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Antémémoire associative brouillée

Résumé

Depuis 1980, les performances potenticlles des microprocesseurs ont cru de maniére exporenticlle utilisant le concept
RISC, des fréquences d’horloge de plus en plus élevées ainsi que le séquencement pipeline d’instructions en paralicle.

Le fossé entre le temps d’acceés a la mémoire principale et le temps de cycle du processeur se creuse de plus cn
plus, il devient donc de plus en plus important d’améliorer le comportement des antémémoires, en particulier quand
un seul niveau d’antémémoire est utilisé (c-3-d sur tous les systémes, excepté les systémes haut de gamme). Des
antémémoirces associatives par ensemble sont utilisées dans la plupart des nouveaux microprocesscurs supcrscalaires.

Dans cet arlicle, nous présentons une nouvclle organisation d’antémémoire multi-banc: 'antémémoire associative
brouillée. L’antémémoire associative brouillée présente un meilleur comportement qu’une antémémoire associative par
ensemble: de maniére typique, une antéinémoire associative brouillée i deux bancs présente le méme taux de succes
qu’une antémémoire associative par ensemble & quatre bancs, mais a la complexité matériclle d’une antémémoire
associative par cnsemble & deux bancs.

Abstract

During the past decade, microprocessors potential performance has increased at a tremendous rate using RISC
concept, higher and higher clock frequencies and parallel/pipelincd instruction issuing.

As the gap between the main memory access time and the potential average instruction time is always increasing,
it has become very important to improve the behavior of the caches, particularly when no secondary cache is used
(i.e on all low cost microprocessor systems). In order to improve cache hit ratios, sct-associative caches arc used in
most of the new superscalar microprocessors.

In this paper, we present a new organization for a multi-bank cache: the skewed-associative cache. Skewed-
associative caches have a better behavior than set-associative cachies: typically a two-banks skewed-associative caclie
has the hardware complexity of a two-way set-associative cache, but exhibits the samc hit ratio as a four-way sct
associalive cache of the same size.
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INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE ( UNITE DE RECHERCHE DE RENNES)



1 Introduction

Performance of commercial microprocessors is increasing at a tremendous rate: 100 Mhz clocks were announ-
ced on the MIPS R4000 processor in september 1991, a 200 Mhz clock processor is planned current 1992 by
DEC, etc. At the same time, the architecture complexity of microprocessors is also increasing. First genera-
tion RISC microprocessors such as the MIPS R2000 or the first SUN Sparc microprocessors rapidly become
obsolete. In association with technological advances which have allowed faster and faster clock speeds and
larger and larger transistor counts, two major architectural techniques have been used in order to improve
performance of the microprocessors: superscalar issuing of the instructions (IBM Power, SUN SuperSparc,
Intel 1860, etc) and “superpipelining” (i.e. increasing clock frequency by deepening the pipeline as in the
MIPS R4000) [JOUS89, SMI89].

All the commercial microprocessors have been designed to address a very large segment of the market:
constructors generally claimed to address low cost embedded systems as well as high end file servers or
workstations with the same basic microprocessor architecture.

In order to feed these new microprocessors with both instructions and data, a large memory is needed,
and the effective performance of the whole system highly depends of the performance of the memory system.
Unfortunately, over the last ten years, the main memory access cycle time has not decreased at the same
rate as the processor cycle time. On a superscalar microprocessor such as the IBM Power e.g., the demand
on memory instruction throughput may be up to 4 instructions per cycle and the demand on memory data
throughput may be very close to one word of data per cycle. When the penalty for a cache miss is about 20
cycles (on current low-end IBM Risc 6000 workstations), the performance may dramatically decreased when
the number of cache misses increases even very smoothly (Amdhal’s law).

Increasing the hit ratio of both data and instruction cache is a key issue in order to improve the effective
performance of microprocessors.

In section 2, we recalled how caches are generally organized. Then we explain why improving cache hit
ratios has became so crucial.

In section 3, we propose a new data mapping on a partially associative cache: the skewed-associative
cache. Then some properties wished on skewing functions are characterized and a family of “good” skewing
functions is presented.

