoning through case rewriting. More generally, note also that at
any step ¢, one of the current conjectures in F; can be proved by any other induction
proof technique. This is expressed by the generic rule:

16

Eu{C},H) - ¥
Other %E_-I%h 2f R }:ind C

We can easily prove that the system remains correct when we add this inference rule
to the previous ones.

Example 4.6 Consider ezemple 4.4 and let us prove first the commutativity of +.
We just consider the non-trivial instance by a test-substitution:

s(s(x)) +s(s(y)) = s(s(y)) + s(s(z)) (31)
After simplification, we have to consider the goal:
s(s(s(s(z))+y)) = s(s(s(s(y)) + z)) (32)

The rule simplify, applies to s(s(s(s(z)) + y)) and yields s(s(y + s(s(z)))) since
s(s(y + s(s(z)))) < s(s(s(s(y)) + x)). Then we get:

s(s(y +s(s(z)))) = s(s(s(s(y)) +z)) (33)

Applying Generate and simpli fy, using the hypotheses s(s(y+s(s(z)))) = s(s(s(s(y))+
t)) finishes the job.

Having proved the commutativity of +, we can prove : even(x + x) = true. To
prove it, we proceeds as follow : even((s(s(z)) + (s(s(z))))) reduces successively to
even(s(s(s(s(z+x))))) and then to even(x + z). Now even(z + x) is simplified to true
by using the induction hypothesis.

Let us prove now odd(z+s(z)) = true. The non trivial case is odd(s(s(z))+s(s(s(x))))
which simplifies lo true by supported rewriting.

Therefore, z + y = y + z, even(z + z) = true and odd(z + s(z)) = true are valid in
the initial model of 2/-30.

4.4.2 Refutation of conjectures

Conditional systems

Let us consider the set of inference rules J obtained by extending I with the following
new inference rule:

. E
Disproof L—U{CCTM) if C s quast — inconsistent.

If the given theory is a (ground) convergent set of conditional rules Disproof allows
to detect many false conjectures. This is an easy consequence of the theorem 4.3 and
this is formally expressed by the following corollary:

Corollary 4.2 Let R be a convergent set of conditional equations and let (Eo,0) tj
(Ev, Hy)by ... be a J-derivation. If there exists k such that Disproof is applied to
(Ex, Hy) then R béind E;.

17

When discovering an inconsistency at some step (Fx, Hy) we can conclude that the
input set FEy is not valid. This is stated in the next lemma:

Lemma 4.2 Let (Eo,0) Fy (Ey, Hy) by ... be a J-derivation where neither Fail nor
Disproof are applied. If for all j < k R l=ing Ej then R |=ing Ex.

Proof: If (Ex—1, Hc—y) by (Ek, Hi) by a simplification rule, then the equations which
are used for simplification occur in some E; (j < k) and therefore are valid in R by
induction (on k). Hence, E} is valid too in R. If (Ex—y, Hi—1) by (Ek, Hi) by Generate
on e = €', every auxiliary equation which is used for rewriting an instance of e = ¢’ by
a test-substitution is either in R or E}j (7' < k) and hence Ej is valid in R. D

Theorem 4.5 Assume that R is convergent and that (Eo,0) ;5 (Fy, Hy) by ... isa J-
derivation. If there exists k such that Disproof is applied to (Ey, Hi), then R ina Eo.

Proof: Let (Fo,0) by (E\, Hy) b1 ... be a J-derivation. Assume that there exists &
such that Disproof is applied to (Ex, Hi). It is clear that Disproof has not been
applied before step k. By corollary 4.2 R ;4 Ex and by lemma 4.2. R [£nq Eo. O

Note also that the soundness theorem remains valid for the inference system J if
we replace, in the statement, “Fail” by “Fail or Disproof”.

A refutationally complete system for equations

Let us consider the particular case of a convergent equational system R. We take the
same inference rules as above, except that we replace R[W] by R. We also notice
that, in this situation, the rules Fail and Disproof are identical. Therefore we can
prove that our inference system I (= J) is refutationally complete. This means that
the method allows to detect any false conjecture by the Fail rule. Note that we need
not prove this fact by translating derivations to narrowing derivations. This would be
hard work due to the numerous simplification rules.

Theorem 4.6 Let (Eo,0) by (Ey, H)) by ... be a fair derivation. Then R {na Eo if
and only if the derivation is failed.

Proof: Let (Eo,0) b (E1, Hy) k... be a fair derivation

o Assume that R }inq Fo. By theorem 4.4. then the derivation is failed.

e Assume that there exists k such that Fail is applied to (Fx, H¢). By corollary
43. R b’éind Ek and by lemma 4.2. R béind Eo. D

5 How to get the convergence property

Convergent systems of equations have the property that two terms are equal if and
only if they simplify to identical ones. In this section we provide several methods
to obtain the convergence property, which is crucial in our framework for disproving
conjectures.

18

5.1 The saturation technique

The Knuth and Bendix procedure [KB70] has been designed to derive convergent sys-
tems from equational presentations. The saturation technique is a natural extension
of Knuth and Bendix algorithm to conditional theories and has first been introduced
in [KR87, Rus87]. This technique is based on a set of inference rules which is refuta-
tionally complete for conditional equations.

We assume in this section that < is total on the set of ground terms and that for
any term t and for any proper subterm s of t we have s < 1.

As the main deduction rule, we use superposition, which is a refinement of paramod-
ulation (see also [RW69, Rus88, HR91]): the only inferences which are allowed are those
obtained by paramodulating maximal members of conclusions into maximal members
of conclusions (mazimal refers here to the ordering <). Let E be a set of conditional
equations. We formally define the superposition rule as follows:

c=>l[d]=r g>u=v
(chg=>lv]=r)0

where ¢’ is not a variable and v'o = uo and lo > co,ro and uo > qo,vo

There is also a refinement of paramodulation to deal with conditions. This is the
conditional narrowing rule: paramodulation is performed from maximal members of
conclusions into maximal conditions.

cA(lu]=r)=>e ¢g=>u=v
(chgA(lv]=1)=>e)o

where u’ is not a variable and u'c = ue and lo > co,ro and uo > qo,vo
Finally, the last inference rule allows to solve conditions by pure unification. This
rule is called reflexion:
cAs=t=>e
(c=>e)o

where so = to and (s = t)o = co,e0

There are also a certain number of rules for simplification, tautology deletion and
subsumption that we will not detail here since they are standard. When the ap-
plication of superposition, conditional narrowing and reflexion to a set of clauses S
generates only clauses that can be deleted using simplification, tautology deletion and
subsumption, then we say that S is saturated. Applying the set of inference rules
to conditional equations, we can generalize the theorem of Knuth and Bendix: if an
application of the rules above allows us to derive from 5’ a saturated set S then — g5 is
convergent. This technique is detailed in [KR87] and we will only show how it works
on an example. Let us note also that a more general version of it does not fail in
the presence of equations that cannot be turned into rewrite rules (in particular, we
allow extra-variables in the conditions or non-orientable equations). Moreover, purely
negative conditional equations are allowed, too. The following example is inspired
by [Pla85], where its confluence is proved by semantic techniques. Here we can show
that our saturation procedure immediately stops. This ensures that the system has
the convergence property.

