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Abstract

The concept of backward recovery is now well established as a means of restoring a con-
sistent state of a fault tolerant system should some faults occur. In this paper, we consider
a system of communicating processes mapped onto a multilevel execution support. A shared
memory multiprocessor machine is assumed. Our interest is in tolerating the hardware
faults that may occur during the execution of a concurrent computation. The machine pro-
vides a hardware backward recovery protocol based on a specialized memory device which
tracks dependencies between the processors accessing shared data residing in memory. The
transparency provided by the protocol is discussed considering successively the models of

computation at the various levels of abstraction of the execution support.
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Résumé

Le concept de récupération arriére est maintenant bien établi pour restaurer un état cohérent
d’un systéme tolérant aux fautes lorsque des fautes se manifestent. Dans ce rapport, nous con-
sidérons un systéme de processus communiquants mis en oeuvre par un support d’exécution i
plusieurs niveaux. Nous supposons une machine multiprocesseurs ¢ mémoire partagée. Notre
but est de tolérer les fautes matérielles qui peuvent se manifester lors de ’exécution d’une
application paraliéle. La machine fournit un protocole matériel de récupération arriére fondé
sur une mémoire spécialisée qui note les dépendances entre les processeurs accédant les infor-
mations partagées de la mémoire. La transparence du protocole est discutée en considérant
successivement les modéles de calcul offerts par les différents niveaux d’abstraction du support

d’exécution.

Mots clés. Multiprocesseurs, tolérance aux fautes, mémoire stable, récupération arriere.
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1 IQ@troduction

The concept of backward recovery is now well established as a means of restoring a consistent
state of a fault tolerant system should some faults occur [Randell 75). Several algorithms have
been proposed in the literature for providing backward recovery depending upon (i) the type of
faults to be tolerated, (ii) the system characteristics, and (iii) the fault tolerance strategy.

In this paper, we consider a system of communicating processes mapped onto a multilevel
execution support, the bottom layer being a shared memory multiprocessor machine. Our main
interest is in tolerating hardware faults. The central idea of our work is to embed, as much as
possible, the fault tolerance mechanisms within the hardware itself. A specialized stable memory
device has been designed for that purpose. This work is the continuation of previous studies that
we have been conducting in the field of hardware fault tolerance using stable storage technology
[Banitre 88, Banitre 91b).” -

In a system of commuhiéating'nprocesses, should a fault occur, the recovery control protocol
must determine a set of process states which together constitute a consistent state of the sys-

tem. Many recovery protocols assuming message passing communication have been proposed

. in the literature (see for instance [Wood 85, Strom 85]). In contrast, the recovery protocol im-
*.:plemented by the memory device of the architecture proposed in this paper relies on the fact

o - that communication takes place through shared data. The memory device tracks directly the

dependencies between the processors’ references to the shared data.

Ideally, the fault tolerance mechanisms provided by the hardware itself would be sufficient to
cope fully with the hardware faults thereby releiving the upper layers of the execution machine
of handling fault tolerance issues. However, a realistic architecture is likely to embed non-
recoverable objects such as i/o devices. This is also discussed in the paper when dealing with
the operating system level of abstraction of the multilevel execution support.

The remainder of the paper is organized as follows. In section 2, a terminology and the
basic principles of the recovery protocol are introduced. In section 3, the detailed design of a
fauli tolerant shared memory multiprocessor system implementing the protocol by hardware is
presented. In section 4, we examine operating system issues. Considering a layered structure
of the operating system, recoverability of each layer is discussed in turn. In section 5, related
works are discussed. Some of the ideas proposed in the body of the paper are currently being
explored within an Esprit European project (FASST) with other partners. The FASST project

is presented in the last section.



2 A basic recovery protocol for processes communicating
through shared data

In this section, we first introduce some definitions and background notions concerning backward
recovery in a system of communicating processes. Second, we present a basic recovery protocol

for processes communicating through shared data that will be used throughout the paper.

2.1 Definitions and background

Definitions A recovery point is established by a process at a point in time at which the state
of the process is saved for possible regeneration in the event of recovery action. A process
commits a recovery point when it no longer requires the capability to initiate recovery action
to that point. The period of process activity between the establishment of a recovery point and
the commitment to it is called the process transaction associated to that point. (Notice that
the meaning of the word transaction here should be distinguished from the one which is usually
given in transactional systems [Gray 78] where a transaction may refer to a consistency unit
preserving some invariant of the system.) The most recently established recovery point of a
process is said to be active or equivalently current. A recovery point which cannot possibly have
recovery generated to it as a result of recovery action initiated anywhere in the system is said

to be discardable. Part of the above definitions are borrowed from [Lee 90).

Model of computation We assume a model of computation of communicating processes
where processes implement a succession of non-nested transactions, establishing a recovery point
immediately on commitment to the preceding one. This is depicted in figure 1 where vertical
bars denote the bounds of process transactions. The recovery control management offers the
primitive NewProcessTransaction(p) for committing the active recovery point and establishing
a new recovery point for process p (for simplification purposes, initialization is not considered).
Information flows between processes are assumed to be directed (unidirectional), and are rep-
resented by arrows in figure 1 when occurring between distinct processes. It is further assumed
that all information sent out by a process is dependent on all information previously received

by that process.

Definition For any two recovery points rp and rp’ belonging to processes p and p’ respectively,
rp is a direct propagator to rp’ if and only if information flows from p to p’ while rp and rp’
are the respective active recovery points of the two processes. As a particular case, a recovery
point of a process is a direct propagator to the next recovery point of the same process. (For
example, in figure 1, recovery point B.2 is a direct propagator to A.2 and C.3 while A.1 is
a direct propagator to A.2.) For the commodity of the presentation, we will sometimes refer

L



to the propagator relation between process transactions instead of recovery points. A process
transaction t; is a direct propagator to ¢, if the recovery point established at the beginning of

t is a direct propagator to the initial recovery point of t,.

Definition For any two recovery points rp and rp’ belonging to processes p and p’ respectively,
rp is a propagator to rp' if and only if the following holds : Either rp is a direct propagator to
rp’ or else, recursively, there exists a recovery point rp” belonging to process p” such that rp is
a direct propagator to rp” and rp” is a propa.gatdr to rp’. (For example, in figure 1, recovery
point B.2 is a propagator to A.2, C.2, C.3, and D.2.)

Definition We will often refer to the recovery ancestors and recovery descendants of a recov-
ery point rp. An ancestor recovery point of rp is a propagator to rp. (For example, in figure 1,
recovery points A.2, B.2,C.2,C.3,and D.2 are ancestors of D.2.) Conversely, if a recovery point
rp’ is descendant of rp, rp is a propagator to rp’. (For example, in figure 1, recovery points
A2,C.2,C.3,D.2,and B.2 are descendants of B.2.) As a particular case, notice that a recovery
point is both ancestor and descendant of itself.

,U(B)

AW '
c ﬁ-l W/\ 103\
N e

time

Figure 1: Communicating processes and recovery

Recovery in distributed systems

A recovery protocol must ensure that the system reverts to a consistent state in the event of one
(or many) processe(s) initiating recovery action. As stated in [Wood 85], a process initiating
recovery must cause recovery of the descendants of its active recovery point (including the active

recovery point itself) in order to reach a consistent state. Another way to say this is that the



recovery control protocol must seek for a recovery line delimiting the boundary of an atomic
activity [Randell 75}.

Definition Traditionally, an atomic action conveys both the meaning of (i) an action which
does not inter fere with its environment, and (ii) a unitary action which has an all or nothing
effect despite failures. For more precisions when needed, the first of these properties is referred
to as s_atomicity (synchronisation) while the second is referred to as u_atomicity (unitary). The
word atomic alone conveys both meanings.

Recovery lines are depicted as curved lines in figure 1. Not all the processes need be rep-
resented on a recovery line reflecting a situation where one process is not affected by recovery
initiated by another. For instance, in figure 1, the recovery line (L(D)) associated to process
D entails this single process only. Notice also that recovery may in general cause recovery of a
process beyond its active recovery point. For instance, in figure 1, recovery initiated by process
B will lead to recovery line L(B) thus causing the restoration of process C to recovery point
C.2 while C.3 is the active recovery point of C.

A process may belong to several recovery lines. For instance, in figure 1, process D belongs
to both recovery lines L(D) and L(B). As far as recovery is concerned, we are interested in the
recovery line which will lead to the minimal undo of computation (L(D) in this example). This
recovery line will be refered to as the recovery line of the process.

No information flow crosses from the inside of the recovery line to the outside but the converse
is not the case. This requires that the recovery mechanism be capable, in case of recovery, to
reproduce those informations entering into the domain delimited by the recovery line. For
instance, should process D recover in figure 1, the information which has been produced by
process C must be available after recovery takes place.