Simulations results presented in section 4 shows that two-banks skewed associative exhibits the same hit
ratio as a four-way set associative cache of the same size, but at the hardware cost of a two-way set-associative
cache.

2 Why such a stress on caches?

“Largé’ main memory can be built at relatively low cost!. But these memories have a long latency access
time compare to the microprocessor cycle.

Fast cache memories are used in order to avoid paying the latency penalty when the application exhibits
some temporal locality {data or instructions are used several times in a “short” delay) or some spatial locality
(data or instructions stored at consecutive addresses have strong probability to be accessed with “short”
inter-access delays).

On the new RISC microprocessors (MIPS R4000, SUN SuperSparc, Intel i860, ..), primary caches and
the CPU lies on the same chip: there is no mean to extend the sizes of these primary caches with external
static RAM chips.

In Figure 1, we illustrate the two basic microprocessors based systems. High-end microprocessors based
systems will be built with a secondary external cache: a miss on the primary cache will be served in a few
cycles (may be 3-5) if the line is present in the secondary cache. As the cost of a fast secondary cache is
prohibitive, there will not be secondary caches in low-end systems: the cost of a miss will be very high (20
or even 50 CPU cycles).

! One must remember that the memory of the Cray 1 was only 8 megabytes
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Figure 1: Basic implementations of microprocessor based systems

2.1 Cache organization

Definition 2.1 In the following we denote L the number of line in a cache, SL the length in byte of a cache
line, X the number of banks in the cache (or the degree of associativity), S the set of data lines in the main
memory, CL; the set of lines in cache bank i. The cardinal of a set is be denoted ||set||. The memory latency
1s denoted LAT.

A cache is divided in a set of L lines of SL bytes of data, as illustrated in Figure 2. SL is generally
referred to as the length the cache line. SL * L is the size of cache. To retrieve data in the cache, some
complementary information is also stored with the data: tags are needed in order to determine the effective
address of the line of data in memory, some information is also needed for checking the data validity, etc.

Organizations of caches in different processors mainly differ with their degree of associativity. For example,
very small caches may be fully associative i.e. each line of data may be mapped on any physical line of the
cache (cf Figure 2).

At the other extremity, the cache may be direct mapped i.e. a line of data can be mapped on only one
physical line in the cache, the number of this line is deduced from the address of the data, usually by taking
the lower significant bits in the address (cf Figure 3).

At equal sizes, a fully associative cache generally exhibits a higher hit ratio than a direct-mapped cache,
by avoiding conflict misses that is data mapped on the same address in the cache.

But implementing a large fully associative cache is not quite realistic because it would require a huge
volume of transistors and because the access time would be unacceptable: in each physical line, the address
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Figure 2: Data mapping on a fully associative cache

tags have to be read and compared with the address to be accessed.

On the other hand, the direct-mapped organization of the cache is very simple: a single word and its
associated tags are read, then the address tags are checked against the address. But in some applications
direct-mapped caches present a very bad hit ratio due to conflicts in the data mapping onto the cache. For
example, a ping-pong phenomenon may occur in the following loop when base addresses for arrays A and B
have the same least significant bits:

for i=0;i<n; i++)
Al = B[]+ C[il;

In order to avoid some of these conflict misses, set-associative caches are used in many microprocessor
designs (IBM Power uses a four way associative data cache, Intel 860 uses a two way associative data cache,
etc). In a X-way set-associative cache, the physical lines are grouped in % sets and a line of data may be
mapped on any line in one of this set (cf Figure 4). The number of this set is determined by the address of
the line: generally the number of the set is directly deduced from the least significant bits of the address.

Computer architects generally agree (and experiments show that) that there is no significant improvement
of the hit ratio when increasing the degree of associativity over 4 or 8 [HIL89]. As the complexity of the
implementation of the cache increases with the degree of associativity, the associativity degree of the current
commercial microprocessors are in 1 (direct mapped caches), 2 or 4. But there is still an open debate on

whether or not the cache has to be set-associative:

¢ Implementing direct-mapped cache minimizes the transistor count. It also minimizes the access time
and possibly allows faster clock when the cache access time is equal to one cycle time.

e Set-associative caches generally exhibit higher hit ratios; then the pipelines are less often stalled.
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Figure 3: Data mapping on a direct-mapped cache

2.2 Increasing miss ratio = decreasing performance

In order to illustrate the direct influence of the miss ratio on the performance, we define the normalized
ezeculion lime as the ratio of the effective execution time on the execution time which would have been
reached if there was no time penalty on cache misses.