19

Example 5.1 Consider the following set of conditional equations, which defines the
minimum of a list of integers. We assume azioms 4,5,6,7 of the introductory example
for < and the lrpo [Der87] as reduction ordering with the following precedence on
functions:

min =<> cons > nil = succ > 0 > true > false

true = false = (34)

succ(z) =0 = (35)

suce(r) = succ(y) =z = y (36)

(0 < succ(z)) — true (37)

(z <0) — false (38)

suce(z) < succ(y) — <y (39)

min(cons(z,nil)) — =z (40)

(x < min(l)) = true = min(cons(z,l)) — =z (41)
(x < man(l)) = false = min(cons(z,l)) — mun(l) (42)
min(l) = x = min(cons(z,l)) — min(l) (43)

Let us apply the saturation procedure: by superposition between 40 and 42 we get
the following interesting consequence:

(z < min(nil)) = false > ¢ = min(nl) (44)
Superposing {0 and {1 we get:
(z < man(l)) = false A (z < min(l)) = true=>z = mun(l) (45)

By simplification of the conditions of 45, we obtain the following clause which is sub-
sumed by 34.

(z <min(l)) = false A false = true =z = min(l) (46)

No new equation can be deduced. This implies that the system is convergent on ground
terms.

The next example shows that extra-variables are allowed in the conditions:

Example 5.2 We assume the following precedence p = s = true:

r<y=true=z < s(z) = true (47)
p(z) <z = true (48)
splz) = = (49)

To apply conditional narrowing we need to find a substitution such that:
o(z <y) = o(z < s(z)),0(z' <y') < o(z’' < s(z'),0(z <y) =o(z’ < s(a'))

But these constraints have no solutions. No inference steps would add a non-trivial
clause to the initial system. Hence, it is convergent.

20

5.2 Hierarchical axiomatization techniques

Hierarchical axiomatizations are natural tools for building structured specifications.
They are obtained by incremental extensions of base theories with new function defi-
nitions.

Let ¥B = (S, FB) be a subsignature of £ = (5, F). In other words, ¥ dif-
fers from ¥'B only in new function symbols. The elements of £¥B are often called
constructors and those of £ — £ B are called defined function symbols. Terms, substi-
tutions, equations, conditional equations, and formulas over ¥ B are called constructor
¥ — terms, constructor ¥ — substitutions, constructor ¥ — equations, constructor
Y. — conditional equations, and constructor £ — formulas, respectively.

For hierarchical axiomatizations, ground confluence can be obtained by semantic
methods. The next theorem is the one underlying D.Plaisted’s work [Pla85):

Theorem 5.1 Let H' be a set of conditional rules over a signature LB U (¥ — L B)
and let H C H' be a convergent set of rules over £B. Assume that the initial model
of H' is a conservative extension of the initial model of H. If for every ground term
fltr,...,t,), where f € (£ — X B), there ezists a constructor ¥ — term t' such that
f(ti,y ... ty)y—y~t' then H' is ground convergent.

Proof: Let ¢ be a term in T(F). Suppose that t—p/*t; and t—p*t,. From the hy-
pothesis, there exists two terms t{ and t; in T(XB), such that t—g"t] and to— 15,
Since H' and H share the same initial model, t] =t} is also a theorem in H. By the
convergence property of H, we can find a term s such that t{—g*s and ty—pg*s. This
achieves the proof. O

In the case of a hierarchical conditional theory H', our procedure for computing
test sets (see next section) may be used to demonstrate convergence provided that
the initial model of H’ is a conservative extension of the initial model of H. Recall
that the rewriting relation — g+ was defined with respect to a reduction ordering on all
terms and this ensures that it is noetherian. For instance, the introductory example is
convergent since the axioms introduced to define successively —, <, ged do not modify
the initial model (Peano arithmetic) and the rewrite rules eliminate these symbols from
any ground term. This is the same as asking for the sufficient-completeness property
w.r.t. a rewriting relation [GH78].

Further, verification of inductive properties often involves the proof of some lem-
mas. Adding these lemmas to the initial axiomatization does not destroy the conver-
gence, as stated in the following result:

Theorem 5.2 If H is ground convergent and C is a conditional equation that is an
inductive theorem of H. Then wpyycy is ground convergent.

Proof: Let t,t,,t5 be ground terms such that:
t—pugcy t and t—goicy te

Since C is an inductive theorem, all the ground instances of C' that have been used
in the proofs above are valid in H. Hence, t; = t, is valid in H, and the convergence
property of H allows to conclude the proof.0

21

For instance, in the introductory example 1-11 and 12,13,14,17 are convergent (with
an appropriately chosen reduction ordering).

6 How to get test sets

As we have already pointed out, the construction of test sets for conditional theories
is undecidable. This lies in that such a computation requires some kind of induction.
We propose here a method of computing test sets for conditional theories in which
the set of function symbols of their signature can be partitionned into a set £B of
constructors and a set ¥ — LB of defined functions. Therefore, we will assume that
every left-hand side of a conditional rule has a symbol from £ — X B. This corresponds
to the well-known requirements for a principle of definition to hold in an equational
theory (see [HH82]). In order to simplify our representation we shall assume that
¥ — ¥ DB contains only one function symbol. The key concept of the present method
of computing test sets for conditional theories is the notion of Pattern trees.

Definition 6.1 Given a linear term r = f(t1,t2, ... ,tx) where f € £ — DB and
t; € T(EB,X), for all v < k, the sons of v are all possible different terms (modulo
variable renaming) obtained by replacing a fizred variable of sort s in v by all terms of
sort s of the form g(z,,...,x,), where g is a function symbol of sort s of arity n in
EB and z4,...,z, are fresh distinct variables of appropriate sorts.

Example 6.1 If F = {a, f,g} FB={a,g} wherea: - s, f: sxs—s,g: s—s

and r = f(g(z),y), then the terms f(g(a),y) and f(g(g(z1)),y) are the sons of r: they
are obtained by replacing the variable z in r by the terms a, g(x,).

Definition 6.1 is the basis for the concept of pattern trees:

Definition 6.2 A pattern tree T of a linear term t is a tree, the root of which is
labeled with t and the outgoing branches from each non-leaf node are labeled with the
sons of the label at that node, w.r.t. some variable.

Let us illustrate definition 6.2 on a simple example:

Example 6.2 If FB = {0, succ, true, false}, F = FBU{<} whereQ: — int, <: intx
it — bool, true : — bool, false: — bool, and succ: int — int, then the following
tree is a pattern tree of the term x < succ(y):

z < succ(y)
z < succ(0) z < succ(suce(yr))

Pattern trees enjoy some fundamental properties: Given a finite pattern tree of t,

o The set of ground instances of t is equal to the set of ground instances of all leaf

labels.

22

e The sets of ground instances of two different leaf labels are disjoint.

e For any ground substitution 7 there exist a unique leal » and a unique ground
substitution o such that tnp =ro.

The construction of a test set for a given conditional theory H consists in computing
a suitable pattern tree of the term f(z,, =2, ..., zx) where f € ¥ —EB and z; € X,
for all < k. In general, when we want to construct such a tree by expansion from its
root, there are several questions that come naturally to mind: given a pattern tree T,
then

a) What nodes have to be expanded?
b) What variables in them have to be replaced?
¢) When the construction of T halts?

To answer these questions, we will define special kind of terms that we want to
be the leaf labels of the pattern trees we are interested in. These terms possess a
well-defined structure that, to a certain degree, mirrors the structure of the left-hand
sides of the rules of the conditional theory under consideration.

Definition 6.3 A term t is said to be H-extensible at position u if
a) u is a variable position in t of sort s, and

b) either the only functions symbols of sort s are nullary or u is a strict or a non-linear
position of a left-hand side of a rule in H.

A term t is said to H-extensible if it is H-extensible at some position u. Otherwise, t
is said to be H-covering.

Definition 6.4 Given a set H of conditional rules, a term t is said to be pseudo-
reducible by H if there exists a sequence of conditional rules C, = t, =ry, C; = t, =
r2, ... Ch = t, =1, in H and a sequence of positions uy,uy, ... ,u, in t such that
tjuy = tioy, tfup =202, ... ,t/uy, = t,o, and Cyoy V Cy0, V ... V Cho, is an
inductive theorem of H. Otherwise, t is said to be pseudo-irreducible by H.

