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Analytic Analysis of Algorithms

Philippe FLAJOLET®
Algorithms Project
INRIA, Rocquencourt
F-78150 Le Chesnay (France)

Abstract. The average case analysis of algorithms can avail itself of the devel-
opment of synthetic methods in combinatorial enumerations and in asymptotic
analysis. Symbolic methods in combinatorial analysis permit to express directly
the counting generating functions of wide classes of combinatorial structures.
Asymptotic methods based on complex analysis permit to extract directly co-
efficients of structurally complicated generating functions without a need for
explicit coefficient expansions.

Three major groups of problems relative to algebraic equations, differential
equations, and iteration are presented. The range of applications includes for-
mal languages, tree enumerations, comparison-based searching and sorting,
digital structures, hashing and occupancy problems.

These analytic approaches allow an abstract discussion of asymptotic proper-
ties of combinatorial structures and schemas while opening the way for auto-
matic analysis of whole classes of combinatorial algorithms.

Introduction

In elementary cases, the average case analysis of a combinatorial algorithm follows
a simple pattern. First, set up recurrences depending upon the structure of the al-
gorithm that relate the complexity on the collection of all inputs of size n to the
complexity on inputs of a smaller size k¥ < n. Next solve the recurrences explicitly by
algebraic manipulations, whenever possible. Conclude by an asymptotic evaluation
often based on basic real analysis, for instance approximating discrete sums by inte-
grals. These classical techniques are reviewed for instance in [24, 46, 51, 54, 55, 79].

In this section, we re-examine the analysis of Quicksort. First we recall the usual
analysis by means of recurrences. Next, we sketch an alternate derivation by means
of generating functions. This provides a simple illustration of the leading theme of
this paper: Generating functions are central to combinatorial enumerations and the
average—case analysis of algorithms.

Part I deals with general methods. Various theories have been developed that fur-
nish direct correspondences between combinatorial structures and generating func-
tions, as explained in Section 1. Asymptotic methods based on complex analysis
discussed in Section 2, then permit to extract coefficients directly from the generat-
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ing function itself. In this way, wide classes of problems receive satisfactory solutions
in asymptotic form.

Part II presents a panorama of some recent investigations where generating func-
tions have been instrumental in arriving at results barely accessible to elementary
methods. Three major groups of problems relating to algebraic equations, differential
equations, and functional equations are presented. Applications in the average—case
analysis of algorithms concern a variety of domains: formal languages, tree enu-
merations, comparison based searching and sorting, digital structures, hashing and
occupancy.

Part 111 surveys some recent approaches to the analysis of combinatorial schemas,
as well as related studies in the automated analysis of some well defined classes of
combinatorial problems.

Quicksort and recurrences. The traditional example of Quicksort, the sorting
algorithm used in the Unix system, is now discussed. The structure of the algorithm
(see [70, Chap. 9]) is well known.

Sorting n elements reduces partioning the n elements with respect to the first
element in the file and then sorting the two resulting subgroups of sizes K and
n—1-K, with K depending on the actual data input to the algorithm. The structure
of the algorithm is as follows:

procedure QuickSort(l,r : integer);
{sorts the part T[l..r] of a global array T[1..nl}
if r>1 then
i:=Partition(l,r);
{all] is to be placed at position i}
Quicksort(l,i-1);
Quicksort(i+1,r)

When applied to data in random order, i.e. to a random permutation of size
n, the random variable K assumes each of its possible values K € [0..n — 1] with
equal likelihood. Let Q, be the expected number of comparisons of Quicksort when
applied to n random data. The recurrence is based on the recursive structure of the

algorithm,
n-1

@n =Pn+z7rn,k[Qk+Qn—l—k]- (1)
k=0

There 7, i is the probability that the partitioning stage splits the file into two subfiles
of sizes k and n — 1 — k, so that =, ; = % because of our earlier observation on the
random variable K. The quantity p, represents a ‘toll’ incurred at each recursive
call which is the cost (measured in the number of comparisons) for partitioning, and
with some standard implementations, we may take p, = (n — 1). Knuth [55, p. 120]
explains how to manipulate such recurrences. Reducing summations, and solving a
linear equation of order 1, we arrive at an exact solution,

Qn=2n+1DHop—4n—-2  with Ho=3 .
j=17



Approximating the discrete sum by an integral,

produces the asymptotic form of the cost,
Qn ~ 2nlogn. (2)

In this way, Quicksort is proved to be about 40% off from the information theo-
retic optimum of n log, n, which is the final conclusion sought.

Quicksort and generating functions. There is an alternative approach to this
problem which in such a simple case seems to be a mere variant of the analysis, but
nonetheless reveals some important features of the approaches we plan to discuss
here.

Introduce the generating function (GF) of the mean values

Q(z) =) _ @nz", (3)
n=0

and set similarly p(2) = 3_,50Pn2". Then, the equation corresponding to the recur-
rence (1) is -

z dt
) =r)+2 [ Q1T @)
(This could be checked by multiplying in Eq. (1) by z" and summing over n, em-

ploying the usual rules of generating function manipulations [44].) The differential
equation, corresponding to (4),

d _d Q(z)
EQ(Z) = EP(Z) + 21 '
is solved by the usual techniques,
- [ 12
Qz) = L /0 7 {p(t)} (1 —t)*dt. (5)

This integral transform expresses the global cost of the algorithm in terms of the
local cost incurred at each recursive call. In the particular case of Quicksort, this
leads to the solution: we have p(z) = 22/(1 — z)?, and, carrying out the integration,

log(1 — z)~! 2z

Q) =2 - s (®)

If we expand Q(z), we retrieve again the form of Q, that involves the harmonic
numbers.

