Prime memory systems do not require euclidean division by a prime number

André Seznec 1 Yvon Jégou 1 Jacques Lenfant 1
1 CALCPAR - Calculateurs Parallèles
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, INRIA Rennes
Abstract : Using a prime number N of memory banks on a vector processor allows a conflict-free access for any slice of N consecutive elements of a vector stored with a stride not multiple of N. To reject the use of such a prime number of memory banks, it is generally advanced that address computation for such a memory system would require systematic Euclidean Division by the prime number N. In this short note, we show that there exists a very simple mapping of data in the memory banks for which address compulations does not require any Euclidean Division.
Type de document :
Rapport
[Research Report] RR-1654, INRIA. 1992
Liste complète des métadonnées

https://hal.inria.fr/inria-00074903
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 16:50:37
Dernière modification le : mercredi 16 mai 2018 - 11:23:14
Document(s) archivé(s) le : mardi 12 avril 2011 - 20:01:56

Fichiers

Identifiants

  • HAL Id : inria-00074903, version 1

Citation

André Seznec, Yvon Jégou, Jacques Lenfant. Prime memory systems do not require euclidean division by a prime number. [Research Report] RR-1654, INRIA. 1992. 〈inria-00074903〉

Partager

Métriques

Consultations de la notice

320

Téléchargements de fichiers

66