Recovery protocols fall into two broad categories namely planned, and unplanned [Lee 90,
Randell 75]. Planned (or pessimistic) protocols bound the amount of system activity to be
undone in case of recovery at the price of speeding down failure-free computation. In contrast,
unplanned (or optimistic) protocols do not speed down failure-free computation but are prone
to the so-called domino effect (cascading rollbacks) which in the extreme case could invalidate
the whole computation in case of recovery.

A recovery protocol must provide the garbage collection of the discardable recovery points
that are no longer required to provide backward recovery capability. While we do not expand on
this issue in this report, it should be noted that this might be surprisingly difficult to implement
when an unplanned approach to recovery is taken as illustrated in [Wood 85).

Communication in concurrent systems may take place by message passing or through shared
data. While many recovery protocols based on message passing have been published in the
literature such as [Wood 85, Strom 85], we did not find out a recovery protocol based on shared
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data communication satisfying our r'ecjuirements, This led us to the development of a protocol
which is detailed in the next section. This concludes this brief introduction to recovery protocols

in distributed systems, further informations can be found in the referenced bibliography.

2.2 The protocol principles

‘In this section we introduce a basic model of computation together with the characteristics of its

recovery protocol which will be used throughout the paper. As before, we assume that processes

~ implement a succession of non-nested transactions. A process may access a local state (the

process registers) and a shared state represented in shared memory. Processes communicate
through shared data of the shared memory. In other words, the significant events produced by
a process consist in a trace of accesses to private registers and shared memory.

As a requirement of the protocol, the amount of recovery data must be bounded and limited
to a single recovery point per process. Consequently, the protocol must adopt a planned approach

to recovery and satisfy the following condition:
R : Recovery of a process must not go beyond its active recovery point

From the R condition, we infer: (i) the domino-effect is prevented, and (ii) it is easy to determine
when a recovery point becomes discardable; a recovery point is discardable when it is committed.

In order to implement the R condition, the recovery protocol may implicitly establish a
recovery point for a process. Notice that this contradicts somewhat the characteristics of the
model of computation above since then the decision of establishment of a new recovery point
may be not only explicitly performed by a process but also implicitly by the recovery protocol
itself. However, this distinction will not be relevant in the text until section 4. In the following,
we assume that a process implements a succession of non-nested transactions without further
precisions.

In order to give insights in the protocol development, we will use an execution model based
on traces in the following and take similar notations to those of [Best 82]. An execution U is
modelled as a sequence SpGg$1...8;8;8;541...0y—13« Where a; ( 0 < j < u) denotes an action and
s; as well as 341 denote states. The state space S is defined as the set of mappings from the
shared variables space to values. Each action a; is an s_atomic action belonging to a component
process p;(1 < ¢ < n) denoted component(a;). An action of p; is either a write of a value € into a
shared variable v denoted w;(v, €) or a read of a shared variable v denoted r;(v) or a commitment
action denoted c;(). The accesses of a process to its local state are not modelled since these are
not relevant as far as communication is concerned. It should be noted that processes proceed
asynchronously, and therefore flows of informations between them are non-deterministic. (This

model may result from the implementation of an abstract model of computation not detailed



here; we may understand non-deterministic flows of information in the model proposed as an
implementation property of the abstract model [Gries 81].)
Let s’ belonging to S be an arbitrary initial state, the semantics m of the actions performed

by a process is a relation S X § which can be characterized as follows:

o s’ m(w;(v,e)) s where s(v) = e and s(w) = s'(w) for all elements w of the state space

different of v.

o & m(ri(v))) s where s = s’. (The read action is supposed to deliver the value s’(v) not
modelled here.)

o s’ m(ci()) s where s = 4.

A projection of an execution U onto a component process p; denoted projection(p;,U) is ob-
tained by deleting from U all states so...s, and all a; such that component(a;) # p;. We call U

a standard (or correct) execution if it satisfies the two following properties [Best 82):

e (P1) for all i, projection(p;,U) is a sequential control sequence of process p;.
e (P2) (s;,3;4+1) belongs to m(e;) for all j.

A standard execution is said to be complete if projection(p;, U) for all i is a complete control
sequence of process p;. While property (P1) captures the control aspect of an execution, property
(P2) captures the semantic aspects with respect to data. (Further informations can be found in
[Best 82).)

Let us turn our attention to recovery now. Should a process p; roll back when an execution
has reached the sequence U, the recovery protocol builds a new sequence W, by undoing the
effects of all actions performed within the current transactions of the processes belonging to the
recovery line of the process invoking recovery, from which post recovery computation will start.
The post recovery computation catenated with W must be identical to a complete standard
execution that would have taken place if recovery did not occur.

In order to give insight in the computation of the recovery line of the process invoking
recovery and more generally in the necessary recovery actions to be taken, undoing the effects
of a single rolled back process is modelled as the computation of an output string U’ from an
input string U. The string U’ is such that U’ = [go)bo{q1]..-[¢;10;(g;+1]).-[qur—1]bur—1[gus] Where
[¢;] denotes chains of states, and b; actions. As a particular case, notice that a sequence is a
string. The string U’ is obtained by:

1. Erasing from U the actions performed within the current process transaction of the rolled

back process (but not the states), and

2. Appending if necessary a final state to the string denoting the effect of the state restoration

applied to the variables of the state space whose values must be recovered by the protocol.
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The final output U’ of the recovery protocol (after having possibly executed the procedure
above for several processes including the process invoking recovery) must be equivalent to a
standard sequence W satisfying properties (P1) and (P2). This is defined in the following. Let
W = tobo...t;bjt;41...tyr—1by—1ty such that (i) the string of actions b; of W is identical to the
string of actions of U’, and (ii) the initial state to of W is equal to the initial state first(go) of
U’. The string U’ is said to be equivalent to the standard sequence W if:

(Q1) last([gy]) (final state of U’) equals . (final state of W), and

(Q2) for each read action b;, last([g;])(v) equals t;(v) assuming that v is the variable read by
bj.

If U’ is equivalent to the standard sequence W as defined above, it is clear that the output
of the recovery protocol is correct; the post recovery computation catenated with W will be
identical to a complete standard execution that would have taken place if recovery did not occur
since the rolled back processes will redo their computation from their current recovery points.

The previous characterization of a correct output of the recovery protocol gives a direct
insight in the protocol development as discussed in the following.

Example. Consider the sequence U = sg¢;()syc;()s2wi(v, €)sar;(v’)seri(v’')ss and assume
that process p; initiates recovery. Let U’ be the string obtained by erasing the actions per-
formed within the current process transaction of p; and appending a final state sg (result of
a state restoration) such that sg(v) = so(v) and sg(w) = ss(w) for all w # v. Precisely,
U’ = (ao)ei()lar)e; Olaalrs(v")lgs] where [go] = [so], [qa] = [a1], lga] = [s3 s3], [qa] = [sa; ss; o). The
recovery line of p; entails this single process since U’ is obviously equivalent (as defined above)
to the standard sequence W = toc;()tic;()tar;j(v')ts where tg = so.

In practice, things might be more difficult that illustrated by the introductory example above
since processes can be dependent. How the protocol deals with this situation is discussed below

in a non-formal way considering in turn the so-called write read and write write dependencies.

Write Read dependencies

Let v be a variable written to within the current process transaction of p;, this variable being
firstly accessed later by a read action of p; within its current transaction. Erasing only the
write access from U will not be sufficient to produce a correct string U’ since the read action
of v by p; would then not deliver the previous value written to v in U’, and hence U’ would
not be equivalent to the standard sequence W as defined previously (the property (Q2) above
would not be satisfied). Process p; is in this case a direct propagator to p; (or equivalently p; is
dependent of p;) denoted p; — p; meaning that rolling back p; should cause a roll back of p;.
More generally, any process which reads a non-committed value written by p; is wr dependent

of p;.



Recall that we do not want recovery of a process go beyond its active recovery point (the
R condition). In order to ensure this, the commitment of a process transaction will force the
commitment of all its ancestors (ancestors recovery points are referred to as potential recovery
initiators in [Wood 85]). (If this were not the case, an ancestor initiating recovery might require
some of its descendants to rollback beyond the current recovery point.) This is the overhead
to pay for the planned approach which facilitates the computation of a recovery line in case of

recovery.