Thus, if a term t is pseudo-reducible by H, then all its ground instances are reducible
by H. But proving that a node label is pseudo-reducible by a given conditional theory
H amounts to proving some inductive theorems. To avoid any vicious circle, either
we can use a different method to prove these particular properties or we can use our
method itself with a weaker notion of test set than the one we are currently computing.
For instance, the set of all terms that are of depth not greater than D(H) and with
variables only at depth D(H) suffices for these weaker test sets.

All of the necessary machinery is now at hand to resolve the questions a, b and ¢
stated above. Let us introduce the different types of node labels we are dealing with
by using the class of covering terms.

23

Definition 6.5 Given a conditional theory H, let T be a pattern tree of f(xy,... ,z,).
A node label t in T is said to be of

type 1 if t is pseudo-reducible by H,
type 2 if t is pseudo-irreducible by H and is H-covering,
type 3 if t is an H-irreducible ground term.

A node label t in T is said to be type-x-free if t is neither of type 1, nor of type 2, nor
of type 3. A pattern tree T of f(z1,... ,Tn) is said to be complete if each node label
tin T of type 1, 2, 8 is a leaf label.

In the following discussion, we denote node labels of type 1 using boldface letters.

Example 6.3 If FB = {0, succ, true, false}, F = FBU {<} where 0 : — int, <:
int x int — bool, true : — bool, false: — bool, and succ: int — int, and H is
the following conditional theory.

0 < suce(x) — true (50)
z<0 — false (51)
T <y =true = succ(z) < succ(y) — true (52)
z <y = false = succ(z) < succ(y) — false (53)
then the following pattern tree of z < y is complete:
r<y
z < succ(yy) x<0
0 < succ(y;) succ(xy) < succ(yi)
In general, to compute a complete pattern tree T of the term f(zy,... ,zn), f € F,

the following procedure may be used.

A procedure for computing complete pattern trees:

The procedure takes as input a conditional theory H over a signature ¥ = (S, F).
Initially, T is reduced to a node labeled with the term f(z,... ,z,).

Repeat as long as type-x-free leaf labels are in T. If none remains terminate success-
fully: the pattern tree of f(z,,... ,z,) is complete.

(1) Select a type-x-free leaf label r in T.
(2) Select a variable x in r at a position u where r is H-extensible.
(3) Expand r at x to cover all possibilities for x (i.e., compute the sons of r at x).

When the procedure terminates successfully, it returns as output a test set for H:

24

Theorem 6.1 Given a set H of conditional rules, if there exists a complete pattern
tree of f(zy,... ,z,) all leaf labels of which are of type 1, then a test set S(H) can be
computed. This test set S(H) contains:

1. all arguments of leaf labels that are minimal with respect to the subsumption order-
ing;

2. all constructor terms with variables only at depth D(H) — 1 no instance of which
is an argument of a leaf label.

For example, the leaf labels of the previous example are z < 0, 0 < suce(z), and
succ(xy) < suce(yy). The arguments of these leaf labels are: z, 0, 0, succ(zy), succ(zy),
and succ(y;). Thus a test set for H is {0, succ(z,), true, false}. Note that true and
false are constructor terms and do not occur as argument of leaf labels.

The method also gives a way to check that any ground term of a hierarchical
axiomatization can reduce to a constructor term and, as a consequence, by theorem
5.1, to prove the convergence of the system.

Theorem 6.2 Let H be a set of conditional rules over ¥ = ¥ BU (X — XB) such that
each left-hand side contains a symbol from ¥ — X B. Assume also that T is a complete
pattern tree w.r.t. H. Every term in T(X) is reducible to a term in T(XB) iff every
leaf of T is of type 1.

Example 6.4 Consider the following theory H:

dif(z,z) — ff (54)

dif(0,s(z)) — (55)

dzf((),0) — tt (56)

1f(s(z),s(y)) — dif(z,y) (57)

remove(:v nil) — nil (58)

dif(z,y) = tt = remove(z,cons(y,l)) — cons(z,remove(y,!)) (59)
dif(z,y) = ff = remove(z,cons(y,l)) — remove(y,l) (60)

then the following pattern tree of x < y is complete and each leaf label is of type 1:
remove(z,)

remove(x, nil) remove(x,cons(y,1))

since dif(z,y) =ttt Vdif(z,y) = ff is an inductive theorem. Therefore
a. the test set of H is S(H) = {it, ff,0, s(z), cons(z,), nil}.

b. the system is ground convergent by theorem 5.1.

Note that the previous construction may be extended to the non-free constructors
case provided that they are specified by a set of unconditional equations. However,

25

definition 6.1, 6.2 and 6.3 must be changed accordingly. In the following example the
constructors s and p verify some relations.

0<0 — ff (61)

0<s(0) — tt (62)

s(z) <y — z<py) (63)

plz) <y — z<s(y) (64)

s(p(z)) — = (65)

p(s(z)) — = (66)
r<y=tt=>z<s(y) — tt (67)
y<z=ff=y<plz) — ff (68)

The test set here is {0, p(0), p(p(z)), s(0), s(s(z)), tt, ff}. To see that it is sufficient
to verify that all the following terms are pseudo-reducible:
0 < 0,0 < p(0),0 < p(p()),0 < 5(0),0 < s(s(z)), p(0) < 0 (0) < p(0),p(0
p(p(2)),p(0) < 5(0),p(0) < s(s(z)), p(p(z)) < 0,p(p(z)) < p z))
p(p(2)) < s(0),p(p(z)) < s(s(y)), s(0) < 0,5(0) < p(0),s
5(0),5(0) < s(s(z)), s(s(z)) < 0,s(s(z)) < p(0),s(s(z)) < p
(s(2)) < s(s(y))-

»

7 Implementation and experimental Results
Our implementation of test set induction uses four main data structures:

e R, arewrite system for a conditional theory, built with the constructor discipline.
Note that this restriction is not required for purely equational theories.

e C, a set of conjectures to be proved.

e H, a set of inductive hypotheses.

e S atestset of R

We can describe the procedure Prove_by_induction in this way:

Prove_by_induction (C,H,R)
1. Compute a test set S of R.

2. — Simplify each conjecture in C:
* by the axioms of R.
* by the other conjectures.
* by the inductive hypotheses H
— Elimination of trivial identities.

3.ifC=10

26

then all the initial conjectures are inductive consequences of R.
else
a. Select a conjecture c in C.
b. Apply Generate or Case rewriting to derive new inductive hypotheses
by instantiation of ¢ by test-substitutions at inductive positions.
c. if step b. did not succeed
then
if R is convergent and c is a quasi-inconsistent equation.
then C is not an inductive consequence of R.
else failure.
else go to 2.

Instead of being hierarchical, our induction proof handles all the induction hypothe-
ses at the same level. This provides us with a fully automated procedure, where much
more simplifications are permitted than with explicit hierarchical induction. Moreover,
it permits to prove several properties in the same round, each of them being helpful
to prove the others.

Below, we show partial transcripts of sessions with SPIKE on the example 4.6, to
give more intuition about the abilities of the system. It illustrates the efficiency of
our system thanks to the mutual simplification of the conjectures. A more detailed
account is given in [Bou91].

