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MAXIMUM PRINCIPLE ON THE ENTROPY
AND MINIMAL LIMITATIONS FOR KINETIC SCHEMES

Brahim Khobalatte(*) and Benoit Perthame(*)(**)

(*) INRIA, Centre de Rocquencourt, Projet MENUSIN
BP. 105, 78173 Le Chesnay Cedex, France

(**) Université d’Orléans, Département de Mathématiques
BP. 6759, 45067 Orléans Cedex 2, France

Abstract :

We consider kinetic schemes for the multidimensional inviscid gaz dynamics equa-
tions (compressible Euler equations).We prove that the discrete maximum principle
holds for a special convex entropy. This fixes the choice of the equilibrium functions
necessary for kinetic schemes. We use this property to perform a second order oscilla-
tion free scheme where only one slope limitation (for three conserved quantities in 1d)
is necessary. Numerical results assert the strong convergence of the scheme.

PRINCIPE DU MAXIMUM SUR L’ENTROPIE
ET LIMITEURS POUR SCHEMAS CINETIQUES

Résumsé :

Nous considérons des schémas cinétiques pour les équations de la dynamique des
gaz non-visqueux (Equations d’Euler compressible). Nous prouvons le principe du max-
imum discret pour une entropie convexe particuliere. Ceci fixe le choix de la fonction
d’équilibre nécessaire aux schémas cinétiques. Nous utilisons ensuite cette propriété
pour réaliser des schémas du second ordre, non-oscillants, ou une seule limitation est
nécessaire (pour trois quantités conservées en 1D). Des résultats numériques indiquent
la convergence forte du schéma.

Key-words : Compressible Euler Equations - Upwind schemes - Kinetic schemes
- Entropy property - Second order schemes.

Mots-clés : Equation d’Euler compressible - Schémas décentrés - Schémas
cinétiques - Propriété d’entropie - Schémas d’ordre deux.

A.M.S. class. numbers : 35L64, 76N10, 65M93, 76P05.



Introduction

We consider the gas dynamics equations in one or two space dimensions

Op + div(pu) =0
(1) Oipu;j + div(puju) + 8;,p = 0,5 = 1,2,
OE + div[(E+p)u] =0

where = = (21,2),u = (u1,u2) and the total energy E = p|u|?/2+ pT/(y —1) is related
to the pressure by the relation p = pT,1 < ¥ < 2 in dimension 2, 1 < 4 < 3 in dimension
1.

It is known that, because of shock waves, an entropy inequality has to be added to
(1) (see Lax [3] for instance)

(2) 0:pS + div(puS) <0,
where the specific entropy can be choosen as
(3) S = p/TVG—Y),

As it was proved by Tadmor [10], the combination of (1) and (2) yields that S satisfies
the maximum principle

(4) S(z,t+ h) < Mazx{S(y,t); |y — z| < ||ullch},

and, in 1D, Godunov and Lax-Friedrichs schemes preserv this property at the discretized
level because they solve exactly the system (1). A reason why (4) should hold is that S
satisfies the (meaningless) equation

015 + u.VxS S 0.

The purpose of this paper is to show that the property (4) is also satisfied for ki-
netic schemes in 1 or 2 dimensions (we do not consider higher dimensions here but
the extension is straightforward). This requires to choose the equilibrium function in
an appropriate way, in the class introduced by Perthame [6, 7], and to interpret the
scheme as a discretization of a transport equation. Then, the property (4) follows from
a variational principle. It is remarkable that the appropriate equilibrium function is not
the maxwellian distribution.

It is natural to try to extend this property to second order accurate schemes.
Then, it appears that a conservative second order reconstruction, following the method
introduced by Van Leer [12], has to increase the specific entropy and we can only impose
the maximum principle up to a second order error. This is achieved in reconstructing
second order approximation Pit+d of c,a(:vi+%) for p = p,uor §. To do so, we use centered
predictions of Ay and we just impose

(5) 0< Siy3,Si-y < Maz(Si,Siq1,Si21) and pyy >0
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and the conservation of the quantities ¥ = p, pu, E i.e.
(6) 2V, = \I’,'.}.% + \Il,'_.é-
In practice, to realize (6), we have to relax (5) up to second order.

