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Abstract

We consider an M/G/1 queue where the server may take repeated vacations. Whenever a
busy period terminates (i.e., when the queue empties) the server takes a vacation of random
duration. At the end of each vacation the server may either take a new vacation or resume service
provided that the system is nonempty. The decision to turn the server on/off may depend on all
the history of the process (which includes the number of customers and all past decisions). The
optimization problem typically arises when imposing a cost structure that involves a holding
cost per unit time and per customer and a cost for turning the server on (a shut-down cost may
also be included in the latter cost). One may wish to restrict to threshold policies where the
server is turned on at the end of each vacation if and only if the queue-length is greater than or
equal to a fixed threshold. A few recent papers address the problem of optimally choosing the
threshold. The objective of this paper is to establish the optimality of threshold policies over

all policies for two long-run average cost criteria.

*Work partially supported by the France-Israel Scientific Cooperation in Computer Science and Engineering under

Grant 3321190.



1 The Optimization Problem

We consider an M/G/1 queue where the server may take repeated vacations. Whenever a busy
period terminates (i.e., when the queue empties) the server takes a vacation whose duration is
distributed like a generic random variable (r.v.) D with Laplace-Stieltjes Transform (LST) d*(-),
first moment 0 < d < o and second moment d(?) < co. The durations of the vacation periods are
assumed to be mutually independent r.v.’s, independent of the arrival and service processes. At the
end of each vacation the server may either take a new vacation of random duration D or resume
service provided that the system is nonempty. The cost structure includes a customer holding cost
of rate 1 and a constant cost 7 > 0 that is incurred each time the server is turned on (7 may also

include a constant shut-down cost for turning the server off).

Let X (¢) be the queue length at time ¢ > 0. The sample paths of the process {X(¢),¢ > 0} are
assumed to be right-continuous. Define ¢,, (n > 1) to be the n-th decision epoch, namely the n-th
vacation completion time. We shall assume without loss of generality that {;y = 0. Also define IR

(resp. IN) to be the set of real numbers (resp. nonnegative integers).
Given the above cost structure, a natural objective is to solve the following optimization problem:
Problem P1: Minimize the long-run average operating cost

t N
V() ::t@)%Eu /0 X(€)de+7 Y 1(A, = )| X(0) = | | (1.1)

n=1

for all # € IN and for any admissible vacation policy u (the precise definition of an admissible
vacation policy is given in Section 2), where A,, denotes the action chosen at time ¢,, (A, = s if the
decision is to serve and A,, = v if the decision is to take another vacation) and N(¢) := sup{n >
1:¢, <t} forall t>0.

While the authors were polishing this paper, a similar study by Federgruen and So [6] appeared (see
Remark 1.1). We have however made the decision to proceed with this paper for several reasons:
Federgruen and So do not consider the problem P1 but instead a different version of this problem
(called problem P2 in Section 2; see also Remark 2.1); the proof of Theorem 3.2 in [6] is not clearly
established since it relies upon a result by Schweitzer [17] that can only be used in the case of
finite state spaces (see Remark 4.1); our approach (value iteration) is completely different from the
approach used by Federgruen and So (the method of proof in [6] is based on a systematic variation

of the model parameter v) and appears to be simpler.

The contributions of the present paper are the following: first, we (rigorously) solve the problem
P2 over the class of all policies; second, we solve the problem P1 over the (broad) class of all
regenerative policies. For both problems the optimality of a threshold policy, namely a policy that
turns the server on if and only if the queue-length is greater than or equal to a fixed threshold, is
established; in particular, we show that the optimal threshold is bounded from above by a known



constant. We also believe that the way the value iteration algorithm is used in this paper is of
interest since the properties to be propagated in the induction of dynamic programming appear to be
non-trivial, and different from the standard monotonicity, convexity, concavity or supermodularity
properties.