Definition 2.2 For sake of simplicity o illustrate the siress on the caches, we shall assume that the nor-
malized execution time T of an application is defined by:

T=14+Q15+7405+7p)+ LAT (1)

where 71 is the miss ratio of the insiruction cache and 7p is the miss ratio of the data cache.

data tag data tag

data adr

A line of data may be mapped in any of the lines in the set.

Figure 4: Data mapping on a set-associative cache: a line of data may be mapped on any of the lines in the
set.



Definition 2.2 corresponds to an approximately realist execution on a superscalar microprocessor:
- an average of 1.5 instructions executed per cycle,

- an average of 1 load or store each 2 cycles.

Figure 5 illustrates the normalized execution time for some values of 77 and rp. When no secondary cache
is used, the execution time may be dominated by the service of cache misses and thus any decreasing of the
miss ratio on the caches will allow to increase the system performance by approximately the same factor.
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Figure 5: Normalized execution times for 7 = rp = equal 0.01, 0.02 and 0.05

2.3 Stress on main memory throughput

Formula (1) does not entirely reflect the stress on memory bandwidth that can occur when the memory
latency is high:

it does not include the write accesses for updating dala in the main memory.
Two alternative strategies are used for updating data in the main memory:
1. Write through: on every store, the word of data is written on both the cache and the main memory.

2. Write back: on a store, the word of data is only written in the cache. The line of data is updated in
the main memory, when the line is flushed from the cache.

The write through strategy is most simple to implement, but it rapidly saturates the main memory band-
width:



When considering one load/store instruction per 8 instructions, one store per 3 load/store ins-
tructions, at least one write on the main memory is ezeculed when issuing 9 instructions. When
the main memory access latency is about 20 or 50 cycles, il automatically limits the performance.

In consequence, all new generation microprocessors have been implemented with a Write back strategy.

In order to measure the demand on memory throughput on a microprocessor, we define the normalized
memory busy time as the ratio besides the effective busy time of the main memory on the execution time
which would have been reached with an infinite size cache.

Definition 2.3 The normalized memory busy time of an application is defined by:
T=(15*7+05*7p * (1 + rwg))* Mdel (2)

where 71 is the miss ratio of the instruction cache, Tp is the miss ratio of the data cache, and rwp s the
ratio of data misses inducing the write back of the replaced line. Mdel is the main memory busy time for the
access to a line of data (i.e. the latency LAT plus the delay for obtasning the whole line).

When formulae (1) and (2) give close results, formula (1) is quite optimistic: the effective normalize
execution time is certainly higher.

Minimizing main memory busy time is important in order to be able to built single-bus shared-memory
multiprocessors.

3 Skewed-associlative caches

3.1 Skewing on caches: principle

An alternative vision of a set-associative cache is illustrated by Figure 6: a X way set-associative cache is
built with X distinct banks of % cache lines. Then a line of data with base address D may be physically
mapped on physical line f(D) in any of the distinct banks. This vision of a set-associative cache fits with its
physical implementation: X banks of static memory RAMs.

data tag data tag

l | I
data adr

A two—way associative cache~:
two distinct cache banks

Figure 6: An alternative vision of a two-way associative cache

On this vision of a set-associative cache, we propose a very slight modification illustrated in Figure 7:
Different mapping functions are used for the distinct cache banks i.e., line of data with base address D
may be mapped on physical line fo(D) in cache bank 0, in f;(D) in cache bank 1, etc. We call a multi-bank
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Figure 7: A two-banks skewed-associative cache

cache with such a lines mapping on the distinct banks: a skewed-associative cache.

This hardware modification is very slight and induces a very marginal hardware upper cost; but we shall
see that this may help to increase the hit ratio of a data cache and then to increase the overall performance
of a microprocessor using a multi-bank cache structure at a very marginal hardware cost: we may choose f;
which may be implemented with a very few gates.