Numerical tests show that this limitation (5) alone is enough to prevent much of
the oscillations in the fully second order scheme, at least for some classical tests. This is
somewhat surprising since non-oscillatory schemes usually require as many limitations
as conserved quantities, even though ENO theory ([2, 9] and the references therein)
shows that some flexibility in the reconstruction is possible.

We would like to point out that the conservative entropy inequality (2) 1s well
understood at the discrete level (Osher [5], Tadmor [11]) for general hyperbolic systems.
But the maximum principle for the specific entropy (3) is not a consequence of (2) alone
and it holds only for the particular case of gas dynamics (and related systems), therefore
it requires a specific proof.

The paper is organized as follows. In the first section, we consiccr the 1D case
and the 2D case, for a general mesh (rectangular, triangular, dual type) is treated in
Section II. Then, we describe the second order scheme, how the limitation (4) is used
and numerical tests in Section III.

I. The 1D case

The general form of a conservative scheme for (1) is
(7) vt _U;'+U(E’:+1/2“Fin—1/2)=0
where U = (p?, (pu)?, EM)! is the average, on the mesh (zi-1/2, Tit1/2) with uniform
size Ar, of the vector (p(x,nAt), pu(z,nAt), E(z,nAt)). The time step At is related
to ¢ by
(8) o = At/Ax.

The class of kinetic schemes we are going to consider is given by a flux splitting

(9) Fliip=FY U+ F (UL,

1) PO =p [ ol 2 L o/ VT

v 7T 7T

and F'~ is obtained in integrating over v < 0, rather than v > 0. This flux is consistant
as soon as F~(U)+ F*(U) = (pu, pu® + pT, (E + p)u)* which is achieved when ¥, { are

even, nonnegative functions satisfying (see [7])

)+ (0,0, T)*¢(

ay [t =), [ dwide == 53 -/ 1),
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We are now going to specify x and ¢
(12) x(w) = a(1 = w?/B)X, ¢(w) = 6355 [x(w))(VFN/B=7)

where a, 3,6 are choosen to satisfy (11) i.e.

( 3
a= [2\/;'3/0 cos*/(=Dg4dg) 1

(13) { 8= / " cos?/(=Dgdg/ / * sin?6cos? (17144,
0 0

L AB -1/
O = e

With this choice we can obtain a family of singular entropy inequalities. They corre-
spond to the generalized convex functions pII(U), where II is parametrized by n > 0

0 if p7YT <,
(14) NU)=<1 if p7 /T =n,

+ oo otherwise.

which are obtained as the limit as p tends to +o00 of the convex entropies p(p?~!/T7)?.
The corresponding conservative entropy inequality has a flux splitting form

(P < (pI)] = oGF(UM) + oG~ (U}

15
(15) +0GH(ULy) ~— 0G™(UlL,y),

where the entropy fluxes G* depend on 5
(16) G*(U) = FF(U)I(V),

where Fpi is the mass flux in (7), (9). It has to be noted that G* has the sign &+ and
pi — o FH(U)+ oF,(U) > 0 with the above CFL condition. Therefore the r.h.s. of
(15) is the sum of three nonnegative terms depending respectively of U, U, U ,.

We use the convention that the r.h.s. i1s 400 whenever one of those three terms is +o0.
We can now state our main result

Theorem 1. With the choice (12), the kinetic scheme (7)-(10) satisfies
(i) p?*! > 0,T1*! > 0 whenever p?, T > 0,

1 14y
(i1) the conservative entropy inequalities (15) for any n > 0,
(ii1) the maximum principle on the specific entropy

(17) SPth= oI NI < Mag(S, SE, SILy)
under the CFL condition (ul| + /BT )0 < 1,Vu.
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Remarks. 1) for v = 1.4, we find # = 7, and thus our CFL condition is stricter
then the classical one. But in practice we can use the classical one.

2) the classical Boltzmann scheme corresponds to x = ae™" ’/2 (see Deshpande
(1]). It cannot be analyzed in those terms. Also the theory of kinetic formulations of
isentropic systems developed in Lions-Perthame-Tadmor [4] requires the x function in
(12), but there, the entropies are much simpler than those developed in the proof below.