The literature on vacation queueing models is rapidly growing. This is because these models provide
an ad hoc formalism for the study of various discrete event systems ranging from production systems
to communication and computer systems (see Doshi [5] for a survey paper). Three types of server
vacation schemes are commonly encountered in the literature: the scheme with repeated vacations
of the server that has just been described above (see also Gelenbe and Iasnogorodski [7], Gelenbe
and Mitrani [8], Kella [10, 11], Levy and Yechiali [13]); the scheme where the server may resume
service upon the arrival of a new customer (the so-called “removable server”, see Heyman and Sobel
[9, pp. 336-337], Yadin and Naor [20]) and a mixture of those two schemes (Doganata [4]).

Optimization issues for queueing models with server vacations have already received some attention.
In [19] Talman solved a control problem for the M/G/1 queue with a removable server and proved
the existence of an optimal threshold type. Lately, Kella [10] addressed the problem of computing
the optimal threshold policy over the class of all threshold policies for the M/G/1 queue with
repeated vacations of the server. Lee and Srinivasan [12] carried out the same analysis in the
case of batch arrivals. In [1] Altman and Nain solved the problem P1 for the M/M/1 queue with

exponential repeated vacations.

The paper is organized as follows. Since the problem P1 cannot be tackled directly, we instead
introduce in Section 2, and solve in Sections 3 and 4, an intermediate problem using the value
iteration approach. The solution to this problem will in turn enable us to solve the original problem
P1 in Section 5.

A last word about the notation: A > 0 will denote the arrival intensity and b < oo (resp. b(?)) the
first (resp. second) moment of the service time distribution. We further assume that p := Ab < 1

(stability condition).

Remark 1.1 The model investigated by Federgruen and So [6] is more general than the one de-
scribed in this section. In particular, they allow for batch arrivals and system dependent holding
cost rates. However, the analysis developed in the forthcoming sections extends to their model
provided that Conditions 1 and 2 in [6, p. 391] are satisfied.

2 A Semi-Markov Decision Problem

Solving directly for problem P1 is a difficult task, since the structure of the cost criterion (1.1)
does not fit the standard Semi-Markov Decision Process (SMDP) setting (cf. Lippman [14], Ross



[16]). To see that, let us rewrite V(z,u) as, cf. (1.1),

— 1
V(z,u) = lim — £

t—oo

(/;+ X(€)de+71(A, = s)) - /:N“)“ X(¢) d{] L zeNN, (21)

0<t, <t

where the symbol E* stands for the expectation operator given that X(0) = & and that policy u is
employed. We observe from (2.1) that the cost incurred in [{,,,¢,41) (n > 1) given X (¢,) = z and

A, = a is not a deterministic function of (z,a), which precludes the use of the SMDP theory.

So, instead of starting with the cost function (2.1), we shall first address the following optimization

problem:

Problem P2: Minimize the long-run expected average operating cost

— 1
O(z,u):= lim - £}

t—00 t

> E [/ X(€)dE 4714, = 9)| X A,

0<t, <t n

, (2.2)

for all z € IN and for any admissible vacation policy u (the precise definition of an admissible
vacation policy is given at the end of this section). Observe now that the cost incurred in [¢,, {,41)
(n > 1) is a deterministic function of (z,a) when X,, = 2 and A,, = a. The end of the section is

devoted to showing that (2.2) is a long-run expected average cost associated with an SMDP.
This SMDP is defined as follows (Lippman [14]):

The state of the process The state of the process is X (¢) for all ¢ > 0. Define X,, := X(¢,) for all
n > 1. Recall that ¢; = 0 so that X7 = X (0).

The action space. The action space is {s,v} when the system is in state z # 0 and {v} otherwise.

The expected cost. If action a is chosen when the system is in state x, then the immediate expected
cost

Hz,0) = E [/Ot X(&)dé+71(a=s), | X1 =2, Ay = 5] | (2.3)

is incurred. It is a simple exercise (see Altman and Nain [2, Appendix A]) to show that

Ad (2
xd + 5 if a = v and z € IN;
2(z,a) = (2.4)
b A2 4 b(1 — Ad ()
22+ + b 2'0)36—|— +7v, ifa=sand z > 1.
2(1-p) 2(1-p) 2

The transition times. Let 7(x,a) be the conditional sojourn time in state z given action a is
chosen. If @ = v then 7(z,a) is distributed like D for all z € IN. If @ = s and # > 1 then 7(z,qa) is
distributed as the sum of z i.i.d. busy periods of an M/G/1 queue plus a vacation of length D. For



R(w) >0, let 77 (w) := Ele=*7(®%)] be the LST of 7(z,a). Let T*(w) denote the LST of a busy
period duration in an M/G/1 queue. Clearly, for (w) > 0,

Toalw) =

{ d*(w), if a =vand z € IN; (2.5)

d*(w) [T*(w)]*, ifa=sand z > 1.