Note that skewed-associative caches may be used for internal primary caches as well as for external caches
(primary or secondary).

About skewing schemes

Many authors [BUD71, FRA85, HAR86, HAR87, NOR87, RAU89] have studied the use of skewed storage
schemes in order to improve the throughput of interleaved parallel memories on particular pipelined or
parallel access patterns (e.g. constant stride vectors) on vector or parallel supercomputers. The goal is to
distribute data among the distinct relatively “slow” memory banks in order to allow parallel accesses to a
specific structure of data.

Here, the goal is quite different; in current state-of-the-art microprocessors, data caches have been desi-
gned in order to deliver data to the processors at the rate of one per cycle. Additional banks have been added
in the cache for increasing hit ratio, but when successive accesses hit in the same cache bank, no cycles are
hidden.

But if the goals of address skewing in the two cases are quite different, the choice of the skewing functions
may be quite similar.

3.2 Choosing skewing functions

In this section, we give some highlight on properties that might exhibit functions chosen for skewing the
lines in the distinct cache banks in order to enable a good hit ratio. First we give some notations used:

e D is aline of data in main memory. For sake of simplicity, we shall also note D the address of the first
byte in the line.

e f; is the mapping function from S to CL;.



3.2.1 Equitability

First of all, for each line in the cache, the numbers of lines of data in the main memory that may be mapped
on the cache line must be equal. In more mathematical terms a mapping function is equitable when:
I1S]]

VC € CLTON= qery

3.2.2 Inter-bank dispersion

On classical associative set caches, when two lines of data would be mapped on the same set in the cache,
they are conflicting for the same place in the X cache banks.

We have introduced skewed-associative caches to avoid this situation by scattering the data: we may
chose mapping functions such that when two lines of data conflict for a single location in cache bank ¢, they
have very low probability to conflict for a location in cache bank j. Ideally, mapping functions may be chosen
such as the set of lines that mapped on a cache line of bank i will be equaly distributed over all the lines of
the other cache banks. In more mathematical terms dispersion is achieved when:

VD €S Vigi, Hd € S/HD)=Ald) & (D)= f@H = Tl

3.2.3 Local dispersion in a single bank

Many applications exhibit spacial locality, then mapping functions must be chosen in order to avoid having
two “almost” neighbor lines of data conflicting for the same physical line in cache bank i.

The different mapping functions must respect a certain form of local dispersion on a single bank; the
mapping functions f; must limit the number of conflicts when mapping any region of consecutive lines of
data in a single cache bank 1.

3.2.4 Simple hardware implementation

A key issue for the overall performance of a microprocessor is the pipeline length. Using distinct mapping
functions on the distinct cache banks will have no effects on the performance, if these computations can be
added to a non critical stage in the pipeline and can be computed without lengthening the pipeline cycle.

In order to achieve this, we have to chose mapping functions whose hardware implementation are very
simple: a very few gates delay if possible.

3.3 A family of mapping functions

The family of mapping functions presented in this section exhibits most of the properties listed previously.
The family of mapping is based on manipulations on bit strings in addresses of data.

From now, we consider that a cache bank is built with 2" cache lines of 2¢ bytes. We also suppose that
the memory consists in 27 bytes and that ¢ > 2*n +c.

Let us consider the decomposition of a binary representation of an address A in bit substrings A = (A3
,A2, Ay, Ag), Ao is a ¢ bits string: the displacement in the line. Ay and A, are two n bits strings and Aj;
is the string of the ¢ — (2 % n + ¢) most significant bits. Let (yn,yn~1,..,y1) be the binary representation of
Y = E,-=1,ny,~2“‘. Let us consider the function H defined as follows:

H: {0,.,2"=1} — {0,.,2" -1}
(Yns¥n=1,-2¥1) — (Un® Y1,Yn,Yn—1,.., ¥3,Y2)

where @ is the XOR (exclusive or) operation.
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We consider the four mapping functions defined respectively by?:

fo: S — {0,.,27— 1)
(A3, A2, A1, A)) — H(A)® H'(A2) @ Az

h: S — {0,..,2" -1}
(A3, Az, A, A)) — H(A)® H '(A2)® A,

fa: S — {0,.,2"~1}
(A3yA2)AIyA0) - H—I(AI)QH(A2)®A2

fa: S — {0,..,2" -1}
(A3, A2, A1, A)) — H ' (A)SH(A2)® A

Property 3.1 As H is a bijection, the mapping of data using functions f1, fo, fs and fs4 is equitable.

