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Abstract

A processor-cllicient systolic algorithm for the dynamic programming approach to
the knapsack problem is presented in this paper. The algorithm is implemented on
a lincar systolic array where the number of cells ¢, the cell merory storage a and
the input/output requircinents arc design parameters. These are independent of the
problem size given by the number of the objects m and the knapsack capacity c¢. The
time complexity of the algorithm is @(mc/q + m) and both the time speedup and the
processor efficiency arc asymptotically optimal.
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A new procedure for the backtracking phase of the algorithm with a time complexity
O(m) is also proposed. It is an improvement on the usual strategies used for back-
tracking which have a time complexity ©(m + ¢).

Résumé

On présente un algorithme systolique d’efficacité élevée pour la résolution du probleme
du sac-a-dos par programmation dynamique. Cet algorithme est réalisé sur un réseau
systolique linéaire, dont le nombre de cellules ¢, la mémoire des cellules a et les con-
traintes d’entrées/sorties sont des parametres. Ces parametres sont indépendants de la
taille du probléme, déterminée par le nombre d’objets m et la capacité ¢ du sac-a-dos.
La complexité en temps de I’algorithme est @(mc/q+m), et 'accélération et I'efficacité
du réseau sont asymptotiquement optimales.

On propose aussi une nouvelle procédure pour la phase de retour-arricre de 'algorithme
ayant une complexité @(m), au lieu de O(m + ¢) pour les méthodes classiques.

1 Introduction

Suppose that m types of objects are being considered for inclusion in a knapsack of capacity
c. For:=1,2,...,m, let p; be the unit value and w; the unit weight of the i-th type of
object. The values w;, p;, : = 1,2,...,m, and c are all positive integers. The problem is to
find out the maximum total profit without exceeding the capacity constraint, i.e.

max {Zp;z,' : Zw,-zi < ¢, z; > 0 integer, 1 = 1,2,...,m}, (1)

=1 =1

where z; 1s the number of i-th type objects included in the knapsack. This is a classical
combinatorial optimization problem with a wide range of application (see Garfinkel and
Nembhauser [1], Hu [2], Martello and Toth [3]). Sometimes (1) is referred to as the inte-
gral knapsack problem (see Teng [4]), sometimes as the unbounded knapsack problem (see,
e.g.Martello and Toth [3]). We shall call it simply the knapsack problem. If additional con-
strains z; € {0,1},7 = 1,2,...,m are added to (1), then the restricted problem is called the
0/1 knapsack problem. Problem (1) is well known to be NP-hard (see Martello and Toth
(3]). However it is known that this problem can be solved sequentially in O(mc) time. This
time bound is not polynomial in the size of the input since log, c bits are required to encode
the input c. Such a time bound is called pseudo-polynomial time [5].

With the advent of parallel processors many researchers concentrated their efforts on the
development of cfficient parallel algorithms for solving the knapsack and the 0/1 knapsack
problems. Dynamic programming (6, 7, 8, 4], branch-and-bound [9, 10] and approximate
algorithms [11, 12] are the most popular combinatorial optimization techniques for these
problems. The number of processors, required by most of the parallel algorithms, is expo-
nential in the size of the input and these algorithms have a very low processor efficiency. For
example the best time complexity algorithm for (1) proposed by Teng in [4] requires M(c)
processors to solve the problem in O(log?(mc)) time. The function M(n) above denotes the



number of processors needed for multiplying two n by n matrices in O(logn) parallel time.
It is known that n? < M(n) < n®. Therefore the knapsack capacity ¢ is a factor in the
processor complexity of the algorithm and 1/c is a factor in its efficiency which approaches
Zero as c increascs.

In this paper we concentrate on one of the most conventional approaches for solving the
knapsack problems - dynamic programming. This approach is based on the principle of
optimality of Bellman [13] and usually contains two phases. In the first (forward) phase
the maximum value of the objective function is computed, i.c. the value f.,(c) such that
fm(c) = max {X7 pizi : S0, wizi < ¢, z > 0 integer,7 = 1,2,...,m}. In the second
(backtracking ) phase the integers 27,1 = 1,2,...,m, such that 37 | p;z7 = f,,(¢) are found.