Proof of Theorem 1
1st step. The kinetic level. We first introduce the discretized transport equations

(18)  fi(v) = £ (v) + olvs f7(v) = v f,(v) = v4 iy (v) + 0 f7(0)] = 0,

(19)  gi(v) — gi(v) + olv4 97 (v) — v-gi41 (v) — va gl (v) + v-g7' (v)] = 0,

where vy = maz(0,v),v4 —v- = v and

(20) @) = pixl0 = ul)/VTLL gl ) = P VT [0 = )/ V]

As usual ([1}, [7]) the finite difference scheme (7), (10) is deduced multiplying (18) by

the vector (1,v,v%/2)! and adding to it (19) multiplied by (0,0,1)! and integrating dv.
Indeed, this clearly follows from the identities

v2
Up = /IR(f{' off A g b,
(21) U= [ S hib a0
FEUN) =% [oali,oft, 17 + o7 do,

which follows from the only consistancy relations (11). Now, we have f; > 0,§; > 0,
under the condition o|v| < 1 for all v such that f]'(v) # 0, and this is exactly the CFL
condition of theorem 1. This proves (i).

2nd step. The maximum principle. We notice that h = (f1*1g7=%)1/(7=1 s a
convex function of f,g. Since f; and §; are also convex combinations of f7, f7i,, fiL,
and g7, 971, 9;—1 (whenever o satisfies the CFL condition), we thus have

(22) hi <Rl —ovy —ov_)+ R 0v_ + Al jovy.
Now ,with the choice (12) of x, (,h is just given by

(23) h =6 (57)°1){jv—ur2<pTr)

and thus we obtain
(24) h; <X :=6Max(ST, St st )2

)



At this level we need a lemma similar to those of [6], and which proof is simple calculus
of variation and thus is skept.

Lemma 2. Let e = p7 /(v — 1) such that

02
e = min [ (5 F(0) + o(w))do: S(2) 2 0,9(x) 20,
/m“’ v)f(v)dv = (p,0), (p > 0), fr*1g7=% < £771}.
Then p/r/~Y = |/T/§ and the minimum is achieved by f = f-x ) =
P/F(35E). D

Going back to the proof, we apply the lemma with f = fi(v—ul*!),¢ = gi(v—u?)
so that the constraints in the minimization problem are realized with p = p"*' and £
given in (24). We thus have

—1)/ —f+g=p T > e(y 1) =
Pt (it ) V/E]6)!

which exactly means STt > /T/6 and (iii) is proved.

3rd step. Entropy inequality. As in the second step, let us introduce, for a fixed
positive number 7, and for p > 1 the function

Y+ ,v=3)1/(v=1)

Since it is a convex function of f and g we also have
ki(v) < kM) (1 = ovy —ovo) + kI (v)ove + kP (v)ovsg.
we need now the

Lemma 3. The minimization problem

Min{ /m FFH g3 P/ du; £ 20,9 2 0,

(25) .
JLaosd = 0.0, [ 5F+a=oTir-1)

admits a unique minimum

)2

/B;IT)+
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vJ)

where a,, 3,6, are such that the constraints in (25) are satisfied. DO

Again we skip the proof of this lemma which consists in writting the Euler-Lagrange
equations associated with (25). As before, we use this lemma with p = p!*', T =
T f = fi(v —u™!),9 = gi(v — «I*!) and the corresponding minimizer F,, G, thus
satisfy

(F7+1G7—3)1/(7—1) / _
F, 2 P P < ki(v)dv
Jo Bl P < [k

(26)
< /IR kM) (1 = ovy —ov_) + kY (v)ove + ki (v)ovy]do.

Now we let p go to +00 and we find exactly the entropy inequality (15) since the r.h.s.
of (26) goes to p" T II(U*!) and

/m K (0)(1 = 0vy — 0v_)dv = (p7 — oFH(UP) + 0 7 (UM )I(UT)
[ Fawpesds = £FEODAWY).