Property 3.2 It is easy to prove that this sel of functions fi, fa2, f3 and fi ezhibits the dispersion
property previously defined when the function H2 ®@ H ® I is a bijection. H> @ H @ I is a bijection for
n=3,4,6,7,9,10,12,18,15,16°.

Property 3.3 As H and H®Id are bijections, the local dispersion of data in a cache bank is quite optimum:
for any cache line C, in any set L of K » 2" consecutive slices of data, there are at most K + 1 lines of data
in L conflicting for the physical line C in the cache.

Hardware implementation
The hardware needed for implementing the proposed mapping functions is very simple:
each bit of f;(A) is deduced from the binary decomposition of A by XORing at most four bits!

Moreover, the four mapping functions may be implemented with the same hardware part implementing
H(z)® H'(y) ® 2 where z, y and z are chains of n bits.

3.4 An example

In order to illustrate how skewing may improve the performance of a multi-bank cache, we give here an
example with X=4 cache banks. For sake of simplicity, a cache line of one word was assumed. A sequence of
32 addresses was randomly generated in {0, ...,22° — 1}. The difference between the classical set-associative
cache and the skewing mapping is illustrated in Figure 11. The mapping of data in the cache is given for
two cases?:

1. The sequence of references is issued one time:
o In the set-associative cache, on set 3, 8 data are conflicting, then four data must be rejected from

the cache (cf Figure 8).

e In the skewed-associative cache, 8 data are conflicting for location 1 in bank 1, but as the same
data are not conflicting on the other banks, more data may be alive in the cache at the same time:
28 words after one reference to each data (cf Figure 9).

2. The sequence of references is issued many times, as if this sequence corresponds to the working set of
an application:

24 line in main memory is represented by the address of its first byte

3Using a slightly distinct basic function H allows to obtain the dispersion property for n= §, 8, 11, 14.

4Number of data conflicting for a single location are indicated in bold for each set in the set-associative cache and for each
location in the skewed-associative cache.
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o In the set-associative cache, during the whole application, only 25 words will be alive at the same
time in the cache. In each set, there is no change to the number of alive cache lines compare with
the Figure 8.

s In the skewed-associative cache, the number of data present at the same time in the cache depends
on the precise mapping of each data in the cache: among the other possible locations for a data
D present in the cache at time t, there may be an empty location; the data D may be removed
from the cache by a miss on an other data I; in this case, the next time D will be referenced, D
can be mapped in the empty location and thus the number of data alive at the same time in the
cache can increase. In our example, all the data become alive at the same time after 22 references
to each data (cf Figure 10).

The behavior of the skewed-associative cache, illustrated by the example, should enhance performance of
blocked algorithms that iterate computations on small working set, in which interference misses may degrade
performance a lot [LAM91].

3.5 Which replacement policy for skewed-associative cache

When a miss occurs in a X-bank caches, the line of data to be replaced must be chosen among X. Diffe-
rent replacement policies may be used. LRU replacement policy or pseudo-random replacement policy are
generally used.

LRU replacement policy is generally considered as the most efficient policy. Implementing a LRU replace-
ment policy on a two-way associative cache is quite simple. A single bit tag per cache line is sufficient: when
a line is accessed, this tag is asserted and the tag of the second line of the set is deasserted. More generally
a LRU replacement policy for a X-way associative is feasible with adding only X bit tags to each line.

Unfortunately, we have not been able to find concise information to associate with a cache line which
would allow a simple hardware implementation of a LRU replacement policy on a skewed-associative cache:
as the set of lines on which a line has to be replaced vary with the new line to be introduced, the information
needed in order to determine the last referenced line in the set is the complete date of the reference.