The solution expressed by (6) can be used to produce direct asymptotic results
from the generating function itself, without any need for explicit expansions. The



key observation is that it suffices to examine the generating function locally near
its singularity at z = 1 and apply systematic translation mechanisms described in
Section 2. Letting [2"]f(z) denote the coefficient of z" in the generating function
f(2), a single rule

[z"] a= )z(log(l )" ~nlogn

will give us the 2nlogn result directly.

The generating function approach is the one that leads to higher level general-
izations applicable to more complicated algorithms and cost measures.

First, in a suitable framework, the structure of the equation is seen to be a
direct translation of the specification of the algorithm, and we discuss such aspects
in Section 1. The rules exemplified here concern sequential execution and recursive
descent into smaller subfiles (with the suitable probability distribution 7, x = 1/n).
Informally, the two rules are

Sequential execution: F; 6 = F(z)+ G(2)
dt
1-t

Such correspondences cover a wide range of problems: Generating funclions of wide
classes of combinatorial structures and algorithms can be determined from formal
spectfications. The character of these correspondences is systematic enough that we
may even use computer algebra programmes to compute the generating function
equations automatically, a fact that is explored in Section 1 and further discussed
in Part 111

Next, the translation from the local singular behaviour of a function to the asymp-
totics of its coefficients is a powerful mechanism. General rules valid under simple
conditions (analytic continuation) apply, like for instance, the relation

Recursive descent with F = / F(t)

-

=2 )° I(e)

If the partitioning cost of Quicksort becomes of the form /n (due to paralle] ex-
ecution perhaps) a direct asymptotic analysis is still feasible (and easy!), despite
the fact that the explicit coefficient expressions become more involved. The general
principle is the following: Generating functions need only be studied locally near their
singularities. Again, this systematic process presented in Section 2 can be subjected
to automatic analysis.

[2"] ———g (log(1 — 2)~1)* ~ (log n)t.

Quadtrees. The generating function approach therefore allows for a unified dis-
cussion of a whole range of related problems. As a further illustration, consider an
analogous two—dimensional problem, namely the analysis of path length in standard
quadtrees {26, 49]. In such a tree, there are two successive descents (the first one in
a half plane based on the z-coordinate, the second one in a quadrant determined by
the y—coordinate). Accordingly, the single integral of (5) gets replaced by a double

integral, . s i i
=4 [ [[ et w'y ™




The associated differential equation is now of order 2. Thanks to a relation to special
hypergeometric functions, we still have an explicit solution available,

(1422 F (1=-1) t1+42v) d d
Q(z) = (T=22 Jo 1+ 20 [/0 1) E{v(l —v)z)-p(v)}dv] dt.

Given the principles of singularity analysis, it suffices to examine locally near z = 1
the effect of this integral expression, viewing it as “singularity transformer”.

Complex analysis asymptotics render the analysis of such GF’s really simple
although coefficients soon turn out to have intractable expressions. For quadtrees
in higher dimensions d > 2, the integral equation is of order d and does not even
admit of closed form solutions any more. However, singularities of such direct and
inverse operators can still be studied by appealing to the classification of singularities
of linear differential systems, and complete asymptotic solutions are available. This
illustrates a further feature of the theory: Generating functions may be analyzed even
in cases where they admit of no closed form.

In this way, the cost of partial match and exact match queries in quadtrees of all
dimensions has been precisely quantified {26). It is found that an exact match query
in a quadtree of size n and dimension d has cost asymptotic to % log n.

Part I: Methods

1 Symbolic Methods in Combinatorial Analysis

Laplace discovered the remarkable correspondence between set theoretic operations
and operations on formal power series and put it to use with great success
to solve a variety of combinatorial problems.

— G.-C. Rota

Early practitioners of combinatorial analysis often realized that certain types of
counting problems would invariably lead to definite types of generating functions.
The systematization of these scattered observations had to wait a bit, however.
First, in the late 1950’s, Chomsky and Schiitzenberger discovered that enumerative
problems described by regular languages or finite automata lead to rational gen-
erating functions, while algebraic functions correspond to (unambiguous) context
free languages. Then, Rota and his school on one side, Foata and Schiitzenberger
on an other side, came to general frameworks that would ‘explain’ such correspon-
dences. Later Joyal [50] with the theory of species, as well as Goulden and Jackson
[43] produced frameworks of comparable power. In a remarkable thesis, Greene {45]
developed a notion of labelled grammars with a focus on order constraints and
analysis of algorithms. Flajolet and Steyaert developed rules initially specialized to
trees from which a ‘complexity calculus’ could be derived for a wide class of al-
gorithms (22, 24, 36, 37, 75]. This was later extended into a much more general
system [32] to be discussed in Part III.

We propose now to explain the major principle of a symbolic approach to the
derivation of generating functions.



1. Trains.

2. Formal specification.
( train = (locomotive » wagons)
wagons = sequence(wagon)
locomotive = sequence(Zlice)
slice = (upper s lower) union (upper * lower * wheel)
{ wagon = (locomotive * passengers)
passengers = set(passenger)
passenger = (head » belly)
wheel = cycle(wheel_element)
head = belly = cycle(passenger_element)
| upper = lower = wheel_element = passenger_element = potnt.