Recently, a dynamnic programming algorithm for the 0/1 knapsack problem, which may
run on any number of processors available, was presented in the work of Lin and Storer [8].
Its running time is O(me/q) on an EREW PRAM of ¢ processors and this algorithm has
optimal time speedup and processor efficiency.

In [7] a pipeline architecture containing a lincar array of ¢ processors, queue and memory
modules is proposed for the knapsack problem by Chen, Chern and Jang. This architecture
allows one to achieve an optimal spcedup of the algorithm which has a time complexity
O(mec/q + m) and an efficiency £ = ©(1/(1 + 1/gc)) which approaches ©(1) as ¢ increases.

Our work belongs to another branch of research which is related to the design of systolic
arrays for dynamic programming problems. The difficulties in this field of research arise
from the necessity for the algorithms to meet the requirements of modularity, ease of layout,
simplicity of communication and control and scalability. Dynarnic programming is a power-
ful optimization methodology which is worthy of study for its suitability for VLSI systolic
implementation. It was considered in numerous works (see Guibas, Kung and Thompson
[14], Bitz and Kung [15], Myoupo [16]). For the 0/1 knapsack problem this approach was
considered in the work of Li and Wa [17] and of Lipton and Lopresti {18]. The results ob-
tained are not applicable in the case of the knapsack problem due to a peculiarity in its
recurrent formulation. An attempt to design fixed-size modular linear systolic array (a ring
with buffer memory between the last and the first cells) for (1) appeared recently in the pa-
per of Andonov, Aleksandrov and Benaini {19]. The running time of the presented algorithm
is @(mc?/qa + ¢+ m) on q cells, each of storage capacity «, where « is a design parameter.
To the knowledge of the authors, this is an unique problem size independent algorithm for
the knapsack problem. It has the drawback that its processor efficiency approaches zero as
¢ increases.

A new dynamic programming implementation for the knapsack problem which runs on
any number of processors is presented in this paper. The architecture is similar to that of
[19] - a ring containing a bufler memory and ¢ identical cells, each with a local addressable
memory of size a. A new algorithm for the backtracking phase with time complexity ©(m)
is proposed. It improves on the usual strategies used for backtracking in the knapsack
problem (see Hu [2] and Garfinkel and Nemhauser [1]) which have a time complexity ©(m +
¢). Thus this phase of the dynamic programming approach, which is sequential, becomes
independent of the parameter c. This algorithm allows also a pure lincar systolic array to



be designed for both phases of the dynamic programming method (i.e. the forward and the
backtracking phase). The problem size memory independence of the algorithm is provided,
i.e. the algorithm is designed under the requirement that the cell memory capacity docs
not depend on the problem size. Hence our algorithm meets all the requirements for VLSI
systolic implementation as the algorithm proposed by Andonov, Alcksandrov and Benaini
[19} but substantially improves on its speedup and efficiency. More precisely, for the running
time T, on ¢ processor, each one of memory size a we obtain to within a constant factor
MWmin(c+ q)/ga+ m < Ty < Mwpar(c+ q)/qa + m, where wiar, = max 7, {w;}, Whin =
min ™, {w;}, @ € Wmar and ¢ < MWya-/a. This result confirms once again the observation
(see Teng [4] and Andonov and Gruau (20, 21]) that wme, and wy,;, arc important parameters
for the knapsack problem. These influence the running time of the parallel algorithm in
contrast to the serial algorithm which depends on m and c only. It is well known that in
many practical applications w,,,, is much less than the knapsack capacity ¢, i.e., wn. < c.
A reasonable assumption is that wp., and wmin are constant factors as ¢ increases. This
observation implies that the speedup and the efficiency both approach their optimal values
respectively ©(q) and ©(1) as ¢ increases. Therefore we obtain the same spcedup and
efficiency as in the paper of Chen, Chern and Jang [7]. Note that the algorithm in [7] is not
VLSI oriented since it runs exclusively under the assumption that the memory capacity of
any processor is at least equal to the knapsack capacity ¢, i.e. a > c.