The transition law. If the process is in state x and action a is chosen then the next state will be y
with the probability

Pyi(y), ifa=sand z > 1;
Ppy(a) =< Py(y—=z), ifa=vandz <y; (2.6)
0, if a =vand z >y,

where P;(y) stands for the probability of y arrivals during a vacation period.

It is seen that the stochastic process {X (), t > 0} endowed with the above structure is an SMDP
with state space IN (see Lippman [14] for instance). Further, cf. (2.2), (2.3),

Z 2(Xn, An)

0<t, <1

9 (2.7)

for all w € U, z € IN. In other words, as announced ®(z,u) is a long-run expected average cost

associated with the semi-Markov decision process {X(¢),¢ > 0}.

We conclude this section by giving a precise definition of an admissible vacation policy. Given
(X;=2,4 =4a;),1 <i<n-1and X, = z,, the n-th action A, will depend (possibly in a
random way) on the history h,, := (21,...,%p,01,...,a,-1) With hy := ;. An admissible vacation
policy u is then defined as any collection {u,}$° of mappings u, : IN" x {s,v}"~! — [0,1] with the
interpretation that the n-th decision is to serve (resp. to take another vacation) with the probability
U (hy) (vesp. 1 — u,(hy,)) whenever the information h,, is available to the decision-maker. In the
sequel, U will denote the collection of all admissible vacation policies. As usual, a policy u € U is
said to be stationary if u, only depends on X,, and if it is nonrandomized (i.e., u,(-) € {0,1}). For
every stationary policy u € U, the notation u(z) will stand for the action to be chosen when the
system is in state € IN. In particular, the stationary policy u that satisfies u(z) = v for all 2 < {

and u(z) = s for all s > 1,1 > 1, will be called a threshold policy with threshold [ and denoted by
uy.

Remark 2.1 The objective function in Federgruen and So [6] is not explicitly defined. However,
the technique used by these authors and the definition of the one-step expected cost (see (2) in [6])

seem to indicate that their objective function is (2.2).



3 The Value Iteration Approach

In this section, we introduce and solve a discounted version of problem P2. As it is often the case
in this context, the solution to this discounted cost problem will yield the solution to the average

cost problem P2 (see Section 4).
Define

Wa(z,u) = LY

T

; (3.1)

i 2( X, Ay) exp (—a ”Z—: (X, AJ-))

n=1 7=1

fora >0,z € IN, u €U, and let
Wy(z) = ilelfUWa(x’u) (3.2)
A policy uy € U, a > 0, is said to be a-discounted optimal if W, (z) = W,(z,u,) for all z € IN.

Let K be the set of functions f : IN — IR such that || f|| := sup,¢ |f(z)| max(z,1)™% < oo. Define
the Dynamic Programming (DP) operator T, : K — K by

a

Tof(z) := min {z(ac,a) + 7o) i Ppy(a) f(y)} , JeK, zeN. (3.3)

The proof that T,(f) € K for every f € K can be found in Lippman [14] (in our case the constant
b that appears in Assumption 2 in [14] can be chosen to be 14+ Ad + /\Qd(Q)).

The following results hold:

Proposition 3.1 For every a > 0, W,(z) satisfies the optimality equation

Wy(z) =T, Wo(z), =z € N, (3.4)
and further,
lim T2g(e) = Wae), 2 €N, (35)

for every function g € K. In addition, any stationary policy thalt minimizes the right-hand side of

(3.4) is a-discounted optimal.