8. Generating function equations (excerpts).

train(z) :=locomotive(z)»vagons(z);

vagons(z) :=Q(vagon); % QCu):=1/(1-u);
locomotive(z):=slice*Q(slice);

s8lice(z) :=upperslover+upperslover*wheel;

vheel(z) :=centersL(vheel_element); % L(u):=log(1/(1-u));
vheel_element (z) :=z;

passenger_element (z) :=z;

4. Ezplicit generating function.

2 3
z -2z 1ln(1 - 2)
/ 2 3 2\
2 3 | (z -z 1In(1 ~ 2)) exp(An(1 - 2) )|
(1-2 +z In(1-2))I1- |
| 2 3 |
\ 1-2z +2z 1In(1-2) /

Figure 1. The example of ‘random trains’ illustrates the power of symbolic methods in
combinatorial analysis. We define a complex combinatorial structure [§1] that is formed with
sequences, cycles, and sets. A formal specification [§2] is easily set up. From it, generating
functions are computable systematically, and a system of equations is compiled from the
specification [§3]. The generating function is then solved explicitly [§4].
Currently, the analysis of this problem can be achieved automatically. A system, Lambda-
Upsilon-Omega (Ayf?), has been designed by B. Salvy and P. Zimmermann jointly with the
author [32, 69, 84]. It does the analysis and via an implementation of complex asymptotic
methods and singularity analysis, it is also able to find automatically the asymptotic form
of the coefficients: The number of trains of size n satisfies the estimate

r2n . 0.07097007911 - 1.930298068" .




Principle. A number of sel-theoretic constructions like union, cariesian
producl, sequence set, cycle set, power sel, substilution have direct tansla-
tion inlo generating function equations. Thus, a counting problem which
is expressible in the language of these constructions can be translaled
systematically (and automatically) into generating function equations.

Combinatorial structures to be discussed here fall into two types; the well-labelled
structures which are graph complexes in which nodes are labelled by distinct integers
(from 1 to n when the structure comprises n nodes) and unlabelled ones. Examples
of labelled structures are labelled trees, permutations (when viewed as collections
of labelled cyclic graphs), etc. Unlabelled trees, formal languages are examples of
unlabelled objects.

Given a class F of combinatorial structures, we let F,, denote the collection of
objects of size n, and set F,, = card(F,). The ordinary generating function (OGF)
and exponential generating function (EGF) are defined respectively to be

F(z)= ZF,,:" and F(z) = ZF"zn_':‘ ®

n>0 n>0

A combinatorial construction is admisstble if it admits a translation into generating
functions.

The following two theorems are well known under one form or the other. They
embody a powerful collection of combinatorial constructions. For detailed definitions,
the reader is referred to modern treatments of the subject [15, 42, 43, 72, 74, 81] or
to the paper [32] where a similar system of notations is developed.

Theorem 1 (Admissible constructions for OGF’s) For unlabelled structures,
the constructions of union, cartesian product, sequence, cycle, set, muliiset, substi-
tution are admissible. The translations inlo ordinary generating funclions are given
by the following table

[ Construction | Translation (OGF) |
F=GUH F(z)=G(z)+ H(2)
F=GxH F(z) = G(z)- H(2)
F = sequence(G) =G* | F(z) = ﬁz—)
F = set(g) F(2) = exp(G(z) - §G(2) + 3G(2) = --)
F = multiset(G) F(z) = exp(G(2) + 5G(2%) + 35G(2) + - - )
F = cycle(G) F(z)=log(l1-G(z))"1 +---
F =6H] F(z) = G(H(2))

Theorem 2 (Admissible constructions for EGF’s) For labelled structures, the
constructions of union, partitional product, sequence, cycle, set, substitution are ad-
missible. The translations into ezponential generaling functions are given by the
following table



| Construction | Translation (EGF) J

F=GUH F(2) = G(2) + H(2)
F=G+H F(z) = G(2) - H(2)

F = sequence(G) = G* | F(z) = lTé‘(;j

F = set(G) }f‘(z) = exp(é(ﬂ)

F = cycle(G) F(z) = log(1 - G(2))~*
F = G[H) F(z) = G(H(2))

2 Complex Analysis and Asymptotics

Es ist eine Tatsache, daB die genauere Kenntnis des Verhaltens
einer analytischen Funktion in der Nahe ihrer singularen Stellen
eine Quelle von arithmetischen Satzen ist.

— E. Hecke

Complex analytic methods permit to represent coeflicients of generating functions
and many combinatorial sums as integrals of an analytic function in the complex
plane. The choice of a suitable contour of integration often leads to highly non trivial
asymptotic results. A thorough review of theses techniques appears in [38]. Other
excellent references are [5, 16, 48, 66).

The first part of this section is devoted to singularity analysis techniques which
make it possible to derive estimates on the coefficients of generating functions start-
ing from Cauchy’s formula,

fo = 1) = 5 $ 1) 9)

T 2r

Singularity analysis. Most functions occurring in combinatorial enumeration
problems are built by operators from standard functions that exist over the whole of
the complex plane. They thus tend to exist in larger areas of the complex plane. The
method of singularity analysis is well suited to extracting coefficients of functions
lying in a class that enjoys interesting closure properties.

Definition 1 A function analytic at the origin is star continuable iff it has a finite
number of singularities {; = pe'®s on its circle of convergence |z| = p and if for some
€ < 5 and > 0 it is continuable in |Arg(ze=*% — p)| > € and |z| < p + 1.

An algebraic-logarithmic element is a formal series

cx log(3)u*,

gk

F(u) =
0

IA T

where the ay satisfy R(a;) < R(a2)
mial.

A function is algebraic-logarithmic iff it is star continuable and near each singu-
larity {; it admits an asymptotic expansion f(z — (j) ~ Fj(z — (;), where Fj(u) is
an algebraic-logarithmic element.