This paper is organized in the following way. Section 2 describes both phases of the
dynamic programming approach for problem (1) on a serial machine. Section 3 presents
our new algorithm for backtracking and analyses its complexity. In section 4 we discuss our
parallel implementation on a linear array containing unbounded number of cells of storage
capacity a. In section 5 the same approach is developed on a ring with fixed number of cells.

2 Dynamic programming approach for the knapsack
problem

In this section we present the dynamic programming approach for the knapsack problem on
a serial machine. It consists of two phases - the forward and the backtracking phase.

2.1 Forward phase

Let fi(y) be the maximum value that can be achieved in (1) from a knapsack of size 7,
0 < 5 < ¢, using only the first k types of objects, 1 < k < m. That is
k k
fe(7) = max {Zp;zi : Zw;z; < 7j,2z; > 0 integer,t = 1,2,...,k}. (2)

1=1 =1

The principle of optimality {13, 1] states that for Vk,1 < k < m and Vj,0 < j < ¢ we have :

fe(3) = max {fe-1(7), fi(7 — wx) + pr}. (3)
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The optimal value of (1) f,.(¢), can be found in 1 stages by generating successively the
functions fi, f2,..., fm using equation (3) and the initial conditions fo(7) = 0, f¢(0) = 0 and
fi(z) = —ocofor 1 <k <m,0<j <candi<0. By stage k we shall denote the computation
of all the values of the function f,. This approach solves simultaneously a set of knapsack
problems with knapsack capacities 1,2,...,c.

Any serial algorithm based on recurrent equation (3) requires O(mc) time to find the
optimal value f,,(c). Furthermore, this is optimal, since §}(mc) time is needed to compute
fm(c) in the case w; = 1,7 = 1,2,...,m because any value fi(5),1 < k < m,1 < j < g,
depends on its previous value fi(j —1). Therefore the time complexity of the scrial algorithm
which finds f,(¢) through the equation (3) is ©(rnc). This is the best existing serial algorithm
and we shall use its running time for determine the speedup and the efficiency of our parallel
algorithm.

The communication required for the execution of equation (3) can be described by means
of directed graph, called the dependence graph (DG). Let N denote the set of natural num-
bers, i.ec. N={0,1,2,...}. Let G = (D, A) be the DG for equation (3), where D = {(j,k) €
N?2:0<j<c¢l1<k<m,}isthe set of nodes and A is the set of directed arcs. Each
node (7,k) € D of the DG represents an operation performed by the algorithm and the arcs
are used to represent data dependencies. For example figure 1 (a) depicts the DG for a
knapsack problem, with m = 3,¢ = 6,w, = 4,w, = 3,w; = 2. Each node (7, k) represents
one calculation, detailed in figure 1 (b). The peculiarity of this graph is that in any column
the dependence vectors depend on the weights w;,2 = 1,2,...,m. Such a dependency is not
a uniform dependency. This peculiarity makes the knapsack recurrence equation difficult
to transform into a systolic array using the well-known dependence mapping approach (see
Quinton and Robert, [22]).

As noticed in [7], the following properties of equation (3) make it suitable for pipelined
computation:

1. In each stage the same operations are performed.

2. Data dependencies occur in two cases only: between adjacent stages and within the
same stage.

3. If fi(7),7 =0,1,...,¢, are computed in increasing order of j, then fi(j) can be com-
puted whenever the values f;_;(5),7 = 0,1,...,¢c, are available.

2.2 The classical backtracking algorithm

An approach to find the solution vector z* € N™ such that Y p;2] = fi(c) is discussed in
1=1
this section. It is based on the work of Hu [2].

In the course of the forward phase a pointer ui(j) is associated to any value fx(5), (j,k) €
D in such a way that ui(y) is the index of the last type of object used in fi(j). In other
words if ug(j) = r this means z, > 1, or the r-th object is used in fi(7) and z; = 0 for all
[ > r. The value u,(7) is used to keep the history of the first dynamic programming phase.
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Figure 1: The dependence graph for the given example

The boundary conditions for uk(y) are

Vj:OSjSC3Ul(j)={(1) ;iﬁg;:g

In general we set

VEVjil<k<m, 0<j<ec :uk(j)z{k if fi(7 —we) +pe > fioa1(7) (4)

uk-1(j) otherwise.