Proof. See Lippman [14, Theorem 1]. [ |

Define IN* := IN — {0}. A set of functions f, € K, @ > 0, is said to satisfy condition

C1 if for any z € IN, k € IN", there exists a;; > 0 such that

folz 1+ k) = [T ()] falz +7)> 2(2 + k,s) — 2(z,5), (3.6)

for all @ € (0,a5%), r € IN;



C2 ifforany a > 0,2 € N, k € IN*¥,
Jala + k) = [T*(@) fulz) 2 0. (3.7)

It is easily seen from (2.4) that the set of functions f,(-) := 2(-, s) satisfies C1 and C2.

The following lemma holds:

Lemma 3.1 W, satisfies conditions C1 and C2.

Proof. Let f, € K be an arbitrary set of functions that satisfies C1 and C2. Let us show that

T, [ also satisfies these conditions. Throughout the proof @ > 0, (z,7) € IN? and k € IN* are fixed

numbers.

We have, cf. (2.6) and (3.3),

Tofaz+7+k) = [T%(a)] Tofalz +7) =

min{ (z4+7r+kv)+d(a ZPd Valz+r+E+y),
2z +r+ks)+d(a)|T(« I+T+kZP }
_[T*(a)]kmin{ (z4r,v)+ d(« EPd Valz +7+y),

z(x+ 71 s)+ d"(a) [T “'TZPd }

v

min{z(x Fr+ ko) = [T*()]f 2(z + r,v)

+d(a ZPd ) (falz+ 4k +y) = [T falz +7+1))

x4 r+k,s)— [T*(a)] 2(z + 1, 5)}, (3.8)
> min{kd—l—d* EPd ) (Fale+r+E+y) = [T () fule +7+71)),

2z + k,s)— 2(z, 5)} (3.9)

The inequality (3.8) follows from the inequality min(a,b) — min(c,d) > min(a — ¢,b — d); the
inequality (3.9) follows from the definition of z(z, a) together with the fact that 7*(a) < 1.



Letting 7 = 0 in (3.9) it is seen that T}, f, satisfies C2 because f, satisfies C2 (which implies that

the first argument of the min is nonnegative) and that @ — z(z, s) is nondecreasing (see (2.4)).

Hence, we may deduce by induction that T f, satisfies C2 for all n > 1. Consequently, by
Proposition 3.1

Wale + k) = [T*(0) Wa(2) = Tim [T2 fo(w + k) = [T () T2 fu(w)] > 0, (3.10)

which shows that W, satisfies C2.

On the other hand, since f, satisfies C1 by assumption and since kd > 0, it is seen from (3.9) that
there exists a;; > 0 such that

Tofolz 47+ k)= [T Tofule + 1) > 2(x + k,s) — 2(2,5), (3.11)

for all @ € (0, o k). The proof is concluded by using (3.10). [

Let u’ be a stationary policy that minimizes the right-hand side of the DP equation (3.4). Also

define
d -1

It is worth observing that the constant d/(1—p) that appears in the definition of Ny is the expected
duration between two consecutive vacation completion times if one uses the vacation policy that

always turns the server on when the queue is nonempty (i.e., the threshold policy with threshold
1).
The following lemma partially characterizes the a-discounted optimal policy for small discount

factors.

Lemma 3.2 There exists o > 0 such that for every a € (0,a*), there exist two integers L, and
N, such that

wi(z) = v if 0<a< Ly; (3.13)
ur(z) = s if Ly <z < N, (3.14)

for all x € IN, where 0 < L, < Ng and

N, — o0 when o —0. (3.15)

Proof. Using (2.5), (2.6) and (3.3), the DP equation (3.4) becomes

Wa(z) :min{ z,v)+ d*(a ZPd Volz +y),2(z,s) + d"(a ZPd }

(3.16)



for all z € IN.

We first show that for any > Ny, there exists a, > 0 such that for all @ € (0,a;), ui(z) = s, or
equivalently from (3.16),

Ay(z) = z(z,v) — 2(,8) + d*(«a ZPd (z4y)— [T ()] Wa(y)) > 0. (3.17)

Fix & > Ny. Since Wo(z+y) — [T*(a)]” W, (y) is nonnegative for all @ > 0, y € IN (for W, satisfies
C2), we may apply Fatou’s lemma to (3.17) to obtain

lim Au(s) > 2(x, )+ ZPd ) Tim (Wo(z + ) — [T(@)FF Wa(y)).
a—0 ae—>0
> z(z,v) ZPd (z+y,s)— 2(y,s)), since W, satisfies C1,
xd
_ . 1
1—-p ' >0, (3.18)

by using (2.4), (3.12) and the identity 3772, yPs(y) = Ad. This proves (3.14) and (3.15).