-+, R(ax) — 0o and each cx(z) is a polyno-



Figure 2. A display of the imaginary parts of two generating functions,

f)=12 = ad g()= 1

The function f(z){top] is the ordinary generating function of binary trees with a singularity
at p = 1/4 which is a branch point of the /" type. The function g(z) [bottom] is the
exponential generating function of permutations with a singularity at p = 1 of a polar
type. The singularities are reflected at the level of coefficients,

473

[z"]f(z) ~ \/;n—a

and [z")g(2) = 1.

The first theorem summarizes a variety of results known since about the time of
Hadamard [19, 78].

Theorem 3 (Analytic Closure Theorem) Star continuable functions and alge-
braic-logarithmic functions are closed under sum, product, Hadamard product®, in-
tegration, and differentiation.

Star continuable functions and algebraic-logarithmic functions thus enjoy rich
closure properties. There is a direct relation between singular expansions and coef-
ficient expansions (see Fig. 2 for an illustration), and the coefficients of algebraic-
logarithmic functions can be determined systematically.

Theorem 4 (Singularity analysis) An asymplotic form of coefficients of
algebraic-logarithmic functions is oblained by termwise translation of coefficients

1The Hadamard product of f(z) and g(z) is their term by term product JGg(z) = Zn fngnz™.



of elements, using the rules (o ¢ {0,-1,-2,..})

L 212 (log L_yp . BT lognf [ C1 B Cap(B-1)
7100 = 7o 25 ~ T 14 S DO ),

&

where  Cj =T(a) a5 T(s)

0
, F(s):/ e~'t*~dt.
s=a 0

This theorem [29] allows for a vast number of generalizations based on termi-
nating expansions, partial expansions involving O(.) or o(.) error terms, as well
as iterated logarithms or functions of slow variation. It is inspired by the classical
method of Darboux in asymptotic analysis and by Tauberian theorems. Its principle
however relies on integration using contours of the Hankel type.

The applications are numerous. Most of the analysis carried out by Darboux’s
method can usually be conducted in a transparent way using this method. Instances
are uniform tree models and the so-called simple families of trees [64], and generally
enumeration problems expressible in terms of context—{free languages.

Saddle point integrals. Given an analytic function f(2), a seddle point is a point
¢ which cancels the derivative, f/(¢) = 0. This terminology is due to the topography
of the modulus of the function near { which resembles the inside part of a saddle.
When computing a complex integral
1 e9(2) 4y

2im Il !
it is often the case that the contour C can be deformed so as to traverse a saddle point,
with the value at the saddle point being a local maximum for the modulus. Under
suitable conditions, the integral is concentrated near the saddle point. In that case,
a local expansion of the analytic integrand holds, and one finds the approximation

1 9 dz ~ ;e"(().

2iw Jo \ /27rg”(<)

When the method applies, it is often said that the integral is (saddle point)
admissible. Most notably, the method is useful for the computation of coefficients of
whole classes of entire functions [67]. In that case, we should take g(z) = log f(z) —
(n 4+ 1)log z, where f(z) is the function to be analyzed.

Theorem 5 (Saddle point coefficient asymptotics) For an admissible func-
tion f(z), one has

N (9
Y~ o

where ( = (n s the smallest real root of Edz' log j—,,(f;%-

f()

2
—log ,
dz? Zn+l 1=¢

where C =

10



This classical method originating in applied mathematics is discussed in de
Bruijn’s book [16], and in the context of coefficient extraction in [67, 81]. A review
appears in [69]. Typical applications are to fast growing functions like

s 2
ez/(l—z), e:, et —l’ ert? /2,‘..‘

This covers problems related to increasing subsequences in permutations, set parti-
tions, involutions, etc.

Saddle point methods also serve to analyze coefficients of large powers of func-
tions. This is one way of establishing the central limit theorem (together with er-
ror bounds), a fact well explained in [46]). There are also numerous applications to
hashing and occupancy problems. Difficult questions present themselves with higher
dimensional saddle point problem. Gardy has obtained several general results on
urn models [39, 40] and attained a precise quantification of the size of relational
algebra operations applied to collections of random points, using two-dimensional
saddle point techniques. McKay and his collaborators have pushed the analysis to
situations where a counting problem of a large size n leads to an n-dimensional
complex integral. For instance,

1 dzidzg - - - dz,
.(22—”);%%% II (l+z'.zj)21k+12§+2---z,k,+l,

1<i<j<n

gives the number of k-regular graphs, and the integral can be estimated using an
n-dimensional saddle point integral while the dimension of the space n tends to
infinity! See [63] for these promising techniques.

Part 1l: Classes of Applications

In this part, we explain how the methods introduced can be put to use in order
to analyze whole classes of problems relative to combinatorial structures and algo-
rithms. We limit ourselves to a descriptive inventory that tries to put in perspective
a vast body of literature.

3 Algebraic Functions and Implicit Functions

Regular languages can be specified either by regular expressions or by finite au-
tomata. The corresponding GF’s either appear as built from the variable z by means
of rational operations (+, x, quasi-inverse Q(y) = (1 — y)~!) or as components of
linear systems of equations (over Z[z]). At any rate, they are rational [7]. Examples
are

z 1 - k1 24
1-— zz Vo1 =2z4 2K 1424422 4 23 - 324 4 225

11



representing the OGF of plane unlabelled trees (Dyck words) of height at most 4, of
binary strings with no runs of more than k consecutive ones, and of binary strings
containing the pattern 0100.

An immediate consequence of the partial fraction decomposition of rational func-
tions is the following.