Write Write dependencies

Let U’ denote the string obtained by erasing from U all actions performed within the process
transactions that are descendants of the current recovery point (as explained above) of process
p; invoking backward recovery. Let v be a variable which has been written to in U. If the last
writing to v in U is not erased in U’, the value of v in the final state of U’ is correct but otherwise
is not since U’ would not be equivalent to the standard sequence W as defined previously (the
property (Q1) would not be satisfied). Let U’ = [go}...wi(v,€)...[q,s] where w;(v,e) denotes the
last writing to v in U’ and assume that the last writing to vin U has been erased in U’. A correct
string could be obtained by appending to U’ the result of a state restoration reestablishing the
value e of v and repeating this for all variables whose last writing to in U has been erased in
U’. The difficulty here resides in finding out the value e within the whole history of the values
taken by the variable v. How this is achieved is discussed in the following.

Definition A process p is said the active writer of a variable v if p has been writing to v within
its current (active) transaction and v has not been subsequently written by other processes.
The protocol does not maintain the whole history of a variable but only both a current
value and a recovery value. At commitment time of a process, the recovery value of a variable
is replaced by the current value if the process is the active writer of the variable. Symmetrically,
at rollback of a process, the current value of a variable is replaced by the recovery value if
the process is the active writer of the variable. In order to reestablish a valid final state of
the string U’ above, the protocol ensures that the last write action to v wi(v,e) of the string
U’ is committed and will thus restore the recovery value e of v. This implies that a process
committing its current transaction must force commitment of the active writers of the variables
written within the committing transaction while rollback of a process transaction must cause
the rollback of all transactions which have been writing to a variable whose active writer is
the rolling back transaction. A simple way to achieve this goal is to record a dependency
pi — p; when a variable is successively written by two processes p; and p; within their current
process transaction; this dependency will have the same effect as the — dependency as far

as commitment and roll back are concerned. (Notice that the — relation is a predecessor



relation as opposed to the wr relation which captures a successor relation.) This concludes

the presentation of the protocol (a formal proof would be desirable but is not discussed in this

paper).

Summary

In summary, a p; — p; dependency is recorded when p; reads a variable whose active writer
is p; while a p; <~ p; dependency is recorded when p; writes to a variable whose active writer
is pi, pj becoming then the new active writer. Rollback of a process p; will induce a rollback
of its descendants according to both relations 2%, and —=; the recovery values of the variables
whose active writer is a process member of this group, will be reestablished. Commitment of
a process will induce the commitment of all its ancestors according to both relations — and
2%, the recovery values of the variables to which processes member of this group are the active

writer will be logically replaced by their current values.

3 Design of a fault tolerant shared memory multiprocessor

machine

In this section, we present the salient features of an original fault tolerant shared memory
multiprocessor machine. This machine implements the recovery protocol described previously,
providing recoverability to communicating processors.

The general architecture which is depicted in figure 2 mainly consists of processing elements
and of a shared Stable Transactional Memory (STM). As it is usually the case in shared memory
multiprocessors the processing elements access the shared memory through (optional) private
caches holding the most recently referenced memory locations [Smith 82]. We assume that a
processor of the multiprocessor machine executes instructions which can access a local state (the
processor’s registers) and a shared state. The shared state is represented as a set of memory
cells of the STM. The STM is a non-volatile fail free random access memory and offers the

notion of processor transaction to each processor accessing it.

Definition A processor transaction is an u_atomic sequence of memory reads and writes (as
defined in section 2) performed by a processor which may be undone before reaching commitment
80 as to tolerate processing elements failures.

The architecture has been designed so as to impose minimum requirements on non-STM
hardware. Ideally, it should be possible to plug an STM board into an off the shelf shared
memory multiprocessor to make it fault tolerant.

Most ideas of the architecture proposed here can be traced back to the reference [Banatre 90].

However, in contrast to this reference which proposes a limited form of process transaction
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Figure 2: The shared memory architecture

implemented by specialized caches, the architecture discussed here implements the notion of
processor transaction and can accomodate standard cache behaviour as discussed further in the
text.

From a hardware point of view, a processor transaction splits into three steps: (i) a prelude
for starting the transaction, (ii) a body of read/write commands issued by the processor, and
(iii) a postlude for terminating the transaction. In the following, we examine these issues. First,
we will assume that processors access the STM without caches. Second, we will concentrate on
the complexity added by the caches themselves. We conclude the section by a brief account of

performance evaluation and some comments.

3.1 The basic case: no caches

The STM provides both a recovery and a current value for each cell accessed. Recovery values
of the data are not accessed during the transaction body so as to be capable of undoing the
effects of the transaction. Apart from fulfilling the processors’ memory requests, the STM has to
track dependencies between processors when they share data according to the recovery protocol

as discussed in section 2. That is, a dependency has to be recorded by the STM in two cases :

e Whenever a processor F; reads a cell previously modified by processor P; within its current

transaction a P; — P; dependency is created.

o Whenever a processor F; modifies a cell previously modified by processor P; within its

current transaction a P; & P; dependency is created.

Since the wr and ww dependencies are treated in the same way by the protocol, it is sufficient
to record a single type of dependency. One important assumption for dependency tracking is
that the STM is only connected to the bus of the architecture and does not directly observes

10



reads and writes performed by processors but rather their reflection on the bus; dependencies
are tracked by snooping bus informations. In order to record dependencies, when an access to

a cell is made by a processor, the STM needs to know:

o The identifier of the processor doing the access. This is achieved by fitting each processing
element board with a unique identifier which is passed on the bus whenever this process-
ing element puts an address on the bus. Most modern busses, like the SPARC MBus

[Kitagawa 91], directly provide this information on their address lines.

o The type of access (read or write). This is directly provided to the STM by its memory
interface.

e The identifier of the processor that is active writer of the cell if any.

The termination of a processor transaction obeys a simple distributed two-phase commit
[Gray 78] protocol. Processors are participants while the STM is the coordinator of the protocol.
In contrast to standard two-phase commit protocol where the coordinator is responsible for
triggering the protocol, it is a participant which initiates commitment; yet, it is the coordinator
itself which is in charge of committing data. When a participant issues commitment, after
having flushed its registers into the STM if necessary, it sends a do_commit command to the
STM and waits for an interrupt meaning that commitment is terminated and that the processor
can resume processing.

Upon receiving a do.commit command, the STM scans the dependency information and in-
forms all dependent processors. A dependent processor can then flush its registers into the STM
if necessary and must acknowledge the first phase of the protocol. When all acknowledgements
from the participant processors have been received, the STM enters the second phase of the
commit protocol. During the second phase, the recovery values of the cells which active writers
belong to the group of dependent processors are changed to their current values. The depen-
dencies of the dependency group are broken and a new processor transaction is then started for
each processor belonging to the group.

Let us consider now the implementation in greater detail.

Servicing read and write commands

The STM actions are better described by a finite state automaton. The automaton includes
an initialisation state together with a service and commit_phase2 states. In the service state
of the STM, most of the work is concerned by dependency management. We assume that
dependency data is stored in a n*n boolean matrix M; n being the maximum number of processor

transactions allowed to access the STM concurrently. Typically, n equals the maximum number

11



of processors in the architecture. A matrix item M(4, j) set to true means that processor P; is
dependent of P;.

While read and write commands refer to STM cells, the STM itself may record dependencies
on a bigger granularity. In the following, we assume that the STM physical space is divided
into a set of contiguous blocks of identical size which contain a power of two cells. Each block
consists of (i) a current value, (ii) a tag field containing either the idendity of the active writer
to the block (if any) or the nil value, and (iii) a recovery value. A simple implementation of
the STM data would consist of two banks of memory, one bank containing the current values
together with the tag fields while the other bank contains the recovery values.

Basically a read to a cell ¢ will compute the target block b, record a dependency with the
active writer processor of the block if any in the matrix M, and will deliver the current value
of the cell. A write to a cell ¢ will compute the target block b, record an opposite dependency
with the active writer if any, change the active writer of the block, and will update the current
value of the cell within the block b.

First phase of the commit protocol

The first phase of the commit protocol is initiated by a processor issuing a do_commit command
to the STM. This communication can be implemented by using a dedicated address in the
address space as this is the case with memory mapped I/O devices. An access by the processor
at this address will trigger the requested action. (Other addresses may be used for different
purposes such as initialization or self-testing.)

Upon receiving a do_commit command from processor P;, the STM has to scan the depen-
dency information it has recorded during the body of P;’s current transaction to determine the
group of processors which are required to commit atomically with P; according to the recovery
protocol. Once dependency information has been computed internally, the STM broadcasts on
the bus a bit vector conveying the group of dependent processors within the memory cycle of
the do_commit command like in an usual memory read cycle. Interrupt or message passing
facilities provided by the bus used in the architecture, may also be convenient for this purpose.
Dedicated logic on each processor board snoops this bit vector and checks whether the processor
it is attached to has to participate to the group simply by masking the broadcast vector with
its own processor identifier. If so, a high priority prepare_to_.commit interrupt is sent to the
processor which in response to it, must also issue a do_commit command meaning that as far as
it is concerned, the first phase of the commit protocol is OK.