Let us now turn to the proof of (3.13). Since we have already shown that lim, 4 A,(z) > 0 for
x > Ny, it suffices to show that, for a small enough, the mapping z — A,(z) is nondecreasing for
0 S xr S jVO — 1.

We have for z € IN, cf. (2.4), (3.17),

A (2)

Ay(z+1) =T (a)Ay(z) = (1-T"(a)) (das + ) +d—(z(z+1,s) —T"(a)z(z,s))

+ d*(« E Py(y (z+14y) —T"(a)Wu(z+y)). (3.19)

Letting o — 0 in (3.19), we have again by Fatou’s lemma

lim {Ay(z 4+ 1) = T"(@)Au(z)} > d—(z(z+1,s) — 2(z,s))

a—0

+ Z Pa(y) im (Wa(z + 14 y) = T*(0)Wa(z + y)),

oz—>0

> d, (3.20)

where (3.20) follows from the fact that W, satisfies condition C1. Combining (3.20) together with
the inequality

lim (Aa(z +1) = T*(0) Au(2) = lim (Au(e + 1) - M) + (1~ T%(0)) Au(2)).

a—0 a—0
< lim (Au(e + 1) = Ag(2)) + T (1 - T7(0)) Au(),
a—0 a—



we see that the nondecreasingness property of the mapping z — A,(z) for < Ny — 1 and for «

small enough is established if one can show that

lim (1 — T*(a)) Ay(z) <0, (3.21)

a—0

forz =0,1,...,Ng — 2. The remainder of the proof is devoted to proving (3.21).

It is seen from (3.20) that there exists § > 0, such that for 0 < o < 3,

Ao (N,
Ay(z) < % (3.22)
[T~(e)]
forz =0,1,...,Ng— 1.
On the other hand, since 1 — T*(a) < ab/(1 — p) for all @ > 0, we have for z < Ny — 1
e T AO!(IVO)
lim (1-T*(a))Ay(z) < lim (1 -T*(a))————, from (3.22),
i (1= T (@) Aufe) € iy (1= T7(0) 20 from (32
b S
S (E) ilin@a AQ(JVO). (323)

Let us prove that A,(Np) is bounded from above by a number that does not depend on a, which
will prove (3.21).

From (3.17) and the fact that W, satisfies C2, we have for all a > 0
Au(No) < %7+2& (WalNo+y) = [T*()]* Waly)),

= 2(No,v) + Z Py(y) (Wo(No+y) — [T*(a)] Wa(No))

+i&MFWWO%Wwﬂm®W”WMD- (3.24)

We first compute an upper bound for the first summation in the right-hand side of (3.24). Since
lim,_o As(Ng) > 0 (see (3.18)), it follows that there exists ay, > 0 such that A,(Ng) > 0 for
0 < a < ay,, that is the a-optimal action in state Ny is to serve whenever a is small enough. Let

w,, be the policy that serves at the first decision epoch, and then follows the a-optimal policy.

For 0 < o < ap,, we have

ZPd Wa(No +y) = [T7(a)] Wa(No)) <

E Pi(y) (Wa(No + y, wa) = [T7(a)]" Wa(No)),

10



= ij: Py(y) (2(No+ y,s) — [T*(a)]” 2(No,s)), (hint: use (3.1)),

Nopd A3
1-p 2

IN

i Py(y)z(No+y,s) = z(No,s) + - 7. (3.25)

Next, we compute an upper bound for the term in the second summation in the right-hand side of
(3.24). For y > Ny, we have by condition C2,