As shown in (2], definition (4) allows the solution vector z* € N™ of the knapsack problem
to be found from the values of the function u,, only. The following algorithm can be used
for this purpose:

Hu’s backtracking algorithm

Ji=c
for k = m downto 1 do
2;p =0

while u,(j) = &k do
begin z; 1= z; + 1;
Ji=J —w



end

This algorithm has time and space complexity T = O(m + ¢) and S = ©(c + m) respec-
tively and it is the best known strategy. Another strategy with time complexity 7' = ©(m+c)
and space complexity S = ©(mc) is presented by Garfinkel and Nemhauser in [1].

The backtracking phase is sequential. We cannot find z;,1 < k < m, until 25, is
computed, (i.c this phase requires at least §2(m) operations). In the next section we show
how the algorithm above can be modified in order to reach this bound.

3 A modified backtracking algorithm

If we associate a value pi to any vertical arc ((¢,k), (¢ + wk,k)) in column & of the DG
for problem (1) then the value f,(j) for any pair (j,n) € D can be regarded as the value
of the optimal path (S5;,5;,...,5,) from the first stage to the n-th one. We denote by
Se,k =1,2,...,n, the subpath of the optimal path in column k. The elements of S; are
of the form ((i,k),(i + wi, k), ..o, (2 + wizk, k), 0 <7 < § — w2z, where z; are such that

Z peze = fu(7). Let I denote the sequence of the first indices of the elements of the optimal

subpath Sk in column k, i.e.
I, = {Z ( ) € Sk}
Let %,  denote the minimum index in I, i.e.

k

mtn

=min{i : i € [i}.

By the definition of the function u; we have

( mxn) < k

and
Vie I i #1i5,, = u(i) =k
The idea of the modified backtracking algorithm is for any (j,k) € D to keep a record
of the corresponding value ¥, . It is more suitable in our algorithm to save the values

i, + wr. In order to generate these values during the forward phase we introduce the
function vx defined as follows:

ve—1(7) if u(y) < k
w(j) =X 7 ifu(y) =k and ue(y —wi) < k (5)
ve(g —we) Hwu(y) =k and uk(j —wi) =k

for VE,V3:1 <k<m,0<j<cand v(y)=0for k=0,0<j<ec



When the values of vg, k = 1,2,...,m, are found, we can easily trace the values z; that
yield fi(7) for any j € I by the formula

{0 if we(j) < k
"'k‘{(j—vko»/wm if ui(j) = k. (6)

In fact (6) determines how many units of object k are used in fi(j).

Once the value z; has been computed, the total weight limitation j is reduced to juew =
vi(7) — wk, for which the inequality ug(jnew) < k holds and therefore u(Jnew) = k-1 (Jnew)-
To find the value 2,_; we proceed to check the values ux_1(Jnew) and vi_1(Jnew) in the same

way.

The functions vg, k = 1,2,...,m are similar to the functions u; by their properties. For
Vj : ux(7) < k the function v, keeps the values of the functions vix_;. This property allows
the values z¢, k = 1,2,...,m to be found from the values of the function u,, and v,, only.

The following algorithm is used.

Modified backtracking algorithm

Ji=cq
for £ = m downto 1 do
if um(j) < k then z; =0

else

begin 2z} := (j — v (5))/wi + 1;
Jj= vm(j) - Wi

end

In this way the values of u,, are used to move back along the k axis of the DG n figure
1. The values of v, are used to move back along the j axis. Since the computation of z; for
any k,1 < k < m requires ©(1) operations then we obtain the following property.

Corollary 1 The modified backtracking algorithm has time and space complezity T = ©O(m)
and S = O(c + m) respectively.

The computation of the functions v¢, k = 1,2,...,m can be done simultaneously with
the computation of the functions fi. Comparing (5) and (4) we see that the time complexity
to compute the values of v is the same as the time complexity to compute the values of uy.
More details concerning the implementation of the modification proposed are discussed in
the next section.