It should be noted that within the interval of the initial commit command and the acknowl-
edgements of the dependent processors, some new dependencies may have been created for the
STM carries on servicing read and write commands from processors that are not blocked waiting

for the end of the commit protocol. It may also occur that a processor not already part of the
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group decides on its own to commit its current processor transaction and sends a do.commit
command to the STM. This processor is added to the (current) group as well as all the processors
dependent from it. This mechanism provides a cheap way for implementing multiple concurrent
processor groups.

One crucial point is that group computation has to be atomic with respect to read and
write accesses. If not, dependencies might be created during group computation resulting in
an incomplete group being validated by the STM. A simple way to enforce this property is to
serialize the group computation and read write accesses as it is the case here since the group
computation is performed within the memory cycle corresponding to the do.commit command.

The dependency group computation algorithm is given, in C dialect, in figure 3. Under the
assumption that the number n of processors can be encoded within an integer variable, the
matrix M is implemented by an integer array where each array element is considered as a bit
vector indexed by a processor identifier. The algoritm uses bit vector operators.

Upon reception of a do.commit command, the STM executes the do.commit procedure.
Let group be the bit vector denoting the processors member of the dependency group and
do.commit_received be the bit vector denoting the processors that have completed the first
phase of the commit protocol. The do_commit procedure of figure 3 will cause a state transition
of the STM automaton into the commit state implementing the second phase of the commit
protocol if the following condition is verified :

Q : ((group = do_commit_received) A (Vi : i € group : immediate_ancestors(i) € group)

The condition Q expresses that all processors belonging to the exact group of dependent
processors have completed the first phase.

If Q is not verified, two cases arise. First, some processors that have already been informed
that they are group members have not completed yet the first phase in which case the STM
must wait for the reception of their do_commit command. Second, some new processors became
group members since the last computation of group and thus must be informed. Notice that the
dependency computation algorithm must avoid interrupting a given processor several times.

There are many ways to devise an algorithm satisfying the previous requirements. In figure
3, a simple solution is given. The algorithm checks for the Q condition and as a side-effect
computes a new value of group. If the new value of group is different from the last value, the
new members are informed. The complexity of the algorithm is O(n). The do_commit procedure

being executed at most n times, the first phase of the commit protocol is thus O(n?).

Second phase of the commit protocol

The basic actions which have to be performed in the second phase are the following:
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int state; /* current state of the automaton &/

int group; /+ dependency group computed so far (bit vector) ¢/
int do_comnit_received; /#* bit vector of do_commit commands received from the processors =/
int M{n); /+ dependency matrix s/

INITIALISATION:

do_comnit_xreceived = 0; group = 0;
for(j=0;j<n;j++) M{j] = (1<<j); /% a processor is an ancestor of itself s/
state = SERVICE;

SERVICE:
do_commit (i)
int i; /% processor id s/
/* the processor i is willing to commit or acknowvledges a request of

the STM folloving a commit request from a dependent processor */

int dependent_members;
int j; /* processor id »/

/* add processor i to the group s/
group |= (1<<i);
do_commit_received |= (1<<i);

/% compute nev dependent members s/
dependent_members = group;
for(j=0; j<n ; j++)
{ iz ((group & (1<<j)) i= 0) /¢ it processor j is a member of the group =/
dependent_members |= MN(j]; /* add immediate ancestors &/
}
/+ {dependent_members = group ==> group is exact} ¢/

/* check for termination condition Q and inform new members if necessary =/
it ((do_commit_received == group) && (dependent_members == group))
state = COMMIT_PHASE2;
else if (dependent_meabers != group)
{ /* broadcast (dependent_members&~group) onto the bus s/
group = dependent_members;
}
} /% do_commit »/

Figure 3: Computing a dependency group
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1. Replace the recovery values of all the blocks whose active writers belong to the dependency

group by their current values and set the active writer field of those blocks to the nil value.
2. Break the dependencies by updating consequently the dependency matrix M.

3. Broadcast a commit_done vector on the bus conveying the identities of the processors
belonging to the dependency group so as to restart the processors waiting for the end of

the commit protocol.

As well as for the first phase of the commit protocol, these operations need to be atomic with
respect to processor accesses.

A straightforward algorithm would (i) perform those actions sequentially within the same
memory cycle of the last do.commit command, and (ii) would implement step (1) above by
repeatedly checking every block of the STM and copying the current value to its recovery coun-
terpart if necessary. Some comments are in order. First, all processors participating to the
commit protocol are blocked during the three steps above and other processors may also be
blocked during this period waiting for a bus grant. Second, the commit time is directly propor-
tional to the total size of the STM.

Many refinements of this algorithm can be made. We examine some of them below:

o Firstly, the time needed to perform step (1) above may be considered prohibitive and can

be improved in at least two ways:

1. We may maintain a linked list per processor chaining the memory blocks the processor
is the active writer to. The time needed to perform step (1) will then be proportional
to the number of blocks to be committed by traversing the list but at an extra storage

overhead in the STM, however.

2. Since the operations performed on each block are independent we may also envisage
to have step (1) performed by several parallel memory units hence bounding the time
needed for step (1) to that needed for a single unit.

¢ Secondly, we may envisage to free the bus and restart the processors waiting for the end
of the commit protocol at the beginning of the second phase before actual step (1) takes
place. This will reduce the blocking period of the processors but ensuring the atomicity
of the second phase would then be more difficult to implement.

Failure detection and recovery

We assume that each processor is fail-stop [Schneider 87). Fail-stop processors are mandatory
given the behaviour of the STM which does not detect incorrect processor accesses. This not a

severe constraint on the architecture for fail-stop processors are common practice in the field of
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hardware fault tolerance. In case of failure, the processor ideally will signal a failure interrupt
on the bus which will be caught by a live processor triggering then the do_rollback(i) command
of the STM where i denotes the processor that failed. If we assume that a processor may fail
without informing the outside, it would then be necessary to introduce a time-out mechanism
in the commit protocol so as to ensure that commitment is achieved within a finite time (the
time-out could be managed by the STM or the processors). In the whole text we take the former
assumption. We also assume that the other components of the architecture are fail-free.

Upon reception of the do_rollback(i) command (in the service state), the rollback group of
descendants of ¢ is computed recursively by the STM. In a manner similar to the second phase of
the commit protocol, the current values of the blocks modified by the processors members of the
group are substituted by the recovery values. A bit vector conveying the dependent processors
is broadcast onto the bus so that the dedicated logic attached to each processor may interrupt
its processor by a roll_back_done interrupt if needed. The dependencies are broken (precisely,
(Vi : i € rollback_group: MJi] = 1 << 1)), and the STM reenters the service state. Rolling
back a transaction is a simple protocol requiring a single phase compared to the commit protocol
which requires two phases.

A particular situation may occur if group commitment is in progress while rolling back is
demanded. Since a same processor may belong both to a rollback group and a commit group,
it is necessary to check for this at the end of the rollback procedure. This is briefly sketched
in the following. Members of the rollback group are removed from the commit group and the
do_commit_received set if any. If the remaining commit group is not empty, the do_commit

procedure of figure 3 is executed taking as argument one member of the commit group.

Summary of a processor activity and termination of the commit protocol

Similarly to the STM, the activity of a processor can be expressed by a finite state automaton
which is depicted in figure 4. The states names should be self explanatory.

The labelled transitions of the automaton have the following meanings:

(1)  The processor willing to commit triggers the commit protocol.

(1 bis) The processor receives a prepare_to_commit interrupt request from the STM.

(2)  The processor issues a do_commit command to the STM.

(3)  The processor receives a commit_done interrupt from the STM.

(4)  The processor receives a rollback.done interrupt from the STM.

(fail) The processor fails.

If a processor is in waiting state (within an uncertainty period [Bernstein 87]) after having
sent a do.commit command to the STM, the processor will eventually be awakened by a com-

mit_done interrupt or a rollback_done interrupt. The former case refers to the termination of
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Figure 4: Processor activity automaton

the commit protocol in case of no failures. Termination is obvious from figure 3 assuming that
a processor acknowledges a prepare_to.commit request within a finite time since the number of
processors is bounded. The latter case refers to failures which according to our assumptions re-
sult in the STM being informed of the situation so as to take the appropriate actions to rollback

and inform the processors.

3.2 Cache coherence protocols

In this section we assume that processors perform their memory accesses through private coherent
caches. The complexity of adding caches to the architecture compared to the previous section
resides in the dependency tracking work. We examine below the influence of the cache coherence
protocol on the dependency tracking.