Theorem 6 (Rational Asymptotics) The coefficients of a rational funciion of
Q(z) are a finite linear combination of ‘ezponential polynomials’ of the form

Aw”nt, (10)
with A\, w algebraic numbers and k an integer.

By grouping the w’s in order of decreasing modulus, this has the character of an
asymptotic expansion. In this way, a counting problem relative to a single regular
language normally poses no difficulty and falls into a decidable class of problems.

Interesting problems arise from consideration of parameterized sets of rational
functions, like trees of bounded height [17], longest runs of ones and carry propaga-
tion [56], or occurrences of prefixes of an infinite pattern sequence [65]. The analysis
of the clustering of dominant roots, which will have accumulation points, has made
it possible to analyze the expected height of trees, and the expected time for carry
propagation in binary adders.

Context free languages lead to polynomial nonlinear equations, provided the
grammar is unambiguous or we count words with their multiplicities. Thus, the gen-
erating function of a context free language is algebraic. This is the famous Chomsky-
Schiitzenberger theorem. By standard elimination theory, such a function satisfies a
single polynomial equation,

P(z, f(2)) = 0. (11)
Near a singularity, an algebraic function admits an expansions into fractional powers
of the form (1 — z/p)?/9, which is also called a Puiseux expansion. The method of
singularity analysis applies well to Puiseux elements.

Theorem 7 (Algebraic Asymptotics) The coefficients of a Q(z)-algebraic func-
tion are asymplolic to a sum of ‘algebraic elements’ of the form

A
T(r/s+1)"

where A\, w are algebraic numbers, and the exponent r/s is a rational number.

nnr/s’ (12)

This furnishes a generalized density theorem for context free languages and was used
in [23] in order to establish the inherent ambiguity of several context free languages.

Similar singular expansions involving fractional powers also hold for functions
implicitly defined by equations of the form ®(z, f(z)) = 0, where ®, analytic function
of two complex variables, need no longer be a polynomial. By the implicit function
theorem, singularities are almost invariably of the /" type, so that coefficients involve
the rational exponent r/s = ~3/2. Examples are

y=z(14y'), y=1ze¥, & -2y—-142=0.

12



The first equation counts regular (plane, unlabelled) t-ary trees; the second one
labelled non plane trees whose number is n"~!, a famous result due to Cayley; the
third one Schréder’s partition systems [15, p. 224].

Implicit functions. Meir and Moon have developed in a series of papers (see,
e.g., [64]) a general theory of statistics on ‘simple families of trees’ corresponding to
equations of the form y — z¢(y) = 0. Under general conditions, the singularities are
again of the Vv type, which leads again to asymptotic forms

Aw"n=3/2,
Using this theory, it is found that various families of trees share common features;
for instance, path length is of order n3/2 on average.

Variations around this theme have led to the analysis of a large number of tree
algorithms in the context of symbolic manipulations. We shall cite here: pattern-
matching (76, 2], simplification [10}, unification [1], common subexpression factor-
ization [34], and term rewriting techniques [11]. See also [9] for an interesting survey.

Another important case of application is to the Cayley function y = ze¥. This
function shows up in the enumeration of labelled trees, random mappings (28], in the
analysis of hashing with linear probing [55], in union find problems [57], in caching
algorithms, etc.

A further extension concerns the enumeration of unlabelled non plane trees that
involves the operators of Theorem 1 (see the set and multiset constructions). The
GF of such graphical trees satisfies a functional relation known to Cayley,

f(z) = zexp (f(Z) + %f(zz)«}- %j(z:’)_;.) .

Although no closed form is available for this GF, it can still be subjected to the
same treatment as implicitly defined functions, a general fact discovered by Pélya
in his famous 1937 paper [68]: Once it has been recognized that f(z) has radius of
convergence p < 1, the terms in the sum involving f(2?), f(2%), etc, being analytic
near z = p, can be treated as ‘known’ perturbations for all asymptotic purposes. In
this way, it is also possible to analyze the GF’s

1) = 24 35°() + 31D, S(2) = —
1o =

relative to non plane unlabelled binary trees (Otter, 1948) and to structurally iso-
meric alcohols Cp,Hon41OH without asymmetric carbon atoms. The asymptotic
forms found are

2.9557.0.4399"n~3/2, 0.3187.2.4832"n=%/2 0.3067.1.6813",

for Cayley’s graphical trees, binary trees and alcohols, respectively [47].
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In summary, functions defined implicitly tend to have singularities like those of
algebraic functions, involving fractional exponents. This is reflected by the asymp-
totics of their coefficients of the form w”n="/*. Such a property also holds for
many functions satisfying finite and infinite functional equations involving terms
like £(22), f(23) provided that their radius of convergence is < 1.

4 Holonomic Functions and Differential Equa-
tions

When discussing the analysis of Quicksort, we have encountered a particular case of
the general probabilistic divide and conquer schema

n-1
fa =e,,+27r,',’kfk. (13)

k=0

There f, is the sequence to be analyzed, e, is a fixed toll sequence, and the 7 , are
proportional to the splitting probabilities 7, & that express the chances that a task
of size n involve a subtask of size k£ < n.

In comparison based sorting and searching, it is often the case that the m,
involves some rational combination of n and &, a fact also well accounted for by
Greene’s treatment of ‘min-rooting’ operators [45]. Naturally occurring examples of
Tn k'S are

1 2(n-k)

2k — 1)(n — k)
w ) A1) =2)

n(n—-1)(n-2)’

that arise in Quicksort (or binary search trees), fully specified search in 2-d quadtrees,
partial match queries in 2-d quadtrees, and median—of-three Quicksort [55, p. 609].
In that case the translation into generating functions leads to integral equations of
which (4,7) are typical. This in turn leads to generating functions satisfying dif-
ferential equations with rational (or equivalently polynomial) coefficients. (Only in
simpler cases is the equation an Euler equation that admits elementary solutions.)
Functions satisfying differential equations with polynomial coefficients are some-
times called D-finite and their coefficient sequences which satisfy recurrences with
polynomial (in n) coefficients are then called P-recursive. These notions are formal-
ized by the concept of holonomy introduced in this range of problems by Zeilberger.