R = { plus(x1,0) = x1 ;
S(plus(x1,x2)) = plus(x1,S(x2)) ;
even(0) = True ;
even(S(0)) = False ;
even(S(S(x1))) = even(x1) ;
(even(x1)=True) => odd(x1) = False ;
(even(x1)=False) => odd(x1) = True }

CO = {even(S(plus(xi,x1))) = False ,
even(plus(x1,x1)) = True ,
odd(plus(x1,5(x1))) = True ,
odd(plus(xi,x1)) = False ,
plus(x1,x2) = plus(x2,x1) ,
even(xl) = True v even{xl) = False ,
0odd(x1) = True v odd(x1) = False}

HO = {}
Simplification of (odd(plus(x1,5(x1))) = True) by
R[KO U CoO}:
(True = True)
Simplification of (odd(plus(x1,x1)) = False) by
R[HO U cO0]:
(False = False)
Delete (True = True)

Delete (False = False)

E1 = {even(S(plus(x1,x1))) = False ,
R 1

H1 = {}

27

Application of generate on (even(S(plus(x1,x1))) = False)
C2 = {False = False ,
False = False ,
even(S(plus(S(5(x1)),x1))) = False ,
.
H2 = {even(S(plus(x1,x1))) = False}
Delete (False = False)
Simplification of (even(S(plus(8(S(x1)),x1))) = False) by
C2-{even(S(plus(S(S(x1)),x1))) = False}:
(even(S(plus(x1,5(S(x1))))) = False)

C3 = {even(S(plus(x1,S(S(x1))))) = False ,
.

K3 = {even(S(plus(x1,x1))) = False}
Simplification of (even(S(plus(x1,S(S(x1))))) = False) by

R[H3 U C3]:
(even(S(plus(x1,x1))) = False)

E4 = {even(S(plus(x1,x1))) = False ,
A
H4 = {even(S(plus(x1,x1))) = False)

Simplification of (even(S(plus(x1,x1))) = False) by H4:
(False = False)

Delete (False = False)

CS = {pluas(x1,x2) = plus(x2,x1)
..}

HS = {even(S(plus(xi,x1))) = False}

Application of generate on (plus(xl,x2) = plus(x2,x1))
=> The induction variables: x2

C10 = {xt = plus(0,x1) ,
S(x1) = plus(S(0),x1) ,
S(S(plus(x1,x2))) = plus(S(S(x2)),x1) ,
L)

H10 = {even(S(plus(xi,x1))) = False ,

even(plus(xi,x1)) = True ,
plus(x1,x2) = plus(x2,x1)}

Simplification of (S(S(plus(x1l,x2))) = plus(S(S(x2)),x1)) by H1O0:
(S(S(plus(x2,x1))) = plus(S(S(x2)),x1))

C11 = {S(s(plus(x2,x1))) = plus(5(S(x2)),x1) ,
odd(x1) = True or odd(x1) = False ,
even(x1l) = True or even(xl) = False}

K11 = {even(S(plus(xt,x1))) = False ,

even(plus(x1,x1)) = True ,
plus(x1,x2) = plus(x2,x1)}

28

Application of case rewriting on:
odd(x1) = True or odd(x1) = False:

1) odd(x1) = False v True = True v~ (even(x1) = False).
2) odd(x1) = True v odd(x1) = False v even(x1) = False.

C12 = {even(x1) = True or even(xi) = False ,
odd(x1) = False v True = True v - (even(x1) = False) ,
0dd(x1) = True v odd(x1) = False v even(xi) = False}

H12 = {even(S(plus(x1,x1))) = False ,
even(plus(xi,xi)) = True ,
plus(x1,x2) = plus(x2,x1)
x1 = plus(0,xt) ,
S(x1) = plus(S(0),x1) ,
S(S(plus(x1,x2))) = plus(S(S(x1)),x2)}

Delete odd(x1) = False v True = True v ~ (even(x1) = False)

Application of generate on:
even(x1l) = True or even(x1) = False

C14 = {True = True v True = False ,
False = True v False = False ,
even(S(S(x1))) = True v even(S(S(x1))) = False ,
.

H14 = {even(S(plus(xi,x1))) = False ,
even(plus(x1,x1)) = True ,
plus(x1i,x2) = plus(x2,x1) ,
x1 = plus(0,x1)
S(xt) = plus(S(0),x1) ,
S(S(plus(x1,x2))) = plus(S(S(x1)),x2) ,
even(xi) = True v even{xl) = False}

Delete True = True v True = False
Delete False = True v False = False

Simplification of even(S(S(x1))) = True v even(S(5(x1))) = False by R:
even(xl) = True v even(xl) = False

Delete even(x1) = True v even(xi) = False.
which contains an instance of:
even(x1) = True v even{(xi) = False.
smaller than:
even(S(S(x1))) = True v even(S(S(x1))) = Falsa.

C15 = {}

H15 = {even(S(plus(x1,x1))) = False ,
even{plus(x1,x1)) = True ,
plus(x1,x2) = plus(x2,x1) ,
x1 = plus(0,x1) ,
S(x1) = plus(S(0),x1) ,
S(S(plus(x1,x2))) = plus(S(S(x1)),x2) ,
even(x1) = True v even(x1) = False}

>>> A1l the initial conjectures are inductive consequences of R. <<<
Have a nice day !
(): unit

/tmp_mnt/users/eureca/bouhoula/SPIKE/example.ml loaded

29

8 Conclusion

We have presented new methods for inductive reasoning. These methods try to exploit
as much as possible the power of rewriting. Rewriting systems are a natural framework
for inductive reasoning, since they provide well-suited noetherian relations. Proofs in
the initial model usually require checking infinite sets of ground equations. The con-
cept of test set allows to reduce this set to a finite one. Moreover, when the axioms
are convergent, test sets give a complete strategy to disprove theorems by producing
counterexamples. We feel that the method presented here could challenge successfully
the alternative method proposed by Boyer and Moore. Moreover, this method gen-
eralizes to the case where there are axioms in the theory with negation of equations
in the conditions. The theorem-prover SPIKE based on our technique has solved a
number of interesting problems. It is being currently extended to incorporate general-
ization mechanisms and tactics (see [Bun83, BvHSI89, Hut89]), which are necessary
to solve many usual problems. Moreover, we are working on better algorithms for the
computation of test sets.

Acknowledgements: We sincerely thank Sergey Vorobyov for his careful reading of
a first draft of this work.

References

[AubT79] R. Aubin. Mechanizing structural induction. In Theoretical Computer
Science, volume 9, pages 329-362, 1979.

[Bac88] L. Bachmair. Proof by consistency in equational theories. In Proceedings
3rd IEEE Symposium on Logic in Computer Science, Edinburgh (UK),
pages 228-233, 1988.

[Bac91] L. Bachmair. Canonical equational proofs. Computer Science Logic,
Progress in Theoretical Computer Science. Birkhauser Verlag AG, 1991.

[BHHWS86] S. Biundo, B. Hummel, D. Hutter, and C. Walther. The karlsruhe in-
duction theorem proving system. In J. Siekmann, editor, Proceedings 8th
International Conference on Automated Deduction, Ozford (UK), volume
230 of Lecture Notes in Computer Science, pages 672-674. Springer-Verlag,
1986.

[(BK89] R. Biindgen and W. Kiichlin. Computing ground reducibility and in-
ductively complete positions. In N. Dershowitz, editor, Proceedings 3rd
Conference on Rewriting Techniques and Applications, Chapel Hill (North
Carolina, USA), volume 355 of Lecture Notes in Computer Science, pages
59-75. Springer-Verlag, April 1989.

[(BM79] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press,
New York, 1979.

30

(Bou91]

[Bung3|

[Bur69]

[BvHSIS9)

[Der87]

[DM79]

[DOS8S

[Fri&6)

[GG8Y]

[GH78]

[Gra89]

A. Bouhoula. Preuve automatique par paramodulation, réécriture et in-
duction. Rapport interne 91-R-204, Centre de Recherche en Informatique
de Nancy, Vandocuvre-les-Nancy, 1991.