A cache system is said to be coherent if every read of a memory location returns the value
most recently written to that location [Censier 78]. In a shared memory multiprocessor where
processors access shared memory through private caches, there can be potentially as many
copies of the same memory location as there are processors in the architecture. Inconsistencies
may occur when several processors access writable shared data. When a data is modified, its
modification has to be reflected into all the other caches which hold a copy of the data. The
unit of information managed by the caches is referred to as a line while a processor access refers
to a cell. Typically a cache line size ranges from 4 to 32 cells.

The protocols for avoiding cache inconsistencies are often referred to as cache coherence
protocols (the term cache consistency protocols can also be found in the litterature). Most
hardware cache coherence protocols proposed so far rely on the fact that bus traffic can be
monitored (snooped) by all caches. Snoopy caches maintain a tag field stored along with each
loaded line to indicate the line state in each cache. The tag field generally encodes whether

\
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the line is modified with respect to shared memory and whether the line is loaded into another
cache. Two main classes of snooping cache coherence protocols can be distinguished depending

upon the actions performed by caches when a shared line is modified:

o Whrite Invalidate protocols cause an invalidation message to be broadcast on the bus when-
ever a data potentially loaded into other caches is updated. All caches snoop these invali-
dation messages and invalidate their corresponding entry. A further read miss will cause

the up to date data to be loaded into the cache.

e Write Update protocols broadcast the new value whenever a data potentially loaded into
other caches is updated. All caches snoop the write and update their copy of the data
accordingly.

These protocols mainly differ by their relative hardware cost and performance in terms of bus
traffic generated to maintain coherence (see [Archibald 86) for a survey and performance eval-
uation of those protocols). For the sake of simplicity, we only examine in the following, the
Berkeley protocol representative of the write invalidate family.

The Berkeley coherence protocol [Katz 85] was originally designed for the SPUR workstation
at the University of California at Berkeley. This protocol introduces the notion of ownership
of a line, the owner being responsible for writing the line back to main memory as well as for
supplying directly the line to any other cache requesting it. In this protocol, the tag field of a

memory line of a given cache can be in one of the four following states (line states are described

according to the terminology found in [Sweazey 86]) :
1. Invalid (I). The cache copy is not up-to-date.

2. Non-modified Shared (S). The line has not been modified since it was loaded into this
cache. Other caches may also have a copy; one of these copies might be in state O while

others must be in state S.

3. Modified Exclusive (M). The line is modified with respect to shared memory. No other

copy exists. This cache is the owner of the line.

4. Modified Shared (O). The line is modified with respect to shared memory. Other caches
may have a copy (in state S). This cache is the owner of the line. (Hence the abbreviation

0.)

Figure 5 depicts the state transition diagram for the Berkeley protocol.
Recall that the STM maintains dependencies on blocks. In contrast to the previous section,
where the block granularity could be as small as a STM cell, one must notice that the STM

must record dependencies on at least a line size granularity since a line is the minimal unit of
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transfer on the bus. In the following, we examine the operations performed by the protocol and
the various actions taken by the STM so as to track the dependencies when a processor performs
respectively a read miss, a write hit, and a write miss. (Notice that, a read hit does not generate

any action on the bus and thus is not handled by the protocol.)

s,
e,
.
.,
Y
s,

write
write miss

write hit

read miss

Processor induced transition —————
Bus induced transition ~ TTttTteTtett "~

Figure 5: Berkeley state transition diagram

Processor P; performs a Read Miss If there exists a cache with a copy of the line in state
M or O, this cache must supply a copy of the line to the requesting cache and set its state
to O. Otherwise the line comes from shared memory. In both cases, the line is loaded in

state S in-the requesting cache.

If the target block containing the line has an active writer P;, a P; — P; dependency is
created. As far as dependency management is concerned, no distinction is made whether

the requested line comes from another cache or from the STM.

Processor P; performs a Write Hit If the line is already in state M, the write proceeds
without delay. Otherwiée, (in state S or O) an invalidation signal must be sent on the bus
(see figure 5). All other caches invalidate their copy upon matching the line address. The
line state is changed to M in the originating cache.
The invalidation signal is snooped by the STM. If the corresponding block has no active
writer, P; becomes its active writer. Otherwise, let P; be the active writer, a P; & P

dependency is created and P; becomes the active writer of the block.

Processor P, performs a Write Miss Like a read miss, the line comes from its owner or
from shared memory. All other caches invalidate their copy if any. The line is loaded in
state M.
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The STM snoops the data transfer if the line comes from another cache. As above, if
the corresponding block has no active writer, P; becomes the active writer; otherwise, a
P; &2 P; dependency is created and P; becomes the active writer of the block. Since
cache lines can contain several processor addressable cells and the line is now cached by
P; in state M, the STM cannot detect a further read on a different cell of the line because
it would not generate any bus traffic (see figure 5). So, a P; — P; dependency is also
created to prevent the case in which a cell previously modified by P; would be locally read
by P;. In other words, the STM adopts a conservative approach by creating dependencies
which are not strictly required by the protocol to preserve the coherence of processor

checkpoints.

It should be noted that the STM must keep pace with the information exchange rate on the
bus due to the cache coherence protocol. If this were not the case, the STM might miss some
dependencies to be recorded. Satisfying such a requirement typically depends on the detailed
specifications and timings of the bus and caches and will not be examined here in greater detail.
Similar principles to those discussed above in the framework of Write Invalidate protocols also
apply to Write Update protocols such as the Firefly protocol [Thacker 88} which we do not detail
here for space reasons.

In summary, no special purpose caches or coherence protocols are needed in the architecture,
which can accomodate standard cache behaviour; the STM performing dependency tracking by
snooping the bus traffic. This is a notable difference with other proposals for fault tolerant
shared memory multiprocessors [Bernstein 88, Wu 90, Ahmed 90] as discussed in section 5.

The termination of a transaction when caches are present is similar to the situation where no
caches are present. What is required is that when a participant processor initiates commitment
or acknowledges a prepare_to_commit request from the STM, the processor flushes its cache.
Similarly, a transaction roll back must cause a cache invalidation. So far, we have implicitly
assumed a single level cache hierarchy. Extension to a primary on-chip cache and secondary
cache hierarchy is straightforward since a primary write back cache can also be flushed.

As a final comment, it should be noted that cache flushing might be a resource (bus) con-
suming operation. This is one of the reasons why we strived for designing a fine-grained recovery
protocol in section 2 avoiding to keep track of unnecessary dependencies so as to diminish the
cost of commitment. Notice for instance that the simple strategy of committing all processors
(global checkpointing) would not be acceptable from a performance point of view in general al-
though this strategy has the net advantage of avoiding the need of keeping track of dependencies
all together.
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3.3 Performance evaluation

In order to evaluate the performance of the architecture discussed above, a simulation model has
been built. The model allows to vary many parameters such as the cache associativity degree and
size, the bus and memory timing or the cache coherence protocol. The simulator uses memory
address traces produced by instrumented shared memory applications executing concurrently to
the simulation. Instrumentation of object code is done at compile time. In order to evaluate the
overhead induced by the backward recovery protocol in the non-failure case, performance figures
are compared with those obtained by the same architecture when standard shared memory with
no recovery capability is used.

Our results reveal that the performance degradation is reasonable and depends on (i) the
committing frequency (ii) the time needed by the STM to perform the second phase of the com-
mit protocol, and (iii) the amount of bus traffic generated by each application. For instance,
initial results with SPLASH scientific application package [Singh 91] show that the overhead
induced by the recovery protocol would be less than 10 percent under the Berkeley cache coher-
ence protocol with a commit frequency of 1000 commit per second. The detailed results will be

published elsewhere.

3.4 Comments

While the physical implementation of the STM board is not the subject of this paper, past
experience in the actual building of stable storage boards [Banatre 88, Banatre 91b] makes us
confident that this can be achieved at a reasonable cost.

In the previous sections, we have been implicitly assuming that the STM was composed of
a single centralized board. In some environments, it might be necessary to scale the memory
capacity of the architecture by adding multiple STM boards to the architecture so as to over-
come the meinory capacity limit of a single STM board. Another advantage of having multiple
memory modules is to increase memory bandwitdh by using a split transaction bus which can
handle concurrent memory requests on multiple modules. The implementation of the two-phase

distributed commit protocol in this case is a matter for further research.