1
T_I[Hn - Hk]y

Definition 2 A series f(zy,22,...,2,) € Cl[21, 2, ..., 2/]] is said to be holonomic
iff the infinite collection of its partial derivatives

o ajz &

8231 9213 T 523+ f(zl 322500y Z,-)

span a finite dimensional vector space over the field of rational fractions

QZ],ZQ,...,Z,-).

A sequence fy, n....n, is holonomic iff its generating function f(z1,22,...,2,) =
Y n . .
Zn\,ns....,nr f"\.na,~~~,"rzl ! L) R z:“r is holonomic.
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The major closure theorem here is due to Stanley, Lipschitz, and Zeilberger [59,
60, 73, 83].

Theorem 8 (Holonomic Closure) Holonomic functions are closed under sums,
products, Hadamard products, diagonals, algebraic substitutions, integration, differ-
entiation, direct and inverse Laplace transforms.

Coeflicients sequences enjoy the corresponding closure properties. For instance,
closure under sum, product, convolution, summation, multiplication and division by
polynomials in n. Many combinatorial quantities that are expressible as multiple
summations of multinomial coefficients with linear constraints (these are sometimes
called ‘multihypergeometric’) are in particular holonomic. Using a theory of holo-
nomic symmetric functions, Gessel [41] has established that the generating functions
of k-regular graphs and k-Latin rectangles are holonomic. With the closure theo-
rem, Massazza [62] has shown that context-free languages with linear constraints on
the number of occurrences of letters have holonomic generating functions. Finally,
the cost sequences for usual variants of Quicksort and comparison-based search are
clearly holonomic.

A major interest of holonomic sequences is that the identities they satisfy form a
decidable class. In the 1-dimensional case, the corresponding asymptotic properties
are also in essence decidable. The spirit of the available result is captured by the
following informally stated theorem.

Theorem 9 (Holonomic Asymptotics) A holonomic sequence f, is asymptotic
to a sum of elements of the form

A(nl) 7290 ™) yrnelog n)t,
where r,s,m, k are inlegers, Q is a polynomial and A\, w, « are complex numbers.

This theorem is originally due to Birkhoff and his students, and we refer to the
useful discussion that Wimp and Zeilberger gave in [82]. The original proof is based
on a direct treatment of difference equations in the complex plane.

In our perspective, this theorem relates to the classification of singularities of
linear differential equations. The theory of linear differential equations with ana-
lytic coefficients [80], distinguishes for solutions of such equations two cases, the
regular case and the irregular case. Singular expansions of solutions are then locally
composed of elements of one of two types,

(1 - 2/p) (log(1 = 2/p))*", (1= 2/p) (log(1 = 2/p))*" exp(Q(1 - 2/p)*/™).

The method of singularity analysis and the method of saddle point integrals are
applicable each in one of the two cases. The resulting forms found for coefficients
are exactly the ones stated in the theorem on holonomic asymptotics.

The analysis of regular singularities has given results on various multidimensional
search problems in k-d trees and quadtrees {30, 26]. For instance the expected cost
of a partial match query in a quadtree (alternatively a k-d-tree) when a proportion
of % or %, of the coordinates is of the order of

nO/T=3/2  and  nf=1 with 6= (12 +,/1220 ]/3+(1°9— 1320

81 27 81
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Such algebraic numbers in the exponents (!) are typical of Q(z) holonomic functions.

Irregular singularities occur more seldom, a clear example being the number of in-
creasing subsequences of a random permutation of n elements which was determined
by Pittel and Lifschitz [58] and is asymptotic to

1 -1/4,2\/n
——n""/%eV",
2\/en
In particular, the longest increasing subsequence of the random permutation is
proved to have length O(\/n). (It is actually known to be asymptotic to 2\/n.)

In summary recurrences involving rational functions and summations can usually
be treated by means of the theory of singularity of linear differential equations

applied to GF’s and combined with singularity analysis or saddle point techniques.
In essence, such problems fall into a decidable class.

5 Functional Equations and Iteration
We confine our discussion to linear functional equations of the form

J(z) = a(2) + b(2) f(a(2)), (14)

where f(z) is the unknown function, and a, b, o are explicitly known. The behaviour
depends on the iteration structure of ¢(z). The formal solution to (14) is found by
iteration,

f(z) = i (etk)(2))———22 B(o(2)) with B(z) = H B(aY(2)), (15)

k=0 () j=0

o'¥)(z) being the k-th iterate of o.

In the functional equation of (14), everything depends crucially on the dynamics
of the iterates of ¢. In a few important cases, the iterates are explicit, and one
general method available relies on the Mellin transform, some of whose uses are
recalled below. In the case of non explicit iterates, singularity analysis or saddle
point techniques have to be applied.