Using a pseudo-random policy replacement generally induces more misses on caches than using a LRU
replacement policy. We propose here a very simple replacement policy which requires only one tag bit per
cache line and for which we have experimentally obtained very interesting behavior:

e The bit tag RU (Recently Used) is asserted when the cache line is accessed

e Periodically the bit tags RU of all the cache lines are zeroed: we experimentally determine that a good

W cache size in bytes
period is each 3 YIS accesses to the cache.

When a line misses in the cache, the replaced line is chosen among the X possible lines in the following
priority order: :

1. Randomly among the lines for which the RU tag is deasserted

2. Randomly among the lines for which the RU tag is asserted, but which have not been modified since
they have been loaded in the cache®

3. Randomly among the lines for which the RU tag is asserted and which have been modified.

This replacement policy is quite simple to implement in hardware. An interesting property of this repla-
cement policy is to limit the copy back of data on the main memory (or the secondary cache) and then to
limit the memory busy time.

We call this replacement policy: Not Recently Used Not Recently Written (NRUNRW).

SFor the instruction cache, there no third choice

12



L Set ﬂ,Bank OLBank 1 ] Bank 2 ] Bank 34|

0 (3) 311792 371000 | 590664 XX
1 (5) 869201 882529 | 411905 770697
2 (3) 696578 953178 | 324610 XX
3 (8) 544923 159243 76507 | 1007147
4(2) || 727204 | 749916 xx xx
5 (1) || 639421 XX XX XX
6 (5) ]| 761790 | 298390 | 770462 | 234166
7(5) [[ 278911 | 1043919 | 246639 143631

Figure 8: Mapping on a set-associative cache: after a single reference to each data

[ Address || Bank 0 | Bank 1 | Bank 2 | Bank 3 ]
0 770462 (2) | 311792 (3) | 411905 (3) | 502185 (3)

639421 (4) | 953178 (3) | 298390 (2) | 590664 (5)
1007147 (6) | 869201 (5) | 143631 (5) | 770697 (1)

1 544923 (5) 76507 (8) | 526971 (6) | 297638 (7)
2 278911 (3) | 1043919 (5) | 371000 (6) | 810219 (7)
3 159243 (3) | 727204 (2) | 882529 (4) xx (3)
4 696578 (7) xx (1) | 246639 (4) | 937059 (2)
5 234166 (2) | 761790 (5) xx (2) xx (4)
6

7

Figure 9: Mapping on a skewed-associative cache: after a single reference to each data

[ Address | Bank 0 | Bank 1 | Bank 2 | Bank 3 |
0 770462 (2) | 311792 (3) | 696578 (3) | 502185 (3)
1 [ 544923 (5) | 546971 (8) | 953178 (6) | 76507 (7)
3 [ 278911 (3) | 1043919 (5) | 701631 (6) | 1007147 (7)
3 | 150243 (3) | 749916 (2) | 882529 (4) | 727204 (3)
4 | 761790 (7) | 639421 (1) | 246639 (4) | 937059 (2)
5 207403 (2) | 297638 (5) | 234166 (2) | 371000 (4)
6 411905 (4) | 324610 (3) | 298390 (2) | 590664 (5)
7 | 810219 (6) | 869201 (5) | 143631 (5) | 770697 (1)

Figure 10: Mapping on a skewed-associative cache: after 22 references to each data

Figure 11: An example of data mapping
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4 Simulations

In the previous section, we have pointed out that there is a potential improvement on performance of multi-
banks caches when skewing addresses.

In order to verify that skewing addresses on multi-bank caches will improve the performance on effective
applications, we have simulated the primary cache behavior on traces generated by 7 medium size applications
(range from half a million data references to 12 millions references). This set was composed with:

1. OPACgen: a microcode generator for a hardware prototype of floating-point microcoded coprocessor

2. RESEAU : a simulator of a specific interconnection network

w

cptc: A Pascal-to-C translator
Cache: the cache simulator itself
Poisson : a Poisson solver

Sparse : a sparse matrix-vector multiply

Ne o s

Mulmat: a matrix multiply (60*60 by 60*60)

The first 4 applications are standard C applications. The last three applications are numeric applications.