4 Operating system issues

The role of an operating system is to control the resources of the machine and to provide the
base upon which the application programs can be written. Two basic structuring principles are
applied in modern operating systems. First, the system may be organized as a hierarchy of
layers, each one constructed upon the one below it. Second, system services may be provided as

a set of communicating processes. To request a service, a process (referred to as a client) sends

21



a request to a server process which then does the work and sends back the answer.
Both of these principles are applied in the following figure which depicts the structure pro-

posed for the operating system controlling the machine described in the last section. Level Lg

User
L3
L2 Kernel
L1 Seed
Lo : Hardware

Figure 6: Structure of the operating system

denotes the hardware (section 3). Level L, referred to as the seed deals with the basic pro-
cess management. Above the seed, the kernel services (L) can then be structured as a set of
communicating processes. Finally, level L3 deals with users which may request the services of
the kernel from their application programs. In the following, we discuss the design principles of
these layers with particular emphasis on recoverability but first consider the recovery provision

for the basic model of computation as introduced in section 2.

4.1 Providing recoverability for the basic model of computation

Recall that in the basic model of computation, a process may access a local state (process
registers) and a shared state which we assume to be represented in the STM. We examine how
recoverability can be provided for this model considering the simplifying case where a separate
processor would be dedicated to each process. (The realistic case where the multiprocessor may
support the execution of an arbitrary number of processes competing for a limited number of
available processors is examined further.)

Recoverability of a system of communicating processes responding to the basic model is
simply provided by mapping a process transaction to a processor transaction. When a new
process transaction is started (following an explicit request of the process or an implicit action
of the recovery protocol), the local state of the process (the registers of the processor executing
the process) is written into memory, the cache if any is flushed into the STM, and the current
(active) processor transaction associated to the processor executing the process is committed.
The processor begins a new processor transaction.

The facilities offered by the STM are almost sufficient themselves for implementing correctly
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the model of computation defined previously and is very adequate for tolerance to hardware
faults (processor failures). When a processor failure occurs, the current transaction is rolled back
and the process can safely restart its computation on another processor after having loaded the
process local state from the STM into the registers of the new processor allocated to the process.
The set of processors forced to roll back their current transaction due to the dependency protocol
must also load their registers with the values safely stored in the STM on the last transaction
commitment before pursuing forward activity. The other processors are not affected.

In summary, the fault tolerance mechanisms of the STM are (almost) sufficient to cope fully
with processor failures so as to make these failures transparent to the processes obeying the
basic model of computation.

Our conjecture is that this is also the case for any abstract model of computation that can
be mapped onto this basic model. A rough argument of this (conjectured) property, based on
the abstract data type theory might be as follows. Consider a program P responding to an
abstract model of computation, starting in an initial abstract state s and terminating in a final
abstract state f denoted P(s) = f. Assume that P is mapped to a program Py responding to
the basic model of computation such that Po(so) = fo; So and fo denoting respectively the initial
and final concrete states of P,. Let abs be the abstraction function from the concrete domain
onto the abstract domain. Assume that a correct mapping satisfies the following predicate:
((Po(80) = fo A P(38) = f A abs(sg) = 8) = abs(fo) = f). Should a component process of Py be
rolled back due to a processor failure, the recovery protocol constructs a program Py equivalent
to Py (section 2) leading to the same final concrete state fp. It is then easy to see that the
abstract program P is not influenced by the recovery actions since the abstract final state of
P will be the same. (Clearly, a more formal proof of this property would be desirable but is
not tackled in this paper.) This property will be particularly relevant in this section where we
consider the implementation of operating system layers as exemplified by the implementation of

the basic synchronisation primitives discussed in section 4.2.2.

4.2 The seed

The role of the seed is to deal with the basic process management and to provide higher layers
with a useful model of communicating sequential processes. In addition to the basic model of
computation introduced in section 2, we require that (i) the seed offers abstract synchronisation
and communication primitives, and (ii) allows for the dynamic creation and deletion of pro-
cesses. The seed hides machine-dependent features (e.g. interrupt handling) and thus provides
a machine independent interface which facilitates the portability of kernel services. The bulk of
memory management is not considered as being part of the seed but as a kernel service running
at a higher layer. This is discussed in section 4.4.

Conceptually, the seed layer has many similarities with micro-kernels that have been proposed
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in the operating system field such as Chorus [Rozier 88] or Mach [Baron 88] and could thus be
termed micro-kernel. Since our interest is in design principles, we will not attempt, however, to

compare in detail the seed, as discussed in the following, to existing micro-kernels.

4.2.1 Virtualization of the processor resource

Dedicating a physical processor to each process (as discussed previously) is not realistic in a
classical multiprocessor architecture where the number of available processors is limited, and
therefore our first step is to virtualize this resource. A virtual processor is allocated to each
process.

Time sharing is a well known technique to virtualize the processor resource. On a monopro-
cessor, the physical processor is allocated to each virtual processor for a time quantum. Virtual
processors may be managed by a short term scheduler according to a round robin discipline.
This same technique easily extends to a multiprocessor. We assume, as it is generally the case,
that a virtual processor may be mapped to different physical processors during its activity.

The most straightforward implementation of process recoverability in this context is to con-
ceal the scheduling activity and provide the notion of virtual processor transaction. A single ac-
tive virtual transaction is associated to each virtual processor; a process transaction is mapped
to a virtual processor transaction. In the following, the word transaction (alone) stands for
virtual processor transaction.

Consider now the scheduler design in greater detail. We assume that a zone of the STM
is allocated to each process for stacking private data. We also assume that once a process
has consumed its time quantum on a processor, some clock device sends an interrupt to the
processor. This has the effect to copy the local state of the process on top of its private stack,
and triggers the execution of the scheduler. Symmetrically, returning from the scheduler has
the effect to pop the local state at the top of the current stack into the processor’s registers. We
assume that a contezt is allocated at a fixed address in the STM for containing the process local
state together with a link field used for list management. An array active such that active[k]
refers to the context of the active process on processor k is maintained by the scheduler. A single
list ready protected by a global lock chains the contexts of the processes that are not active.
When the scheduler is entered by processor k in response to the event that the active process on
processor k has consumed its time slice, the active process is descheduled and chained at the tail
of the ready list to the benefit of the head process of the ready list which is removed from the list
and made active. In other words, the set of processes contained in the system are the processes
pointed to by the active array and those chained in the ready list, this set is maintained as an
invariant by the scheduler if we ignore the dynamic creation/deletion of processes.

Without further constraints on scheduling, a processor transaction will embed activities

belonging to distinct transactions, and a transaction will be mapped to several processor trans-
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actions. However, for the sake of simplicity of this presentation, we propose to commit a trans-
action each time a virtual processor is allocated a physical processor by the scheduler. The basic

steps performed by the scheduler entered on processor k by process p are described in figure 7.

1. Save the registers’ values residing on top of the stack of p into the context of p.

2. Commit the current processor transaction.

3. {active[k) = p and ready = ¢ + X'} Schedule a new process ¢ {active[k] = ¢ and ready = X + p}.
4. Begin a processor transaction.

5. Install the context of ¢ on top of the stack of g.

6. Return from the scheduler.

Figure 7: The short-term scheduler: specifications

Consider the treatment of a failure of processor k. For now, we assume that this event cannot
occur while performing the scheduling sequence above (this hypothesis will be relaxed further).
Let p; denote a processor member of the set of the rolled back processors due to the failure of
processor k. This set is automatically determined by the hardware recovery protocol. Basically,

recovering from a processor failure boils down to the following actions:

1. The context pointed to by active[p;] must be loaded into the registers of processor p;.
Alternatively, this context could be inserted into the ready list and the dispatching of a

new process be done on p;. This action can be performed by processor p; itself.

2. The process which context is pointed to by active[k] must be inserted into the ready list.
This action must be performed by a processor elected out of the remaining live processors
(we do not detail here such an algorithm). The process will then be dispatched on another
live processor by the scheduler.

One can notice that the failure of a processor does not affect all the processors of the machine
but only those that are dependent on the failing one. Yet, almost all the work is directly achieved
by hardware.

Logically, the data structures maintained by the scheduler itself are not part of the shared
state of a process given our basic model of computation. How should recoverability provided
for those objects? A first possibility is to make those data structures not implicitly hardware
recoverable, recoverability being then achieved by explicit forward recovery [Randell 78]. A
second possibility is to make those structures also implicitly hardware (backward) recoverable.
We illustrate the second possibility in the algorithm of figure 8.