Wal( No) = [T5(@)]"™ Wa(y) = = [T*()]* ™ (Waly) — [T*()) ™™ Wa(No)) <0.  (3.26)
Consider now y such that y < Ng. If the a-optimal policy serves in state y, then we have for
0 < a < ap, (use (3.1) again),

Wa(No) — [T*(a)]No_y Wa(y) < z(No, s). (3.27)
If the a-optimal policy does not serve in state y, then for 0 < a < ap,,
Wa(No) = [T*()] ™ Waly)
< 2(Noys) +d*(a) [T7(a))7" i Fa(y") (Waly) [T™()) = Waly +4))
y'=0

< z(No,s), (3.28)
since Wo(y +9') — [T*(a)]Y Wa(y') > 0 for all (y,y') € N?, @ > 0 from Lemma 3.1.
Combining (3.24)-(3.28), we get that for all a € (0, ay,)

Nopd
Aa(No) < #(No,s) + 2(No, o) + T2

< o0,

which completes the proof (with o* := min(3, ay,)). [

What Lemma 3.2 says is that for small @ > 0 there exists an integer N, that goes to oo when
a goes to 0 such that the optimal a-discounted policy is a threshold policy in {0,1,..., N, — 1}.
Observe that Lemma 4.2 does not say anything about the optimal decision when the system is in
state x > N,.

From Lemma 3.2, we immediately deduce the following

Corollary 3.1 The limit as o converges to 0 of the a-discounted optimal policy u?, is a threshold
policy ur, with threshold L < Ny.

11



4 The Long-Run Expected Average Cost Problem P2

The threshold policy uy, given in Corollary 3.1 is our candidate for the solution to the problem P2.
One way of proving that uy is P2-average optimal is to apply Theorem 2 in Sennott [18].

To this end, we first need to introduce the long-run expected average cost (see Ross [16, p. 159]
and Sennott [18, p. 249] where this cost is also used)
— Ep (2]

U(z,u):= Jim Fili]’

(4.1)

for z € IN, uw € U, where

Zp = EY [z”: Z(XZ',AZ-)] , (4.2)

=1

is the total expected cost incurred by the system in [0,%,41), 7 > 1.

Then, the following result is needed:

Lemma 4.1 Foreveryl > 1, x € N,
\I!('rvul) = (I)('rvul)v (43)

where V(z,u) has been defined in (4.1). Moreover, ® (z,u;) does not depend on x and is finite.

Proof. Assume that the system evolves under a threshold policy u; and define
Sy i=inf{t,,n>2:X(t,) =z}, (4.4)

given X(0) = z, ¢ € IN. Clearly, for every z € IN, the process {X(¢),t > 0} is a regenerative
process with regeneration point S,. If E¥[S;] < oo for every z € IN, then (4.3) follows from
Theorem 7.5 in [16]. Let us show that EF¥[S,] < oo for every z € IN.

It is easily seen that X := {X, },>1 is an irreducible, aperiodic Markov chain. Let us show that all

the states of this chain are recurrent non-null. Clearly, under policy w;

Xpp1 = U+ X, 1(X, < 1),
Uy +1, (4.5)

IN

for all n > 1, where U, denotes the number of arrivals during the n-th vacation period. Observe

from Section 2 that the U,,’s are i.i.d. random variables with probability distribution function Py(-).

On the other hand, we have using (4.5)

P Xpp1=0) = D PU+ X 1(X, <) =1,X, = j),
JEN

12



> PM(X,= —|—ZP“Z 7) Pa(l — ), (4.6)
> ¢ P"(X, <),
> ¢ Py(0)>0, (4.7)

with ¢ := miny<j<; P4(j). To derive (4.6) we have used the fact that X, and U,, are independent
r.v.’s, whereas (4.7) follows from (4.5). Consequently, the state [ is recurrent non-null, which in

turn entails that all the states are recurrent non-null since the Markov chain X is irreducible.

Let {v(y)}yen denote the limiting probabilities of the irreducible, aperiodic and recurrent non-null

Markov chain X. Then, a standard result from the theory of regenerative processes (see Theorem
10.4.3 in Cinlar [3]) ensures that

y [tQ] l/(y)
v(z) ’
d Y=o v(y)+ (b/(1=p) Cysiyv(y)
v(z) ’
< 4+ O/(01=p))(+Ad) < 0

for every z € IN, since }_, cnyv(y) < E[U, + 1] = I 4 Ad from (4.5), which proves (4.3).