The traces were generated by using the Abstract Execute software [LAR90)] targeted for a SPARC proces-
sor. Unfortunately system calls such as fprintf, fclose, etc, were not traced, neither exception managements,
then the effective instruction miss ratios would certainly be higher than those obtained in our simulations
(for results on influence of operating systems on cache performance see [AGAS88]).

A single process execution was supposed : performance of caches in a time-sharing environment would be
certainly worse than the results shown here [AND91, MOG91)].

Simulations results have been normalized in order to give the same relative weight to each of the bench-
marks. Only the geometric mean of all benchmarks is presented here since there is no significative dispersion
of the results over the different programs. However it should be noted that numeric applications show, as
expected, less different behaviors between set-associative cache and skewed-associative cache.

Some comments on simulation:

Results presented in this paper are given for a cache line size of 64 bytes: other cache line sizes (16, 32 and
128 bytes) were also simulated, but 64 bytes was the size which gave globally the better results in terms of
hit ratios on our set of benchmarks (this is coherent with results presented in [SMI87)).

In [JOU90], Jouppi pointed out that a significant improvement of the hit ratio of a direct-mapped cache
may be obtained by adding a small fully associative cache (called a victim cache) in order to store the last
lines rejected from the major primary cache.

In order to compare the results with on multi-bank caches with direct-mapped cache, such a mechanism
was simulated for all the configurations: as stated in [JOU90], it improves significantly direct-mapped cache
hit ratio (about 25 % data miss were removed on our benchmark set), but also set-associative caches hit
ratio(about 10 % data miss removed) and even skewed-associative caches hit ratio (about 5 % data miss
removed). When a cache miss induces a hit in the victim cache, it does not induce any access to the main
memory or secondary cache, they are not considered as misses in the rest of the paper.

Simulation results

Miss ratios on respectively the data cache and respectively the instruction cache on our benchmarks set are
given respectively in Table 1 and Table 2. Cache sizes from 4096 bytes to 16384 bytes have been simulated;
the replacement policies that were simulated are pseudo-random, LRU and NRUNRW (see section 3.5).

14



Cache Size (bytes) 4096 8192 16384

Direct-mapped 0.076040 | 0.062770 | 0.046019
LRU Standard 2 banks 0.063827 | 0.052571 | 0.040727
LRU Standard 4 banks 0.051429 | 0.041835 | 0.028765
LRU Standard 8 banks 0.048802 | 0.040838 | 0.027502

NRUNRW Standard 2 banks | 0.065198 [ 0.051921 | 0.040034
NRUNRW Standard 4 banks | 0.0563915 | 0.041629 | 0.028182
Random Standard 2 banks 0.065672 | 0.052012 | 0.039693
Random Standard 4 banks 0.055918 | 0.042340 | 0.028900
LRU Skewed 2 banks 0.050388 | 0.040764 | 0.027134
LRU Skewed 4 banks 0.048278 | 0.040066 | 0.025842
NRUNRW Skewed 2 banks 0.051740 | 0.040962 | 0.027514
NRUNRW Skewed 4 banks 0.049648 | 0.039819 | 0.026245
Random Skewed 2 banks 0.054219 | 0.042352 | 0.028633
Random Skewed 4 banks 0.053011 | 0.041384 | 0.027987

Table 1: Data cache miss ratio

These tables clearly show that a two banks skewed-associative cache has a behavior close to a four way set-
associative cache. The behavior of a four banks skewed-associative cache is slightly better than the behavior
of a four-way associative cache and seems close to the behavior of an eight-way set associative cache, but
as pointed out previously the decreasing of the miss ratio obtained with an eight-way set-associative cache
beside a four-way set-associative is quite marginal.

The Figure 12 illustrates the potential benefit of using skewed-associative caches in terms of normalized
execution times (see Definition 2.2) for different cache sizes and assuming equal sizes of the two caches:

o There is marginal performance benefit in using a multi-bank cache organization when the main memory
latency is small (e.g. 5 cycles), but when the memory latency becomes higher, using a multi-banks cache
organization allows very interesting performance improvement: for 8192 bytes and a 20 cycles memory
latency, the normalized

execution times vary from 1.46 to 1.89 for respectively a four banks skewed associative cache and the
direct mapped cache.

e Using a four-banks skewed associative cache in place of a classical four-way set associative cache
improves performance: about 5% for a cache size of 8192 bytes and a 20 cycles memory latency.

e Using a two-banks skewed associative cache seems very attractive: approximately equivalent perfor-
mance as on a classical four way set-associative is obtained i.e. about 11 % performance improvement
on a classical two-way set-associative for a cache size of 8192 bytes and a 20 cycles memory latency.