4 Linear systolic arrays

In this section we consider the implementation of the knapsack algorithm in linear arrays
composed of ¢ identical cells Cx, k = 1,2,...,q, where ¢ > m. Each cell Cy has two address-
able memories F) and Vi each of size a, where a is a design parameter. The purpose of Fi
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and Vj is to save the values of the functions f; and v, respectively. We consider successively
two cases: a > wy for Vk,1 < k < m, and 3k,1 < k < m : wy > a. In the first case
a straightforward projection of the dependence graph of figure 1 along the 7 axis provides
a systolic array of m cells. This case is described in section 4.1, where we also show how
the backward phase can be implemented on the same array. This array is said to he non
modular, as it cannot accommodate a problem of any size. In the second case it is possible to
implement the algorithm on a linear systolic array, by replacing cell Cy of the non modular
design by so-called macro-cells comprising [wy/a] cells. Section 4.2 is devoted to this case.

4.1 Non modular systolic array

Forward phase The operation of the systolic array is best explained using the dependence
projection method (see (23], chapter 12), which amounts to scheduling the dependence graph
and projecting it along a conveniently chosen direction. A fiming function is a mapping
t : D — N, such that if the computation on vertex v € D depends on vertex w € D, then
t(v) > t(w). An allocation function is a mapping a : D — (1, q|, such that a(v) is the number
of the processor that executes the calculations attached to vertex v € D. The mapping a
must be chosen in such a way that a processor has no more than one calculation to perform
at a given instant. In addition to the previous well known functions, we use the mapping
addr : D — [1,al, defined in such a way that addr(v) is the number of the memory location
in processor a(v) where data v € D is stored.

Obviously, the function #(5,k) = 7 + k is a timing-function for the dependence graph of
figure 1. An allocation function a(j, k) = k corresponds to a projection of the dependence
graph along axis 7. [t yields a linear unidirectional systolic array of m cells. Since for any &k,
the values fi(7),7 = 0,1,...,c are computed sequentially and fi(7) depends on fi(; — wy),
then the value fi(j) can be stored in the same memory location in cell Cy as the value
fi(7 —wi). We assume that the memory size @ meets a > wy, for any 1 < k& < m. Therefore
the address of any data (7,k) € D in F; is addr(j, k) = 1 + 7 mod wy. The total time for the
forward phase is

t(e,m) =c+m. (7)

Backtracking phase The values ui(7) and vi(s5) are computed and propagated through
the considered array simultaneously with the value fi(j). The computation of the function
uy does not require a supplementary local memory. We show in this section that a memory
Vi of size wy in cell Cy is enough for the computations of the function v.

Notice that if two nodes (s, k), (¢, k) of the DG belong to the same subpath in a column k
then s mod wy = t mod w,. Two subpaths S; and S, of a column k are said to be dependent
if s mod wy =t mod wy for (s, k) € Sy and (¢, k) € S;. As with the values of the function fy,
the values vi(j),7 = 0,1,...,c are computed sequentially and vi(j) depends on vi(j — wy),
i.e. the value vk(7) can be stored in the same memory location in V; as the value vi(j — wy).
The difficulty arises from the observation that the dependent paths in column k are projected
in the same location in Vi. To overcome this problem we denote the beginning of a new path



in column k by the following formula:

—1 if fisa(9) = fe(5 —wi) + pe
Vi(G) =< j if fic1(7) < fulh —wi) + e and Vi(y — wi) = —1 (8)
Vilg —we)  if fici(3) < fe(g —we) + e and Vi(j — wy) # —1

Then the value vi(7) is defined by

i ={ ! R 0

Since vi(7) are computed sequentially for 7 = 0,1,..., ¢ then the values Vi(7) and Vi(5 —
wg) can be stored in the same location addr(y, k) = 1 + 7 mod wy.

It is easily scen that (9) is equivalent to (5). Definition (9) has the advantage of being
independent of the function 1, and overcomes the problem when two dependent paths in
column k are projected in the saine memory location.

The values of the functions u,, and v,, leave the last cell C,, and are stored in a sup-
plementary memory of size 2c. Then the modified backtracking algorithm can be executed
by the host computer (or by the last cell C,, if it is connected bidirectionally with the
supplementary memory).

4.2 Modular systolic array

Let us assume now that the memory size a of the cell is independent of the

problem and there exists k, such that wy > a@. The idea is to emulate the operation
of each elementary cell Cy of the previous linear design by one macro-cell MC; which is
composed of [wi/a] cells (see figure 2), each one with a memory of size a.