A. Bundy. The Computer Modelling of Mathematical Reasoning. Aca-
demic Press, New York, 1983.

R. M. Burstall. Proving properties of programs by structural induction.
Computer Journal, 12:41-48, 1969.

A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Extensions to the
rippling-out tactic for guiding inductive proofs. In M. E. Stickel, editor,
10th International Conference on Automated Deduction, volume 449 of
Lecture Notes in Artificial Intelligence, pages 132-146. Springer-Verlag,
July 1989.

N. Dershowitz. Termination of rewriting. Journal of Symbolic Computa-

tion, 3(1 & 2):69-116, 1987.

N. Dershowitz and Z. Manna. Proving termination with multiset or-
derings. Communications of the Association for Computing Machinery,
22(8):465-476, 1979.

N. Dershowitz, M. Okada, and G. Sivakumar. Canonical conditional
rewrite systems. In Proceedings 9th International Conference on Auto-
mated Deduction, Argonne (lllinois, USA), volume 310 of Lecture Notes
in Computer Science. Springer-Verlag, May 1988.

L. Fribourg. A strong restriction of the inductive completion procedure. In
Proceedings 13th International Colloguium on Automata, Languages and
Programming, volume 226 of Lecture Notes in Computer Science, pages

105-115. Springer-Verlag, 1986.

S. J. Garland and John V. Guttag. An overview of LP, the Larch Prover.
In N. Dershowitz, editor, Proceedings 3rd Conference on Rewriting Tech-
niques and Applications, Chapel Hill (North Carolina, USA), volume 355
of Lecture Notes in Computer Science, pages 137-151. Springer-Verlag,
April 1989.

John V. Guttag and James J. Horning. The algebraic specification of
abstract data types. Acta Informatica, 10:27-52, 1978.

B. Gramlich. UNICOM: a refined completion based inductive theorem-
prover. In M. E. Stickel, editor, 10th International Conference on Auto-
mated Deduction, volume 449 of Lecture Notes in Artificial Intelligence,

pages 655-656. Springer-Verlag, July 1989.

31

[HH82)

[HK88]

[HOS0]

[HR91)

(Hub91]

[Hut89)

[JK86)

[KB70]

[KM87]

[KNZ86]

[Kou90}

G. Huet and J.-M. ITullot. Proofs by induction in equational theories with
constructors. Jouwrnal of Computer and System Sciences, 25(2):239-266,
October 1982. Preliminary version in Proceedings 21st Symposium on
Foundations of Computer Science, IEEE, 1980.

D. Hofbauer and R. D. Kutsche. Proving inductive theorems based on
term rewriting systems. In J. Grabowski, P. Lescanne, and W. Wechler,
editors, Proceedings [st International Workshop on Algebraic and Logic
Programming, pages 180-190. Akademie Verlag, 1988.

G. Huet and D. Oppen. Equations and rewrite rules: A survey. In R. V.
Book, editor, Formal Language Theory: Perspectives and Open Problems,
pages 349-405. Academic Press, New York, 1980.

J. Hsiang and M. Rusinowitch. Proving refutational completeness of the-
orem proving strategies: The transfinite semantic tree method. Journal
of the Association for Computing Machinery, 38(3):559-587, July 1991.

M. Huber. Test-set approaches for ground reducibility in term rewriting
systems, characterizations and new applications. Master’s thesis, Technis-
che Universitat Berlin, 1991.

D. Hutter. Guiding inductive proofs. In M.E. Stickel, editor, 10th Interna-
tional Conference on Automated Deduction, volume 449 of Lecture Notes
in Artificial Intelligence, pages 147-161. Springer-Verlag, July 1989.

J.-P. Jouannaud and E. Kounalis. Proof by induction in equational the-
ories without constructors. In Proceedings 1st IEEE Symposium on Logic
in Computer Science, Cambridge (Massachusetts, USA), pages 358-366,
1986.

Donald E. Knuth and P. B. Bendix. Simple word problems in universal
algebras. In J. Leech, editor, Computational Problems in Abstract Algebra,
pages 263-297. Pergamon Press, Oxford, 1970.

D. Kapur and D. R. Musser. Proof by consistency. Artificial Intelligence,
31(2):125-157, February 1987.

D. Kapur, P. Narendran, and H. Zhang. Proof by induction using test
sets. In Proceedings 8th International Conference on Automated Deduc-
tion, Ozford (UK), volume 230 of Lecture Notes in Computer Science,
pages 99-117. Springer-Verlag, 1986.

E. Kounalis. Testing for inductive (co)-reducibility. In A. Arnold, editor,
Proceedings 15th CAAP, Copenhagen (Denmark), volume 431 of Lecture
Notes in Computer Science, pages 221-238. Springer-Verlag, May 1990.

32

[KR87]

[KR89)

[KR90a)

[KR90b]

[KR90c]

[Kiic89)

[Mus80]

[Pad88a]

[Pad88b]
(Pad83c]

[Pla85]

[Red90]

E. Kounalis and M. Rusinowitch. On word problem in Horn logic. In J.-P.
Jouannaud and S. Kaplan, editors, Proceedings st International Work-
shop on Conditional Term Rewriting Systems, Orsay (France), volume 308
of Lecture Notes in Computer Science, pages 144-160. Springer-Verlag,
July 1987. See also the extended version published in Journal of Symbolic
Computation, 11(1 & 2), 1991.

S. Kaplan and J.-L. Rémy. Completion algorithms for conditional rewrit-
ing systems. In H. Ait-Kaci and M. Nivat, editors, Resolution of Equations
in Algebraic Structures, Volume 2: Rewriting Techniques, pages 141-170.
Academic Press, 1989.

E. Kounalis and M. Rusinowitch. A mechanization of conditional rea-
soning. In First International Symposium on Artificial Intelligence and
Mathematics, Fort Lauderdale, Florida, January 1990.

E. Kounalis and M. Rusinowitch. Mechanizing inductive reasoning. Bul-
letin of Furopean Association for Theoretical Computer Science, 41:216-
226, June 1990.

E. Kounalis and M. Rusinowitch. Mechanizing inductive reasoning. In
Proceedings of the American Association for Artificial Intelligence Con-
ference, Boston, pages 240-245. AAAI Press and MIT Press, July 1990.

W. Kiichlin. Inductive completion by ground proof transformation. In
H. Ait-Kaci and M. Nivat, editors, Colloguium on the Resolution of Fqua-
tions in Algebraic Structures, Volume 2: Rewriting Techniques, pages 211-
244. Academic Press, 1989.

D. R. Musser. On proving inductive properties of abstract data types.
In Proceedings 7th ACM Symp. on Principles of Programming Languages,
pages 154-162. Association for Computing Machinery, 1980.

P. Padawitz. Can inductive proofs be automated. Bulletin of European
Association for Theoretical Computer Science, 35:163-170, 1988.

P. Padawitz. Computing in Horn Clause Theories. Springer-Verlag, 1988.

P. Padawitz. Inductive proofs of constructor horn clauses. Technical Re-
port MIP-8810, Universitat Passau (Germany), 1988.

D. Plaisted. Semantic confluence tests and completion methods. Infor-
mation and Control, 65:182-215, 1985.

U. S. Reddy. Term rewriting induction. In M. E. Stickel, editor, Pro-
ceedings 10th International Conference on Automated Deduction, Kaiser-
slautern (Germany), volume 449 of Lecture Notes in Computer Science,
pages 162-177. Springer-Verlag, 1990.

33

[Rus87]

[Rus88]

[RW69]

[Vor89]

(Zha8s]

[ZKK8S]

M. Rusinowitch. Démonstration automatique par des techniques de ré-
écriture. These de Doctorat d’Etat, Université de Nancy I, 1987. Also
published by InterEditions, Collection Science Informatique, directed by
G. Huet, 1989.