Bpls,) = ZeN

We now prove the second part of the lemma. Since the Markov chain X is recurrent non-null, this
implies that {X(¢), ¢ > 0} is a delayed regenerative process. Therefore (see Ross [16, Remark, p.
161]),

S (z,u) = (y,w) = Py,

for all z # y. It remains to show that ®; < oco. Fix z > [.

Using again Theorem 7.5 in [16] we get that ®&; = EX[Z(S5;)]/E¥[S,], where Z(t) is the total cost
incurred in [0,¢). Since E¥[S,] > d > 0, we are left to prove that E¥[Z(S5,)] is finite. It is easily

seen by definition of z(z,a) that there exist three constants a; < oo, 7 = 1,2, 3, such that
z(z,a) <ay +azz + asz?,

for all z € IN, a € {s,v}. Hence,

B Z(5:)]

Ev [i z(Xn,An)] , (4.8)

n=1

Nz—1
Z($,8) + E;Ll l Z Z(AXn+17An+1)] 9

n=1

Nz
< z(z,s)+ay EX[N] + ay B [Z Xn_|_1] + a3z B [E Xn_H] ,

n=1 n=1
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Nz Nz
< 2(z,8) 4+ by B[N, 4 by EY lz Un] + a3 EY lz Uﬁ] , (4.9)

n=1 n=1

with N, := inf{n > 1 : X411 = @} given X; = z, by := a; + agl + a3l? and by := ay + 2asl.
Note that (4.9) follows from (4.5). Since N, is a stopping time for the renewal sequence {U, },>1
(i.e., {N; <4} C o(Uy,...,U;) for all © > 1), Walds’ relation (Loeéve [15, p. 377]) applies to the

H uy N.r ]
summations £ [anl U;

], j = 1,2, which gives

N‘T . .
Ey lZ UTJL] = EJ N EU] < o0, §=1,2,
n=1
where the boundedness follows from the fact that E¥[N,] < oo (cf. Ross [16, Lemma 7.4], where
the validity of Condition 1 in [16, p 157] is established in Appendix A), F[U,] = Ad < oo, and
E[U2] = A2d®) 4+ Ad < oo. Combining the above results with (4.9) yields E“[Z(S,)] < oo, which
completes the proof. ]

We are now in position to solve the problem P2.
Theorem 4.1 The threshold policy uy, given in Corollary 3.1 is optimal for problem P2.

Proof. Assume that Assumptions 1-5 in Sennott [18, p. 250] hold. Then, the proof follows from
Theorem 2 in [18] since we have shown in Lemma 4.1 that ¥(z,ur) = ®(z,ur,) for all z € IN.

It has been shown by Federgruen and So [6, Theorem 3.1] that Assumptions 3, 4 and 5 in Sennott
[18] hold. It is shown in the Appendix that Assumption 1 in [18] also holds. Assumption 2 in [18]
does not hold. However, Sennott only uses Assumption 2 to ensure that E*L(7(X(1),a)) < oo for
every z € IN, t > 0, a € {s,v} (see Sennott’s comment in the proof of Theorem 2). It is shown in

the Appendix that this expectation is finite in our case, which concludes the proof. ]

Remark 4.1 As mentioned in the introduction, the proof of Theorem 3.2 in [6] is not complete.
This theorem can be proved by using the proof of Theorem 4.1. If the approach used in [6] were
correct then the problem of the existence of an expected average cost optimal stationary policy for a
SMDP would reduce to the problem of the existence of an expected average cost optimal stationary
policy for a Markov decision process. To the best of the authors’ knowledge such a result has not
been proved.

5 The Long-Run Average Cost Problem P1

We now address the optimization problem P1 introduced in Section 1. We shall show that the
threshold policy uy, solves P1 over a subset V of the set ¢ of all admissible vacation policies.