Consider now the case where processor k may fail while performing the scheduling sequence
(3.1-3.5). Fortunately, this is equivalent to the situation where the failure occurs outside of
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1) pop(stack(activelk]], context[active[k]])

(2) NewProcessorTransaction

(3.1)test: test_and_set (val, GlobalLock)

(3.2) if val <> O then goto test fi

(3.3) PutTail (ready, activel[k])

(3.4) RemoveHead (ready, active(k])

(3.5) GlobalLock := 0

(4) NewProcessorTransaction

(5) push(atack[activelk]], context[activelk]])
(6) return

Figure 8: The short-term scheduler: implementation

the scheduler (discussed above) if we can guarantee that the section (3.1-3.5) is an atomic ac-
tion. Bracketing this compound operation within the primitives NewProcessorTransaction is
not sufficient to ensure the atomicity property since implicit commitments due to the recovery
protocol may occur while performing the action. However, in this particular case, within the
seed itself where the programmer has a control over the implicit commitments performed by the
recovery protocol, a cheap way to ensure the atomicity of the above action is to differ the treat-
ment of any commit request (received from the outside) until the NewProcessorTransaction
primitive is encountered. Naturally, the differing period should be short, which is the case here,
since some processors are blocked waiting for the end of the commit protocol.

Now, we can also observe that a commit request cannot happen while performing section (3.1-
3.5) since the processor has committed before entering this section which matches a processor
critical section. By definition, this section can only be entered by a single processor at a time,
and the processor within the section cannot be a potential recovery initiator of another processor
willing to commit.

As a final remark, notice that the NewProcessorTransaction primitive of figure 8 does not
need triggering a register flush but only a cache flush (if any) followed by a call to the do_commit
command of the STM.

4.2.2 Basic synchronisation primitives

We assume that processes can exchange messages through ports. To simplify the presentation,
we assume that (i) a port may retain the memory of an arbitrary number of messages, and (ii)
a message may contain a variable size collection of data, although a particular implementation
may restrict these hypothesis. Sending a message m to a port p (send (p, m)) is assumed to be
an asynchronous operation while receiving a message from a port (receive (p, m)) is blocking if

the port is empty.
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Recoverability for this model of computation can be provided in almost the same manner as
explained for the basic model. What is required is that a dependency between a process sending
a message and the process receiving it later on must be recorded. But, as we are assuming that
ports are represented in the STM, the hardware will automatically does this since sending and
receiving a message are operations which will access common STM data.

It should be noted that the default dependency tracking policy provided by the hardware
may lead to more dependencies than strictly required by the model of computation due to the
access to the concrete data representing the abstract model of computation. For performance
reasons, one may be willing to have an explicit control on the dependencies in order to avoid
some "overhead” dependencies that might occur due to the default policy. This suggests that
the STM should provide the possibility of escaping the default policy to the benefit of an explicit
programmed dependency tracking policy. Inhibiting the default policy could be achieved by a
special STM primitive (this primitive should be reserved to the priviledged mode of operation
of the processors for protection purposes).

We will not go into implementation details of the basic synchronisation primitives here but
just mention that the scheduler algorithm discussed above is a sound basis upon which to build

them.

4.3 Standard vs non-standard processes

So far, we have been considering that a process may access a local state (process registers), a
shared state in the STM, and ports which are assumed to be represented in the STM. Those
objects have the particularity to be made implicitly recoverable by hardware. Considering a
realistic architecture, there are clearly other objects to be controlled by an operating system
for which recoverability might not be implicitly hardware provided (ex. i/o devices). A process
which accesses a local state and implicitly hardware recoverable objects will be referred to as
a standard process while a process which accesses not implicitly hardware recoverable objects
will be referred to as a non-standard process. Given the previous distinction, we may expect the
kernel services to be programmed as a set of standard and non-standard communicating pro-
cesses. User processes should be standard in the sense that recoverability should be transparent
to them.

Programming a non-standard server process will depend on the type of unrecoverable objects
the process is dealing with. However, it is interesting to propose some programming guidelines.

These are discussed in the following.
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General principles for non-standard servers

If each service of a server is programmed as a restartable operation O, servicing a request
despite a processor failure can be obtained in the following way [Lampson 81]: (i) save the
server’s context in stable storage, (ii) perform O, and (iii) erase the server’s context from stable
storage. If a processor failure occurs while performing O, the process will resume after (i) and
will perform O again, the resulting execution sequence is equivalent to a single execution of O
by definition of a restartable action.

Given our model of computation, we may think to embed the server’s operation O within
two NewProcessTransaction primitives so as to ensure service despite failures. There are two
aspects to take into account, however. First, recall from section 2 that such a region may be
dynamically broken into multiple transactions due to the implicit commitments performed by
the recovery protocol. Notice that consequently, the restartable property if any of a service
does not lead immediately to a solution in contrast to above. Second, O will in general be a
compound action made of both recoverable and non-recoverable actions. The first situation is
particularly embarassing so that we may think of providing explicit kernel transactions (or
seed transactions) which would be fully under the programmer’s control. This approach is taken
in [Banitre 91a] for instance and facilitates the programmer’s work who has to deal only with
the recoverability provision of the non-recoverable objects used within a kernel transaction.
Providing kernel transactions requires much work to be done and thus we wish to dispense
ourselves from implementing such a mechanism. Rather, we envisage to use only the properties
of the services to be programmed together with the tools discussed below to program (the limited
number of) non-standard servers.

The provision of some limited amount of non-recoverable memory by the architecture might
be useful for programming non-standard servers so as to record the state of objects for which
explicit recovery is needed. (By definition, the contents of a (private) non-recoverable memory
cell used within a process transaction is not restored should the current process transaction be
rolled back.)

In many cases, a non-standard process, which current transaction is rolled-back, will wish to
perform exceptional work before carrying service. The seed provides an exceptional mechanism
RollBack At(address) for that purpose meaning that the flow of control of the process will be
resumed at address should the current process transaction be rolled-back. Such a mechanism
may be triggered in different ways by the calling process. First, Roll BackAt might be provided
as an explicit seed primitive. Second, the roll-back address might be provided as an explicit ex-
ceptional continuation [Livercy 78] argument to each seed primitive. Third, if the programming
language offers a mechanism for handling exceptions, it is appropriate to map the roll-back of a
process transaction onto an exception which may then be handled according to the rules defined

by the language.
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A non-standard server may explicitly commit its current transaction. The seed offers the
primitive New ProcessTransaction(p) for that purpose where p denotes a process. Basically, a
call to this primitive will execute a code sequence similar to the scheduler sequence depicted in

figure 8.

Communication issues

A client process requests the service of a server by sending its request on the server port.
Conversely, the server replies to the request by sending its reply on the client port. As far
as communications are concerned, it is clear that communications between standard processes
(inside the standard domain) themselves do not raise difficulties as explained previously. But,
communications with non-standard processes may obey a particular protocol which we present
in the following.

In order to facilitate the provision of fault tolerance measures within a non-standard server,
the server may require that the client commits its request before it can be got by the server. In
other words, the client’s request is an fntention [Lampson 81] that has to be performed by the
server. The underlying reason is that in general it will be easier for a non-standard server to
restart the processing of a request that must be performed than to be possibly obliged to cancel
the processing of a request (an orphan execution) retracted by the client should a client’s roll
back occur. Notice that in the general case, a client’s call will give rise to nested calls which
to be cancelled would require cancelling recursively all orphan executions raised by the call.
Communications with non-standard processes is likely to occur very often and therefore a cheap
implementation of the previous protocol must be done. This dictates that, the protocol must
be implemented at the bottom layer (the seed) so as to use the hardware facilities in the most

efficient way.

Summary

In summary, the following guidelines for programming non-standard servers can be proposed.

e A non-standard server may make use of non-recoverable memory in order to record the

recovery data of some objects.

e A non-standard server may provide a handler for dealing with a roll back of its current

process transaction triggered by the recovery protocol due to a processor failure.

e A non-standard server may explicitly commit its current process transaction. (Recall
however that a process has not a full control over its transactions since the recovery

protocol may itself implicitly commit its current transaction.)
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e A non-standard server may obey to a particular communication protocol so as to facilitate

the provision of its fault tolerance measures.

The application of these techniques will typically depend on the type of unrecoverable objects
to be dealt with and is left to the creativity of the system programmer. Only the experience

will reveal if these principles are sufficient in practice.

4.4 Memory management

Memory management is a main and complex component in any operating system. Our aim,
in this section, is not to describe in detail the intricacies of sophisticated virtual memory man-
agement schemes (this has been discussed elsewhere [Krakowiak 85]) but to attempt isolate the
new problems that virtual memory management may raise as far as fault tolerance is concerned.
For the purpose of illustration, we introduce below the main features of a memory management
scheme. (A particular implementation may not correspond exactly to this example, but this
framework is adequate for us to illustrate the issues discussed.)