M. Rusinowitch. Theorem-proving with resolution and superposition: an
extension of Knuth and Bendix procedure to a complete set of inference
rules. In Proceedings of the International Conference on Fifth Genera-
tion Computer Systems, 1988. See also the extended version published in
Journal of Symbolic Computation, number 1&2, 1991.

G. A. Robinson and L. T. Wos. Paramodulation and first-order theorem
proving. In B. Meltzer and D. Mitchie, editors, Machine Intelligence 4,
pages 135-150. Edinburgh University Press, 1969.

S. G. Vorobyov. Conditional rewrite rule systems with built-in aritn-
metic and induction. In N. Dershowitz, editor, Proceedings 3rd Conference
on Rewriting Techniques and Applications, Chapel Hill (North Carolina,
USA), volume 355 of Lecture Notes in Computer Science, pages 492-512.
Springer-Verlag, April 1989.

H. Zhang. Reduction, Superposition and Induction: Automated Reasoning
in an Fquational Logic. PhD thesis, Rensselacr Polytechnic Institute,
Department of Computer Science, Troy, NY, 1988.

H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mechanizable induc-
tion principle for equational specifications. In E. Lusk and R. Overbeek,
editors, Proceedings 9th International Conference on Automated Deduc-
tion, Argonne (lllinois, USA), volume 310 of Lecture Notes in Computer
Science, pages 162-181. Springer-Verlag, 1988.

34

Appendix

proof of theorem 4.1 and 4.2

Theorem 4.1 is a particular case of theorem 4.2. However, we prefer to give the proof
separately since it gives the motivations for theorem 4.2. Suppose that u = v is not
an inductive theorem of R. Let 7 be a ground substitution such that ur = v7 is the
smallest equation w.r.t. < such that

R £ ur = vt

We can suppose that 7 is irreducible, otherwise we could exhibit a smaller counter-
example. Hence, there is a test substitution ¢ and a ground substitution 8 such that
T = ¢0. From the hypothesis, there is a term a such that

ugp»+»a and vo r—>a

By instantiation:
ut »—»af and vT >l

It remains to show that every term replacement occurring in the proof above is valid
(in the initial model) either because it is a logical consequence of R or by induction
hypothesis. This will give a contradiction with the choice of 7.

1. suppose the instance up = vp of u = v is used in some unconditional step. Since
it is not the first step, the replacement is applied to a term which is smaller than
the initial term u@8 (or vdd) since this last one has been rewritten at least once.

We have again {u¢f,véd} = {up,vp}.

2. if up = vp is used in some conditional step. Since conditions are evaluated only
when they are smaller than the term to rewrite, every instance of an equation
which is used in such a proof is smaller than the original goal {u¢f,v¢8}.

proof of theorem 4.3

Let L be the left-hand sides of the conclusions of the conditional rules in R. Let C be
of the form —e; V —e; V ... V —en V g1 =d; V ... V g, = d,, a clause which
1s quasi-inconsistent with respect to R. Then there is a test instance Co of C, such
that e;no is an inductive theorem for all I < m’ and for all I’ < n at least one of the
following fact holds:

A) gro # dpo and no subterm of gyo, dyo is an instance of L.
B) gro > dvo and no subterm of gro is an instance of L.

C) gvo < dpo and no subterm of dyo is an instance of L.

35

In order to show that C is not an inductive theorem of R, it is sufficient to show that
(h=dy V ... V g, =d,) o is not an inductive theorem of R. Indeed, all ground
instances of (me; V —ey V ... V —e,) o are false in R, by hypothesis. Let us show
that in the case where for all I’ < n gpo # dpo and no subterm of gyo, dyo is an
instance of L, then C is not in inductive theorem of R.

Let Var (¢ =dy V ... V g, =d,) = {z1,...,2«} and let Ao be an instance
of A=gi=d V ... V g, = d, such that o = {z, « ¢;,...,24 « tx}, where
t; € S(H) for all : < k. We shall show that there exists at least a ground instance
Aon of Ao no subterm of which is an instance of L. This will be enough to ensure
that (g1 =d, V ... V g, =d,) o is not an inductive theorem of R. There are two
cases depending on the groundness of t:

Case 1: Suppose t; is ground for all ¢ < k. Then Ao is a ground clause.
‘Thus, there is no ¢ such that g;o and d;o rewrite to the same term using . Hence
(gh=di vV ... V g, =d,) ois false using the ground convergent of .

Case 2: Suppose there exists 1 < k such ¢; is non-ground. Suppose that the
variables z,,...,2; occur at positions vy,...,vs, and let m be the maximal num-
ber of non-ground subterms of ¢;,, which are rooted at positions of depth equal to
depth(H). Let on be a strong H-irreducible ground substitution instance of o such
that |[depth(Aon/viw;;) — (Aon/viwiy)| > depth(Ac) for all | < 4, ¢/ < k, and all
[<3" # j < m. Note that such a substitution instance exists by using clause 2 of
the definition of Test Sets. Let us show that Aon contains no subterm which is an
instance of L. Were a subterm of Aon an instance of L, there would exist a strict
position u in Aon (because o7 is strong R-irreducible) and a term s € L such that
Aon/u is an instance of s. There are two cases depending on the linearity of s:

Case 21: Suppose s is linear. Let first v be a non-variable position in s. Nec-
essarily uv is a non variable position in Ao by using clause 3 of definition 1. Since
Aon/u is an instance of s, we have Ao(uv) = Aon (uv) = s(v). Now suppose
that V P(s) is the set of variable positions of s, and ¢” the substitution such that for
any s(w) = z € X, then z0” = Aon/uw. Note that ¢” is well defined, because s
is linear, so & cannot have several occurences. It follows that Ao/u = so”, thus Ao
contains a subterm which is an instance of s € L, contradiction.

Case 22: Suppose s is non-linear. Let v a non-variable position in s. Necessarily
uv is a non variable position in to by using clause 3 of definition of Test Sets. Since
Aon/fu is an instance of s, we have Ao(uv) = Aon(uv) = s(v). Let (u1,uz) € VP(s),
such that s(u;) = s(uz) = v € X. Then Aon/uu; = Aon/uu,. Since Ao contains no
subterm which is an instance of L, there must exist such a paire uu;, uus of position
in Ao such that Ao/uu; # Ao/uu,. The remainder of the proof of this case is by
subcases depending on the groundness of subterms Ao /uu; and Ao /uuy:

36

Case 22a: Suppose Ac/uu; and Ao /uus are ground. Then Ao /uu, = Aon/uu,
and Ao/uu; = Aon/uu,. Since Aony/uuy = Aon/uu,, we have Ao /uu, = Ao fuu,,
contradiction.

Case 22b: Suppose Ao /uu, is ground and A [uu, is non-ground. Then Ao [uu, =
Aon/uu;. On the other hand, since u € sdom(Aco) and |u,| < depth(H), there must
exist a position v;w;; in Ao such Ao /vaw;; is non-ground, uu, < viw;j, and |wi;| =
depth(H), for some ¢ < k and j < m. Thus, depth(Aon/uuy) > depth(Aon/viw;;).
Further, depth(Aon/v,w;;) > depth(Ac) by using definition of substitution on. Now,
depth(Ac) > depth(Ao [uuy) = depth(Aon/uuy). Thus, depth(Aon/uu,) > depth(Aon
Juwy), contradiction.

Case 22c: Suppose Ao/uu; and Ao/uu; are non-ground. Since Ao/uu;, #
Ao [uug, there must exist a position w such that Ac/uuyw # Ao/uu,w. There
are again three subcases depending on the groundness of subterms Ao/uuiw and
Ao [uuqw:

(i) Suppose Ao /uu;w and Ao /uu,w are ground: the proof is identical to case 22a.