Mellin transforms. Mellin transforms constitute another set of techniques based
on complex analysis methods. The Mellin transform of a real function f(t) is defined
by

(o]
re)= [ ree-ta
0
A harmonic sum is a function of the form 3, Arp(piz), where p(z) is a base
function, and the Ag, pu; play the roles of amplitudes and frequencies. Using the

inversion theorem for Mellin transforms and simple functional properties, we arrive
at a method to evaluate harmonic sums asymptotically.
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Theorem 10 (Mellin summation of harmonic sums) Under conditions of
meromorphic continuation and smallness at tioco,

Xk:’\k#’(l‘k?f') ~x Z Res I:Ek: .l':—; . /:o SO(i)t"ldt}‘ ’

(GH =(

where H is a left half plane (resp. a right half plane), the sum of residues is over poles
¢ tn the half plane, the sign is + (resp. —), and the ezpansion applies as ¢ — ot
(resp.  — +0).

The method of Mellin transforms in disguise lies at the heart of the proof of the
prime number theorem (with additional difficulties resulting from the occurrence of
the Riemann zeta function!). It is well suited to sums that occur in the analysis of
algorithms, like

Yo 27tp(z27h), Y va(k)plkz), Y d(k)p(ks),
k k k

where ¢(z) is often an exponential function e=%, e==, and the coefficients are either
powers of two or elementary arithmetic functions (e.g., the dyadic valuation vo(k)
or the divisor function d(k)).

This transform was first introduced in our range of problems by de Bruijn, Knuth
and Rice [17] for the purpose of analyzing the height of general plane trees (the
expression involves the divisor function) which appears to be ~ \/n. It has also
found many uses in the analysis of digital structures (prefix trees, tries, digital search
trees, suffix trees), and in a large number of related areas (protocols, probabilistic
counting, carry propagation, dynamic hashing).

Explicit iterations. The analysis of digital tries furnishes an example of the situ-
ation where the iteration of o(z) is explicit. The recurrence of expected path length
in tries is of a new probabilistic divide-and—-conquer type,

n
. 1 /n
fa=n-46,, +2§)7rn,kfk with mp = 2—,,(k)

The corresponding EGF satisfies
f(z) = (e = 1) + 27 £().

The equation is solved by iteration, after which the solution can be expanded. The
curious phenomenon occurring here is the presence of minute fluctuations in the
behaviour of coefficients [55, p. 131]: The expected path length f, of a trie of size n
satisfies an estimate nlog, n + nP(log, n) where P(u) has amplitude less than 103,
Such periodicities are traceable to complex poles in a Mellin transform. For instance,
the transform of ¥(z) = e~% f(z) is

T(s+1)

w‘(s)z 1—2_’_1’
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which has rightmost poles at s = —1 + 2ikn/log2. The Mellin summation formula
then leads to a Fourier series that expresses these fluctuations, and this in turn is
reflected by corresponding fluctuations in the coefficients.

By now, a large number of applications have been given of this analysis technique
and some of its variants (like Rice’s integrals). Here, we only refer to (33, 55, 79]. Ap-
plications have been given in the area of trie searching and radix exchange sort [55],
dynamic and extendible hashing [20]), communication protocols [21], probabilistic
counting and estimation algorithms {27], quadtries and multidimensional search-
ing [30], suffix trees, Patricia trees and pattern matching in strings (see e.g. [77]),
digital trees [31]. Surprising connections with identities of Ramanujan relative to
modular forms were uncovered by Kirschenhofer and Prodinger on the occasion of
variance analysis of digital structures [52, 53].

Divide-and-conquer algorithms also lead to explicitly solvable iterations, espe-
cially when Mellin transforms are used. The recurrence,

fo = €a+ flajoy + finy21s

with e, a known toll sequence, is typical. Let f(z) be the corresponding OGF; the
functional equations is

f(R)=¢€e2)+(2+2+ %)f(zz).

Take the Mellin transform of f(e~!). This is equivalent to considering the Dirichlet
series ¢(s) = Y, fan~*. The series involves a denominator which resembles that of
tries, being 1 —27°. Again, this introduces complex poles and fluctuations. However,
in this case, we are lead to some fractal function expressing these fluctuations. A
typical case is the analysis of Mergesort [25], for which the expected cost is found to
be of the form ~ nlog, n — nQ(log, n) for some fractal and periodic function Q(u).
The method is applicable to wide classes of divide and conquer recurrences which
are almost invariably found to give rise to periodic fluctuations involving fractals.

Implicit iterations. When the iterates o/}(z) admit of no simple explicit form,
one often has to resort to an analysis of individual terms in the sum (14), normally by
the battery of complex analysis techniques examined so far. Odlyzko [66] considered
the equation

f(z) =2+ f(z* + %)
that arises when counting balanced 2-3-trees. What is needed is the behaviour of
the iterates o(z) = z? 4+ 23 near the dominant fixed point of &, which is equal to
the inverse of golden ration, ¢ = (1 4+ v/5)/2. A delicate analysis of this singular

iteration problem eventually leads to the number of trees which is ~ ?;,—'R(log n) for
some smooth periodic function R(u).

A similar problem arises when analyzing the expected height of binary trees. The
iteration

wo(z) = 0; wa(z) = 1+ 2(ya_1(2))%,
gives the OGF of trees whose height is bounded by h. The fixed point yo, is the
OGF of all binary trees, i.e., the Catalan GF, 1—'%-13'2. The y; are polynomials of

18



degree 2"=1. Singularity analysis requires investigating the convergence of the y; near
the singularity 1/4 of the fixed point yoo. The iteration then becomes singular: for
|z| < 4, we have exponential convergence; for z > 1/4, there is a double exponential
divergence; at z = 1, there is slow convergence of order O(h~1). A fine analysis then
reveals a logarithmic singularity for the GF of heights, and the expected height of
a binary tree with n nodes is found to be asymptotic to 2y/7n. Analogous results
hold for any simple family of trees in the sense of Meir and Moon.