14



The set V is defined as follows: u € V if u € U and if there exists a state zg € IN (that may depend
on u) and a subsequence {5y },>1 of {{,},>1 such that

o X(5,)=uaqforall n>1;

o {Sn}n>1is a renewal process with finite expected cycle length;

o {X(%),t >0} is a delayed regenerative process with respect to the renewal process {5y },>1.

Note that V # () since u; € V for every 1 <1 < oo (cf. the proof of Lemma 4.1).
The following result holds:

Theorem 5.1 The threshold policy uy, given in Corollary 3.1 solves the problem P1 over the sel
of policies V.

Proof. Fix v € V and assume without loss of generality that X (0) = zo (that is S; = 0). Define
S := 82, N:=inf{n > 1: X,,41 = 20}, and observe from Ross [16, Lemma 7.4] that E} [N] < oo

since £ [S] < oo by assumption.

Since B [S] < oo, Theorem 7.5 in Ross [16] applies to the cost ®(zq,u) to give

(5.1)

where we recall that 7, = Y, 2(X;, 4;). Now, it is easy to see that {X,, n > 1} is a discrete
regenerative process with regeneration time N. Hence, by regarding Zy as the reward earned

during the first cycle, it follows from Theorem 3.16 in [16] that

i ex ] = (5:2)
Combining (5.1) and (5.2) gives
EY[N] . v | Zn
O (zg,u) = E;L(;[S] Jim E7 [7] . (5.3)

Let us show that V(zg,u) is equal to the right-hand side of (5.3). Consider the renewal reward
process {(9,,Y,), n > 1} where

Mn+1 -1

Snt1
Yn::/s ' X(&)déE+~ Z 1(A;=s), n>1,

i=M,
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is the reward earned during the n-th renewal cycle [S,,, S,+1), and where M, is such that {p7, = 9,,.
Since, cf. (1.1),

| M- | M- Yaro
. u - V4 : u - : u i
Y M O Y A VR R b B

with M (¢) :=sup{n > 1:5, <t} for t > 0, it follows again by Theorem 3.16 in Ross [16] (see also
the bottom of p. 53 in [16]) that

s N
Viwow) = E [/ X(&)duvglmn:s)] /B8],

N tit1
= B [Z ( /t X der 14 = 5))] JEX[S] by definition of §, N, ;,
=1
Eu [AT] 1 n tit1
= el g |2 X(€)dé +1(A; = .
Ex [5] Jim F [n;u (§) dé +~1( 8))], (5.5)
EA[N] 1 tias i
_ o i u u - _ CoAL
= T dm e | [ x@de 0= 91 x|,
Eg [N] Zn

= B [5] B [7] from (2.3), (4.2),

where the derivation of (5.5) is analogous to the derivation of (5.2) by replacing the reward Zy by

the reward YV, ( tt:“ X(&)deE+~v1(A; = 3))

This shows that V(zg,u) = ¥(zg,u). That V(z,u) = ¥(z,u) for all z € IN is a consequence of the
assumption that {X(¢),¢ > 0} is a delayed regenerative process (see Ross [16, Remark p. 161]).
Hence, by Theorem 4.1, V(z,ur) < V(z,u) for all z € IN, w € V, which completes the proof. [ |

A Appendix

(a) Proof that Assumption 1 in Sennott [18, p. 250] holds.

Assumption 1: There exists § > 0 and € > 0 such that P(ty > 6| X1 = z,4; = a) > € for all
z €N, ac€{s,v}.

For all z € N, a € {s,v}, 6 > 0,
P(tg>6|4X1:$,A1:G)ZP(D>6). (Al)

Since E[D] = d > 0 by assumption, there necessarily exists é > 0 such that the right-and side of
(A.1) is strictly positive, which shows that Assumption 1 holds. ]
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(b) Proof that EZ (7(X(%),a)) < oo for every z € IN, a € {s,v}, ¢ > 0.
We have for every 2 € IN, a € {s,v},t > 0,

EpH(r(X(1),0))

Bt [ELH(r(X (), @) [ X ()],
L( 1))
max{ — },

max {d, 2% }

since F¥(X(t)) is maximized by the policy that never turns the server on. This concludes the proof.
]

IN

IN
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