The mapping of the dependence graph is made as follows. Any computation fi(j) is
performed on macrocell MCy. The value addr(j, k) = 1 + j mod wy defined in section 4.1 is
the address where the value fi(j) would be stored in MCy, if a is large enough. Here, the
memory wy is emulated by the memory of the [wi/a] subcells. To know where fi(7) is stored
in MCy, we associate with addr(j, k) a pair (sc(j, k), addr’(7, k)) which gives respectively the
subcell where f.(7) is stored, and the address in the memory of this subcell. We thus have:

sc(jyk) = [adde(j,k)/a]
addr'(5, k) = addr(j, k) mod .

In this way fi(j) and fi(j — wk) are stored in the same address of the same cell. The
calculations executed by a subcell of MCy is deduced by the following rules. Macro-cell
MCy processes in sequence the calculations associated with nodes (j,k), 0 < j < ¢, of the
dependence graph. When a subcell of MC; receives data which corresponds to fi_,(j), it
processes the calculation associated to this value if fy(7) is stored in its memory, otherwise, it

10
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sends this value unchanged to the next subcell. In this way a data fi_;(j) crosses sc(j, k) — 1
cells in MCy without being processed. On the other hand, once computed any value fi(y) is
transmitted forward in the array [wy/a| —sc(j, k) subcells in order to leave macrocell MCy.
Thus, the new timing-function is given by the following recurrence :

= [ sk ik =1
(s, k) = { t(7,k — 1) + [we_1/a] —sc(j, k — 1) +sc(j, k) otherwise. (10)

The values of the timing-function for the given example are depicted on the right hand
of the corresponding vertices in figure 2.

The operation of one subcell is now described. The value fi(7) is computed by the subcell
sc(j, k) of the macrocell MCy and is stored in memory location addr’(7, k). All the other
cells of the macrocell MCy merely transmit the value fi(j). To realize this, we associate a
counter cell(y, k) with any data fi(7). This counter gives the number of clementary cells the
associated data has to be propagated in order to reach the cell where the value fi;1(7) is
computed. According to (10) the counter can be obtained by the formula

[ seG k1) it k=0
cell(3,k) = {[wk/a]—SC(j7k)+SC(j,k+1) otherwise. (11)

From (11) the new allocation function follows easily:

{sdxk) if k=1

a(y, k) a(g,k — 1)+ cell(j,k— 1) otherwise. (12)

During the computations of fi(7) each cell generates, in addition, the values v(j) and
uk(7) needed for the backtracking, as was shown in the previous section. The structure and
the program for the forward phase of the cell are depicted in figure 3.

To realize this algorithm each subcell of the macrocell MCy keeps the values pi, wi, Wiy, k
in registers p, w, wnext, oby respectively. The data input into the leftmost cell during the first
c+1instantst,t =0,1,...,care fi, = 0,u;, = 0,v;, =0, Jin = ¢, cell;, = [(14+t mod w)/a].
According to (10) the rightmost cell of the array outputs the value f,.(c) in time t(c,m) =
c+ Z:’;] [w;/cfl.

From the above discussion we are led to the following result:

Proposition 1 The algorithm for the modular systolic array requires ¢ + Y.or, [wi/a] time
to find fm(c) on 1, [w;/a] processors, each with storage capacily .

Corollary 2 Ifa > w;,i = 1,2,...,m then the algorithm presented here requires c+m time
to find fn(c) on m processors.

12



jin

- — jout
fi" - — fout
celly, -~ cell
Ujn — > Uout
Vin —™ — Vout

repeat
case
cell,, =1 —

cellin, >1 — |

end _case
end_repeat

{computation}
addr = 1+ j;n mod w;
addr’ := addr mod «;
{compute fi(j) and store in F}
if ji, < w then F(addr') := fi,
else F(addr’) := max{f;,, F(addr’) + p}

fi;
{compute ux(j) }
if F(addr') < fin then u,yg i= uin

else ugyp := obj
fi;
{compute v(j) and store in V'}
if F(addr') < fin then V(addr’) := -1

else

if V(addr’) = —1 then V(addr') := j;,
fi

fi;
if F(addr') € fin then veu: 1= vn

else voy := V(addr')
fi;
{number of cells to be skipped by fx(j)}
celloyy := [w/a] — [addr/a] + [(1 + jin mod wnext)/al;
Jout = Jin,

fout = F(addl‘l)