(i1) Suppose Ao /uu w is ground and Ao /uu,w is non-ground: the proof is identical
to case 22b.

(i1) Suppose Ao /uu;w and Ao /uuqw are non-ground: Since Ao /uuyw # Ao /uusw,
there must exist | <z, 7' < k, such that one of the following cases hold:

1) wuyw = viw;; and uugw = viwgj,

2

3

uu w = viw;; and uuw > viwigr,

umw = vw;; and uuw < vpwjgr,

uuw > vw;; and vuw < vpwyjr,
6
7
8

9) uuyw < viwy; and uuw > viw;,

uu w > viw;; and uuaw > vpw;p
7 7

)
)
)
4) uuyw > viw;; and wuw = VW,
)
)
) uuyw < viw;; and uuw = vipwp,
)

(
(
(
(
(5
(
(
(8) wuyw < vyw;; and vuw < viwpjr,
(

(1) Suppose uujw = vw;; and vusw = vpwyy. Then depth(Aon/uuw) >
depth(Aon/ viw;;) > depth(Aon/viWi ;) bu using definition of substitution a7. How-
cver, depth(Aon/viWi i = depth(Aon/uusw) by case hypothesis, and thus depth(Aony
[uuyw) > depth(Aon/uusw), contradiction.

The proof of subcases (2), (3), (4), (5), (7) and (9) is identical to subcase (1).

(6) Suppose uuyw > viw;; and uupw > vpwyy. Since u € sdom(to) and |u;| <

depth(R), there must be uu; < vyw;;. Let w = pq, where p is such that uu;p = v;w;;.
Since Ao/uuyw # Ao/uuw, we have Ao/uuip # Ao /uuzp, and uwup = v;w;; and

37

either uuyp = vpwiyr, or uuyp < vpwyj, or uugp > vywyy. The proof of those of
subcases is identical to (1), (2), (3).

(8) Now Suppose uuw < v;w;; and vugw < vywgjr. Assume also that vywg;e is
along a maximal path of Aon/uu,. Then depth(Aon/uuw) > depth(Aon/vaw;;) >
depth(Ac) + depth(Aon /vy W) by using the definition of substitution . However,
depth(Ac) + depth(Aon [viWij) > depth(Aon/uusw), contradiction.

Therefore, no subterm of Ao7 is an instance of L and g, on # dpon for all n’ < n.

Therefore R [~ gnon = dnon since R is convergent. Thus, C is not an inductive
theorem of R. This complete the proof of the theorem. O

38

proof of lemma 4.1

To prove this lemma, we introduce a notion of complexity of a proof step:

Definition 8.1 Let P = so &, to be an equational proof step. We define the
complezity of P by:

({so},{te}) if s>t
C(P) = { ({to},{so}) if s=<t

({so,to},-) otherwise

Let P = so «,-, to be an equational proof step, we say that s = ¢ justifies P. We say
that P is valid in R if R | so = to. We consider the set K of proof-steps which are
justified by equations in (U; E;) and we show that the rule Fa:l applies to an equation
s = t of (U; E;) which justifies a minimal proof-step of K which is not valid in R. It is
sufficient to prove that s =t cannot be simplified, and that generate cannot apply to
s = t. Therefore Fail is applied since the equation cannot persists in the derivation
due to the fairness hypotheses.

Let P = so < ,_, to be this proof-step and assume that s A {. We can assume that
o is irreducible by R. By hypothesis we have R ¢ so = to. Assume that s =t € E;
and (E;, H;) &1 (Ej+1, Hj+1) by application of simplify or generate on s = t. We
discuss now the situation according to the rule which is applied and we derive a con-
tradiction in every case. In this proof, in order to simplify notations, we write I for

E; and H for H;.

Simpli fy,
We distinguish two cases:

Case 1: so —ggup) s'c and s > s'. Assume that e = f € (H U E) has been used
for proving the preconditions (with substitution 8). Consider G = e «.-; f0. By
definition 3.4 {ef, f0} < {sa}, hence C(G) < ({sc},-) and therefore C(G) < C(P).
On the other hand (HU FE) C U; E;, therefore G is valid in R and finally R [£ s'0 = to.
Let Q = s'o =4, to. We verify that C(Q) < C(P):

o If s > ¢t then C(P) = ({sc}, {to}) < C(Q) since {s'o,to} < {sc}.
¢ Otherwise: C(P) = ({so,to},-)

x If s' >~ ¢ then C(Q) = ({s'c}, {te}) < C(P) since s'o < so.
x If s’ < t then C(Q) = ({to},{s'c}) < C(P) since {to} < {so,to}.
* Otherwise: C(Q) = ({s'o,tc},.) < C(P) since {s'o,to} < {so,to}.

Hence, @) is not valid in R and strictly smaller than so «,-; to. This contradicts the
choice of s =t (since s’ =t € U;E;).

Case 2: to —pyug) t'c and t > t'. For the same reason as before we have: R} so =
t'o. Let Q = so «,-¢ t'oc. We verify that C(Q) < C(P):

39

o If s > ¢ then C(P) = ({so}, {to}).
In this case we have s = t = t', hence C(Q) = ({so},{t'e}) < C(P) since
t'o < to.

e Otherwise: C(P) = ({so,to},.)

* If s > t' then C(Q) = ({sc},{t'c}) < C(P) since {so} < {sa,to}.
* If s < t' then C(Q) = ({t'o}, {so}) < C(P) since t'c < to.
¥+ Otherwise: C(Q) = ({so,t'c},.) < C(P) since {so,t'o0} < {so,tc}.

Hence, @ is not valid in R and strictly smaller than so < ,=; to, contradiction.

Simpli fy,
We distinguish two cases:

Case 1: s+ s’ and s > s'. Let g = h be the equation of H which has been used to
simplify s. Hence there exists 7 such that s = s[g7] , s’ = s[hr] and g > A.

e If g = his valid in R then R £ s'o0 = to and on the other hand C(s'c « g,
to) < C(P). (same proof as Simplify,). which is absurd.

e Otherwise: R} (g7)o = (h1)o.

— If g7 4 s then C((gr)o 4= (hT)o) < P since {(g7)o, (hT)o} < {so},
contradiction.

— Otherwise: g > h. Hence there exists k such that {g; = ho;}iz1.» C Ex
with {0i}iz1..n test-substitution for (¢ = k) and go; —puE) gi- On the
other hand let ¢’ = (7o), where ¢’ is a ground substitution. Assume that
it is irreducible. Then there exists a test-substitution ¢;, and a ground
substitution 8 such that ¢’ = 6,,0. Then we have:

(gaio)0 Sg=h (haio)o

TRHE
1%

giog

C(gi,0 < (hoy,)0) < C(P) since {g:,0,(ho;,)0} < {so} since gi,0 <

Gig=ho;
(90i,)0 <X so and (ho,)8 < (g7)o < so. On the other hand, R [~ g;,0 =
(hoi,)0 since all the equations used in the proof of preconditions are valid
(since they justify smaller proof-steps), contradiction.

Case 2: t g t'. Same reasoning as Case 1.
Simpli fy,
We distinguish two cases:

Case 1: s —g s’ and s > s’. Let g = h be the equation of F which is used to simplify
s. Hence there exists 7 such that s = s[g7] ,g7 4 s, s = s[h7] and g7 > h7.

40

e If g = his valid in R then R [£ s'c = to. On the other hand C(s'c 4= to) <
C(P). (same proof as for Semplify,), contradiction.

e Otherwise: R £ (g7)o = (h71)o. Let Q = (g97)0 < 4=4 (hT)o, we verify that
C(Q) < C(P):

o If g > h then C(Q) = ({(g7)o}, {(h7)o}) < C(P) since (g7)o < so.

o If ¢ < h then absurd since g7 > hr.

e Otherwise: C(Q) = ({(g97)o,(h7)c},-) < C(P) since {(g7)a,(hT)o} <
{so} due to the fact that (¢7)o < so and (k7)o < (g7)0 < so.

contradiction.