At the moment, a complete classification of the various cases of (14) is still
lacking. Some cases appear to involve the theory of analytic iteration and some
divergent series. We nonetheless have a number of useful and general tools available
in the form of Mellin transforms and iteration theory of analytic functions.

Part lil: Combinatorial Schemas
and Automatic Analysis

We have exposed here a few general theorems in symbolic combinatorics and
complex asymptotics. They make it possible to approach the analysis of entire classes
of problems in combinatorial enumerations and the analysis of algorithms. We shall
be brief by necessity here and refer to our paper [32] for a more detailed discussion
of the implications of these general methods.

Structure theorems and schemas. A first observation suggested by the results
of Part Il is that certain combinatorial and analytic mechanisms can only lead to
certain designated types of asymplotic behaviours. We have seen that regular and
context—free structures only lead to exponential polynomials and algebraic asymp-
totic elements respectively. The probability of a gambler’s ruin in 2n stages is as-
sociated to a context free language, and accordingly this probability is asymptotic
to 1/\/mn, a typical algebraic element. In contrast, logarithms cannot occur in this
range of problems.

The tools presented here are general enough that a large number of problems
can be fitted into classes whose asymptotic properties are decidable. Our exam-
ple of ‘trains’ in Fig. 1 falls into the category of elementary iterative structures a
large subset of which has decidable asymptotic properties [32]. Structure theorems
describe classes of syntactically specified combinatorial structures and algorithms
whose asymptotic properties are decidable and expressible by a well characterized
class of formule. Roughly speaking, such theorems seem to exist for all structures
specified by the constructions of Theorems 1 and 2 excepting substitution. The full
programme of making them explicit is however a delicate task that is yet to be
completed.

The relation between structural combinatorics and asymptotic form can be
pushed further in order to include results on probability distributions (and not sim-
ply counting as a function of the size n). The approach is to be contrasted to the
‘stochastic’ approach that deals directly with continuous limit models like branch-
ing processes or Brownian motion. The stochastic approach has been successful in
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solving a number of problems that had resisted a more analytic attack. Most no-
tably in this category, we find works of Aldous (diffusion processes and the height
of digital search trees [3]), Devroye (branching processes and the height of digital
search trees [18]), Louchard (Brownian motion and interpolation search or dynamic
analysis of algorithms, see e.g. [61]), as well as others.

Our perspective is different, and it attaches itself to the area of multivariate com-
plex asymptotics. Multiple inversions are then needed in order to recover coefficients
from functions, and the methods draw upon a combination of complex asymptotic
techniques which have been presented here, as well as theorems in analytic probabil-
ity, notably continuity theorems for characteristic functions or moment generating
functions. For instance the analytic scheme F(z,u) = exp(uC(2)) expresses the fact
that an F-structure is built of components of type C. Under wide conditions, the
number of C-components in a random F-structure will obey a law that is Gaussian
in the asymptotic limit, as n — oco. Thus, a common schema covers a variety of
seerningly unrelated phenomena. In this way, we find Gaussian limit laws for the
number of cycles in a random permutation, the number of factors of a random poly-
nomial over GF(q), or the number of components in a random mapping of large
size [35]. First results along these lines were derived by Bender, Canfield and Rich-
mond [4, 6, 8]. A classification of some major schemas and their associated laws is
given in Soria’s thesis [71]. Even for a structure as complicated as random trains,
it is the case that all probability distributions of various components can be char-
acterized in their asymptotic form: Non-classical laws as well as standard laws like
the Gaussian, geometric and Poisson laws appear in such a structure.

Automatic Analysis The approach of finding general decidable asymptotic prop-
erties of combinatorial structures has been prolonged. Flajolet, Salvy and Zimmer-
mann [32] have designed a system called Lambda-Upsilon-Omega (Ay§2) that im-
plements a number of decision procedures on combinatorial structures like the ones
discussed here. The kernel specification language consists of the constructions of
union, product, sequence, sets, multisets and cycles described in Section 1. The Ayf2
system also makes provisions for specifying traversal algorithms on the structures.

A first component of Ayf2 implements the automatic computation of counting
generating functions and complexity descriptors that are cost generating functions.
Zimmermann {84] has developed the necessary theory which builds on the principles
of our Section 1, and he has also found a number of extensions most notably to
boolean procedures [85], to some forms of composition, and to exact counting.

After a solving phase, the (usually complicated) generating functions produced
need to be subjected to an automatic analysis of their coefficients. Salvy [69] has
developed a collection of efficient decision algorithms in the style of computer algebra
in order to manipulate general asymptotic scales in Hardy fields and apply transfers
from functions to coefficients in the style of the methods of Section 2.

In its current stage, AYS? consists of some 20,000 instructions written largely in
the computer algebra system Maple. It has provided so far more than 50 different
analyses of combinatorial problems and algorithms related to regular languages,
finite automata, random walks, term tree, rewriting systems, random mappings,
and miscellaneous combinatorial problems. The system can assist experts in the
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analysis of combinatorial problems specifiable in this language and in a few cases,
it has produced automatically results that had been published in the literature, so
that its level of ‘competence’ is to be considered as reasonably good.

As a final conclusion, we have tried to present a global view of the analysis of
classes of combinatorial objects, not unlike in spirit to what had been done earlier
for formal languages and zero—one laws in combinatorics [12, 13, 14]. General results
of an almost ‘logical’ nature relate combinatorial structure and asymptotic form. In
a number of such cases, decision procedures can be found for asymptotic combina-
torics. Their development and their implementation within computer algebra is a
fascinating new area of investigation.
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