{transmit}
cell,y; = cell;, — 1;
jout = jin;
fout = fin

]

Figure 3: The basic cell and its operation during the forward phase
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5 A Ring

Obviously, the first cell of the linear array from the previous section becomes idle in ¢ time.
On the other hand, any data needs t.o5s = 3.7, [wi/a] time to cross the array and to leave
the last cell. Therefore, if tc055 > ¢, then the first cell can be reused, instead of adding new
cells to the array. This idea can be easily extended in the case where we aim to bound the
number of the cells used to some fixed number ¢, where ¢ < 555 < ¢. The solution is to add
a buffer memory module @ to the array. This memory receives the data from the cell Cy,
stores it and sends it to the cell C; when this cell becomes idle. The memory @ also saves
the vectors u,, and v,, at the end of the forward phase. Therefore a necessary condition for
the ring to be able to solve problem (1) is that the size of @ is at least 2m +4c. The resulting
architecture (sce figure 4) is called Ring and is well known from systolic computation [24].

G Cs —————- P Cq

Figure 4: The Ring

As was shown, the algorithm in the previous section needs t.,.,, cells, each with storage
capacity a to solve the knapsack problem. Therefore, the linear array in the ring in figure 4
has to be used [t.r0.s/q] times to solve it. For this purpose, the set fi(7),k =1,2,...,m,j =
0,1,...,c is partitioned into [t..ss/q] bands and each one of these bands can be executed
individually by the linear processor array. Let B; denote the :th band. The partitioning 1s
performed as follows:

fe(3) € Bi & [a(5, k)/q] =7,

where a(j, k) is defined in (12).

Since c values are input in any cell and a data needs ¢ time to pass through C; to C,,
then a new set of data (a new band) can be input to the cell C; any max{c, ¢} = O(c+ q)
time. Obviously, the inequality

m I—wmin/a] S tcroas S m [-wmaz:/a-' ) (13)

where Wmer = max 2, {w;}, Wmin = min 2,{w;}, is satisfied. Hence, for the running time
Ty,- of the parallel forward dynamic programming part we obtain to within a constant factor

MWmin(c + ¢)/qa < Tior < MWmaz(c+ q)/qa, . (14)
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For the total running time 7, we have to add to Tj. the time neceded to load the co-
efficients p;,w;,2 = 1,2,...,m into the cells and the time for the backtracking dynamic
programming part, which can be done in additional ©(m) time. Therefore, for the total
running time T}, from (14) we obtain to within a constant factor

MCWnin /G + MWmin/a + m < Ty € MCWpar /GO + MWpas/ + m.

A reasonable assumption is that w,,,, and w,,;,, do not change as ¢ increases and thercfore
@/ Wyez and a/w,,;, arc constant factors. Hence, we obtain for the total time complexity of
our algorithm on the ring

T, = ©(mc/q + m). (15)

The speedup and the efficicncy of the algorithm both approach their optimal values
respectively ©(q) and ©(1) as ¢ increases.

6 Conclusion

Dynamic programming is an effective recursive approach widely used in optimization prob-
lems. The results of numerous researchers show that this approach is very suitable for
systolic implementation. One interesting exception was the knapsack problem whose de-
pendence graph depends on the weights of the considered objects and lacks the regularity
usually required for obtaining a systolic implementation. A method for synthesis of systolic
arrays for such class of problems is not yet developed.

In this paper, a previously reported linear systolic array for the knapsack problem is
transformed into a more efficient structure. To get this solution, an optimal data partitioning
for both the forward and the backtracking dynamic programming phases is proposed. The
design parameters (the number of the cells and their memory storage ) are problem size
independent. Due to its simplicity, regularity and local interconnections the array is suitable
for VLSI implementation. To the knowledge of the authors the proposed algorithm is the
first processor-cfficient VLSI oriented algorithm for the knapsack problem.
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