Case 2. t —g t'. Same reasoning as Case 1.
Simplify,
We distinguish two cases:

Case 1. s~y s, s% s, s <tand st C(P)=({so,to},.)since s t. On
the other hand let g = h be the equation of H which is used to simplify s. Hence
there exists 7 such that s = s[gr], s’ = s[h7]|and g7 % h7:

(a) If s < t then we have C((g7)0 —4=4 (h7)o) < C(P) since {(g7)o, (hT)o} <
{so, to} hence R |= (g7)o = (k7)o and so: R | s'oc = to) with s’ =t € (U; E;
Let Q = s'0 o4, to. We have s’ < t hence C(Q) = ({to},{s'c}) < C(P),
contradiction.

(b) Otherwise: s’ =t , in this case we have:

80 gy to

l

H
to

Hence: R ¢ (g7)o = (ht)o. Let ¢’ = (70), where ¢’ is a ground substitution.
Assume that it is irreducible, hence there exists o, a test-substitution and a
ground substitution 8 such that ¢’ = 0,,0. We distinguish two cases:

1.
(99:)0 vg=n (ko)0
1 RiHUE)
‘4«;0 (9i, = hoiy) € (UiEx)

gi00
Let @ = g;,0 gip=hayg (hoiy)8, we verify that C(Q) < C(P):
* If g;) > ho;, then C(Q) = ({g:,9}, {(hoi,)8}) < C(P) since g;,0 <
(90i,)0 < so.
* If g;; < ho;, then C(Q) = ({(ho,,)8},{gi,0}) < C(P) since (ho;,)0 <

s'o =to.

41

* Otherwise: C(Q) = ({40, (hoi,)0},-) < C(P)since {g;,0, (ho,)0} <
{so,to}.

Contradiction.
1.
(90i,)0 ©g=r (hoy,)8
TR[HUE]
970 =R hyo 0 (903, = hiy) € (U:EY)
Let Q@ = (904,)0 < g0, =n,, hiy0, we verify that C(Q) < C(P) = ({so,t0},.)
* If go;, = hi, then C(Q) = ({(g0:,)0}, {hi,0}) < C(P) since (g0;,)0 <

ST.

* If go;, < hi, then C(Q) = ({hi,0},{(90:)0}) < C(P) since h;,# <
(hoi)0 = s'o = to.

* Otherwise: C(Q) = ({(g0:,)9, hi,0},-) < C(P)since {(go;,)0, hi 0} <
{so,tc}.

‘ Contradiction.

Case 2. t~»py t'. Same reasoning as 1.

Generate

Since o is a ground irreducible substitution hence there exists a test-substitution
g;, and a ground substitution § such that: ¢ = ;0. Assume that the rule Generate
applies to s = ¢, then we distinguish two cases:

Case 1. s >t

(50i)80 o=y (toi,)0

TR[%O

s,~00 ‘o (s,'o = td,’o) € (UE))
Let @ = s;,0 o, =10, (t04,)0, we verify that C(Q) < C(P):

o If s >t then C(Q) < C(P) since {s;00,(t0g0)0} =< {so}.
e Otherwise: C(P) = ({so,ta},.)

* If s;) > to,, then C(Q) = ({si,0}, {(to:,)0}) < C(P) since s;,0 < so.

* If s, < to;, then C(Q) = ({(toi,)8}, {3,00} < C(P) since (to;,)0 = to.

* Otherwise: C(Q) = ({si,0,(to,)0},-) < C(P) since {s;,0,(to;,)0} <
{so,ta}.

R [5,0 = (toy,)0 since all the equations used in the proof of preconditions are

valid (since they justify smaller proof-steps). On the other hand, C(Q) < C(P), con-
tradiction.

Case 2. s + t, the situation is either as in A. or we have:

42

(80i)0 5= (toi,)0

 rRiuE)
504y =t tioo (30‘1'0 = tio) € (UIE,)

Let Q = (50i)0 0=t tid, C(P) = ({so,tc},.) since s * 1, we verify that
C(Q) < C(P):

o If so;, > t;, then C(Q) = ({(s0,)0}, {ti,0}) < C(P) since (so,)0 = so.
o If soy, <t then C(Q) = ({9}, {(s0i,)0}) < C(P) since t;,0 < to.
e Otherwise: C(Q) = ({(s0;,)8,t:,0},-) < C(P)since {(s0;,)8,ti,0} < {so,ta}.

contradiction. O

proof of theorem 6.1

Clearly, S(H) is finite. Let us show that S(H) satisfies the properties of De finition4.1:

e Since all leafs labels are of type 1, every ground term of the form f(¢y,...,t,),

where f € ¥ — EB and t; € T(XB),, for all ¢, is H-reducible.

Therefore every ground irreducible term is a constructor X-term. By the prop-
erties of pattern trees, the completeness follows.

e Coveredness is obtained by construction.

e By construction of test sets the only terms in S(H) are constructor terms. By
hypothesis any left-hand sides in H contains a non constructor symbol. This
means that all ground instances of terms in S(H) are strong irreducible. By
coveredness each term in S(H) has variables occurring only at depth Depth(H).
Therefore all variables may be substituted by infinitely many different construc-
tor terms (we assume that there exists at least one constructor symbol which is
not a constant). Hence S(H) has the transnormality property.

proof of theorem 6.2

Assume that every leaf of T is of type 1. Let s = f(t,...,t,) be a ground term
such that f € ¥ — £B and for all ¢, t; € T(XB). Necessarily, there exists a leaf ¢ of
T and a ground substitution o such that to = s. Since t is of type 1, s is reducible.
Let s! be an irreducible term wich is equivalent to s w.r.t. H. If s! admits a function
symbol from £ —XB, let f(sy,..., s») be a subterm of s! such that for all 7, s; € T(XB).
Since f(si,...,Ss) 1s an instance of a leaf of T, it is reducible. This fact contradicts
the irreducibility of s!. As a consequence, s! € T(XB).

Assume that every term in T'(X) is reducible to a term in T(EB). If there
1s a leaf of T which is not of type 1, then t is either of type 2 or of type 3.

If t is of type 2, then ¢ is ground and irreducible. Since ¢ contains a non constructor
symbol, this contradicts the assumption.

43

If t1s of type 3 and is not an instance of a left-hand side of a rule in H, we
reason as in Appendix B, case B. Assume that V(t) = {z,,...,xx}. Let us consider a
ground irreducible substitution ¢ such that for any j € {1,...,k}, |zi¢| —|z;0|>
|t| 4+ |H|+ 1. Note that ¢ is well defined thanks to the definition 6.1 and thanks to the
fact that no constructor occurs as a top symbol. Then we can prove that t¢ is ground
and irreducible. Again, since t contains a non constructor symbol, this contradicts the
assumption.

If t is of typc 3 and t = lo, where ¢ = | — risarulein H. Let {¢, = [, —
T1y...yCn = [, = 7.} be the set of conditional equations of H whose left-hand sides
match [. Hence, t/u, = lioy,...,t/u, = [,0, and, since t is not pseudo-reducible,
C = Cio1V...VCyoy, is not an inductive theorem of H. There is a ground irreducible
substitution # such that C@ is not valid. Consider now t8: t# cannot be reducible
at the root, because C# is not true; t cannot be reducible at another position, since
no proper subterm of t0 contains a defined function symbol. This leads again to a
contradiction.

44

Imprimé en France
ar
-I'Institut National de Recherche en Informatique et en Automatique,

ISSN 0249 - 6399