We assume that that a shared segmented virtual space is provided to processes. A pro-
cess references a word within a segment by a couple < Segmentld, SegmentO f fset > where
SegmentO f fset denotes the offset from the beginning of the segment. A segment is a linear
address space. For the purpose of physical memory management, each segment is being paged.
A SegmentO f fset gets decomposed into a couple < SegmentPageNo, PageO f fset >. The
main memory is divided into memory blocks, each block being capable to hold a page. We
assume that a secondary storage memory is available for extending the capacity of the main
memory. A segment page may then be resident in main memory or not. In the former case, we
assume that the page has a single copy in main memory. In the latter case, the page is resident
on secondary storage and can be brought into main memory if necessary. We assume a perfect
model for secondary storage that is writing a block is assumed to end up correctly and reading
a block is assumed to return the correct value of the last writing to the block.

The model of computation provided above the memory management (residing on top of the
seed) is identical to the one provided by the seed itself except that now dependencies between
processes must be (logically) tracked on the virtual adresses referenced by the communicating
processes. Ideally, we would like the STM hardware still providing the necessary abstraction
although the STM is only aware of the physical accesses. It is clear that as long as a segment
page is not relocated, the STM provides the necessary abstraction since a segment page can have
only a single copy in physical memory. If the relocation activity were only involving standard
processes, we may also convince ourselves that the STM will achieve the necessary abstraction. A
dependency will be recorded between a process accessing a page p before relocation and a process

accessing p after relocation since the relocation activity itself must access both physical locations.
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Now, as it will be the case in a realistic environment, paging may involve non-standard processes.
In that case, (without further constraints and assumptions), the STM cannot by itself provide
the necessary abstraction. Consider, for instance, the case where swapping out and swapping
in pages are devoted to separate non-standard server processes. Logically, swapping in a given
page is dependent of the last swapping out of the page, but without further assumptions, the
STM will not record this dependency since these activities do not operate within the standard
domain. '

There are several possibilities to overcome this difficulty. First, swapping out and swapping in
might be programmed so as to access explicitly common STM objects for which the hardware will
implicitly track the dependencies. Second, some commitments might be forced when relocation
is performed s0 as to ensure that within a group of dependent process transactions, a given
virtual access cannot be mapped to distinct physical locations.

Now, let us turn our attention to process transaction commitment. A simplifying principle
might be to consider that secondary storage contains only committed data since then rolling
back a transaction will not affect the secondary storage. This principle does not appear very
restrictive for if a page is not committed, it is likely to be part of the working set of a process
anyway, and therefore should better reside in main memory. For performance reasons, we do
not wish commitment involve any secondary storage operation either.

Typically, the virtual memory management will reside above the seed layer except for some
small hardware dependent parts such as handling the page fault trap interrupt for instance. Now,
virtual memory management may not be always required in real-time applications for instance.
In that case, we may envisage the simplified memory management services to be provided by
the seed itself.

The purpose of this section was to discuss some main problems that memory management
may raise as far as fault tolerance is concerned. We are aware not having solved entirely these
problems which would require further detailed studies. For instance, an idea which we intend to
investigate is whether part of the work of dependency tracking could not be shifted at the level

of the page tables instead of the memory cells themselves when virtual memory is implemented.

5 Related works

Several proposals for making a computing system tolerant to faults have been published [Lee 90].
In this section, we review some of them with particular emphasis on tolerance to processor
failures.

The Stratus system [Wilson 85, Harrison 87] has adopted the approach of using hardware
redundancy as the main strategy for achieving fault tolerance. A Cpu is located on an individual

circuit board and contains two copies which operate synchronously together. This mechanism is
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similar to our proposal which provides fail-stop processors. However, in Stratus, every board also
runs in a duplex fashion so that in the event of a board failure, the redundant board can continue
processing without interruption. Consequently, each program is actually executed simultane-
ously by four Cpu’s. This replication technique is also applied to other critical components
(memory, I/O controllers ...).

Another method for achieving fault tolerance in message based loosely coupled architectures
is based on the process — pair scheme. Every process running in the system is backed-up
on another processor. A primary process executes the main computation and is periodically
synchronised with an inactive back-up process that holds checkpoints which are process states
from which computation can be safely restarted if the processor running the primary fails.
Tandem [Bartlett 87] and the recent Targon/32 system [Borg 89], for instance, use this strategy.
This scheme has also been integrated into the MACH micro-kernel [Babaoglu 90]. It should be
noted that with this strategy, much of the fault tolerance is implemented by software as opposed
to the previous strategy which is based on hardware redundancy.

The initial proposal of stable storage is described in the seminal paper [Lampson 81]. In this
reference, a disk stable memory is proposed. A stable block is represented by two physical images
residing on separate disks. Writing a block is a unitary u_atomic operation despite failures and
causes the successive writing of both block images. Reading a block is also a unitary u_atomic
operation. (Further details can be found in [Lampson 81).) Our proposal is different in many
respects from that proposal. First, the access speed to the stable memory is improved due to
the fact that the STM contents are directly addressable by the processors. Second, the STM
offers the u_atomicity property of transactions which may embed several object accesses. (Both
of these properties are also provided by the stable storage described in [Banitre 88].) Third,
the STM provides recoverability to passive objects but also to process communications in a
straightforward manner as explained previously.

Yet, another method, which we examine in greater detail since it is closer to our approach,
is illustrated by the Sequoia multiprocessor machine [Bernstein 88]. In the Sequoia machine,
each processor is associated with a blocking cache allowing multiple writes on a cache line before
main memory is updated. No replacement of modified lines is made within the cache until it is
flushed, hence the blocking cache term. Each processor performs memory updates locally within
its cache and periodically checkpoints its state by flushing the cache and its internal registers to
main memory. (A cache flush may be initiated by the cache controller if a dirty line needs to be
replaced.) Modified data is flushed into two distinct memory modules under processor controls
in order to handle memory and processor failures.

To avoid potential rollback propagation, the Sequoia architecture prohibits direct data shar-
ing between processors. Shared data structures must be accessed within explicit processor

critical sections protected by test-and-set locks. This is a notable difference with our proposal
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which implicitly tracks dependency when sharing occurs. Since direct data sharing is prohibited
in Sequoia, a processor willing to modify shared data structures first invalidates the contents of
its cache after acquiring the lock in order to fetch upto date data, performs the update locally,
checkpoints modifications by flushing its cache so that the updated data becomes accessible to
other processors and last releases the lock.

Another scheme for fault tolerant shared memory multiprocessors is presented in [Wu 90]. In
this approach, checkpoints are stored within the cache associated with each processor. Shared
memory and the caches are assumed to be reliable. Only transient processor failures are tol-
erated. With this assumption, it is not necessary to flush the caches to shared memory when
processors are checkpointed. A processor p is checkpointed whenever a cache line modified since
the last checkpoint has to be written back to shared memory, that is on cache miss. To keep
checkpoints coherent and avoid potential rollback propagation, processor p is also checkpointed
whenever another processor reads a line modified within the cache of processor p.

An extension to this scheme was made in [Ahmed 90]. In this approach, a limited form
of dependency tracking is proposed: each cache maintains a single flag bit indicating if an
interaction has occured with some other processors during its current checkpointing interval.
Whenever a processor checkpoints or rolls back, this event is snooped by other caches which
take the appropriate action.

This section was an attempt to review some of the main works related to the field of hardware

fault tolerance. Clearly, this survey is not complete; this area being a very active research field.

6 The FASST project

Some of the ideas discussed in this paper are currently being explored in an ESPRIT project
called FASST (Fault-tolerant Architecture with Stable Storage Technology) [FASST 92]. FASST
involves several European partners both from the industry and universities. The project started
in 1991 and aims at (i) carrying research works in the field of fault tolerance, and (ii) building
an industrial fault tolerant prototype system. The structure of the prototype system is depicted
in figure 9. We now examine each of the prototype system layers in turn.

The hardware level is a shared memory multiprocessor machine involving multiple compo-
nents communicating on the bus. Processors are fail-stop. The shared memory of the multipro-
cessor would basically offer the same functionality as the Stable Transactional Memory described
in section 3. The hardware configuration will be completed by i/o devices.

The u-kernel layer will control this hardware. The u-kernel approach is in the case of FASST
very appropriate as discussed in the following.

First, this will facilitate the provision of multiple run-time supports at the operating system

layer such as a transactional support system (TSS) and a general-purpose kernel such as the
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Figure 9: Structure of a FASST system

UNIX kernel (USK).

Second, ideally, the u-kernel in collaboration with the hardware services would mask any
single point of hardware failure that might occur at the hardware level thereby relieving the
upper layers to cope with them.

At the application layer, several important application domains have been identified. It is
planned to evaluate a specific application for each of them. Fault tolerance mechanisms should
be transparent to the application layer so that applications can take full adavantage of the fault

tolerant features provided by the architecture without any additional programming effort.
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