Normalize memory busy time

We have already pointed out that there is also some stress on the main memory.

This stress is illustrated by the normalized memory busy time (see Definition 2.3) in Figure 13 for different
cache sizes and organizations. Formula 2 was used with Mdel = LAT + 7 i.e. LAT cycles are necessary to
obtain the first 8 bytes of the line in the memory, then a 8 bytes word flows out from memory on each cycle.

As previously mentioned, the NRUNRW replacement policy decreases the ratios of miss inducing Copy
Back on the memory and then decreases the stress on memory. This may be particularly important when
building a single-bus shared memory multi-microprocessor system.
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Figure 12: Normalized Execution Times for different cache sizes
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Cache Size (bytes) 4096 8192 16384

Direct-mapped 0.022611 | 0.008704 | 0.004133
LRU Standard 2 banks 0.016931 | 0.005847 | 0.001499
LRU Standard 4 banks 0.013598 | 0.006238 | 0.000538
LRU Standard 8 banks 0.011801 | 0.002425 | 0.000332

NRUNRW Standard 2 banks | 0.016439 | 0.006238 | 0.001573
NRUNRW Standard 4 banks | 0.013399 | 0.003748 | 0.000528
LRU Skewed 2 banks 0.012600 | 0.003378 | 0.001044
LRU Skewed 4 banks 0.011187 | 0.001726 | 0.000276
NRUNRW Skewed 2 banks 0.013893 | 0.003423 | 0.000968
NRUNRW Skewed 4 banks 0.012245 | 0.001983 | 0.000304
Random Skewed 2 banks 0.014433 | 0.003748 | 0.001158
Random Skewed 4 banks 0.013117 | 0.002562 | 0.000454

Table 2: Instruction cache miss ratio

5 Conclusion

During the past decade, microprocessors potential performance has increased at a tremendous rate using
RISC concept, higher and higher clock frequencies and parallel instruction issuing. On the other hand, larger
and larger main memories are needed in order to feed microprocessors with both data and instructions.
But the main memory access time has not decreased at the same rate. Then effective performance of a
microprocessor on an application essentially depends on the behavior of the whole memory hierarchy: primary
instruction and data caches, secondary caches (when available) and main memory system.

As the gap between the main memory access time and the potential average instruction time is always
increasing, it has become very important to improve the behavior of the caches, particularly when no se-
condary cache is used (i.e on all low cost microprocessor systems). In order to improve cache hit ratios,
set-associative caches are used in most of the new superscalar microprocessors (IBM Power, SUN Viking,
Motorola 88110).

Set-associative caches are build with separate cache banks: a line of data may be mapped on any of the
cache banks, but at the same address in the cache bank. The design of a X-banks skewed-associative cache
is obtained by a very slight modification of the design of X-way set-associative cache: each line of data has
one possible location in any of the cache
banks, but the addresses of these possible locations are different in the different cache banks. These different
addresses are computed by skewing the addresses.

We have presented a family of skewing functions that exhibits interesting properties and particularly the
dispersion property (lines conflicting for the same location in a cache bank are equitably distributed when
mapped on another cache bank) and simple implementation hardware implementation (only a few XOR
gates).

Unfortunately, LRU replacement policy is quite difficult to implement in hardware for skewed-associative
caches. We have proposed the Not Recently Used Not Recently Written replacement policy which is easier
to implement in hardware. This replacement policy induces approximately the same miss ratio as the LRU
replacement policy, but induces less copy back on the main memory (and then less memory traffic).

Simulations have shown that skewed-associative caches have a better behavior than set-associative caches:
typically a two-banks skewed-associative cache exhibits the same hit ratio as a four-way set-associative cache
with the same number of cache lines, but has the same hardware complexity as a two-way set-associative
cache.
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