This concludes the proof of Theorem 1. O

Let us end this section by some remarks on the entropy. First, let us notice that
the choice ) )
— W= \a+2pA)/2p w
X‘ap(1_8_+ 799—61)/\/'(1__)

p P

in the scheme (7)-(10) leads to an entropy inequality (for a regular entropy now) of the

form (15) with

(U) = ppolp/T/7D) G* =/ vFy(FyHGr=2 /Dy,
v2>0

with F},, G, defined in lemma 3 and some appropriate constant x,. The proof of this as
well as the proof of (ii) in Theorem 1 follows in fact that of [6], but here we have a more
general approach dealing with two functions f, ¢ rather than two kinetic vriables v, I as
in Deshpande [1]. Also we would like to emphasize that an exact entropy inequality is
necessary to get a maximum principle on the specific entropy, and it is an open question
if the proofs of Osher [5] or Tadmor [11] could be extended to get, for Roe or Osher
schemes a maximum principle, or for kinetic schemes the entropy inequality.

II. The 2D case

We show here that our results can be naturally extended to the 2D equations
discretized on an unstructured mesh. Our motivations and notations follow those in-
troduced in Perthame-Qiu [8§].



Let us consider a grid as shown in figure 1, which cells C; have L(i) edges
Ey,...Er(L = 3 for triangles, 4 for rectangles and depends on : for dual type grids). We
call v; the unit outward normal to E,, |E;| the length of E}, |C;| the area of C; and j(!)
the index of the cell C;(;y neighboring C; along E; (j(1) also depends on 7, but we skip
this dependance for simplicity).

We now set U = (p, pu;, puz, E)} and we consider numerical schemes for the
equations (1) under the form

( L(1)
U.'n-H'CiI - U,'nICI'I — At Z IEIIFI-VI’
=1
Fiy = FT(UM).mi+ F~(Ugy)),

+ = vV (%
F (U)—ip/W( )£ [(1,0,

vT
(0,0, T) o —= \/_ —\)dv/T.

\

The consistancy relations are now that the nonnegative even functions y, ¢ satisfv

2_—),
28 1, wrw)x(w)dw = (1,6k1), w)dw = A 1= ————,
(28) /IRQ( ywrwy)x(w) (1,6x1) / ,#(w) =T

the general value of A is (24+ N — Nv)/2(yv — 1) in N dimensions, 1 < v < (N + 2)/N.
We choose now

2
(29) ) = (- L o) =51 - h o,

where again «, 3,6 are the only constants which yields (28). And we obtain the

Theorem 4. The scheme (27)-(29) satisfies
(i) p"*! > 0,T7"*! > 0 whenever p? > 0,T" > 0

(11) the singular family of conservative entropy inequalities

(P [Cil < [(pIDFICH| - At |E|GHUT)]
{

(30)
— AtY |EIGT (U],
l

(iii) the maximum principle on the specific entropy
(31) St < Maz(ST, )y Snn)s
under the CFL condition At Y, |Ei|(Ju?| 4+ /BT!) < |Ci| foralli. O
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In (30), II is defined as before by formula (14) and
(32) G*(U) = FX(U)I(V).

Notice that the notation + here differs from that of the 1D case, just because of the
introduction of the normals, and because we have no natural orientation for an unstruc-
tured grid. Again, the r.h.s. of (30) is composed of L + 1 nonnegative terms and we use
the convention that it is +00 whenever one of those L + 1 terms is +o00.

We skip the proof of Theorem 4 which is a straightforward extension of that in
Section I. The only new point is to introduce, following [8], the kinetic scheme

Fi@)ICi| = FF)Ci| — ALY (v.n)+|Eil)
{
+ > (van)-|Eilffipy(v)
l

(with similar formulae acting on g), together with the condition

n_ n v - u? n n _ n v - ’U?
(33) [ =pi X(W)/Ti 9i = piel Vs )-
then the exponents in (29) are uniquely recovered by the requirements that,
(fg7=%)}/(2=1) being homogeneous to S1](.}, the minimum in Lemma 2, but with
the constraint

fgr~? <1,

is achieved for our choice of x.¢ in (29).

II1. Minimal limitations for second order schemmes.

We go back to the 1D case and consider second order schemes in space and time
obtained using slope reconstruction (see [12]) together with a Runge-Kutta scheme in
time. Our purpose is to show that only few oscillations appear (see figure 2) with
the above kinetic scheme, using centered slopes on p,u,T and limited so as to preserv
the nonnegativity of p and T as in [7]. Moreover an additional limitation ensuring
the maximum principle on the specific entropy up to second order is enough to damp
all oscillations (see figure 3). This amounts to a single limitation of min-mod type,
combining Dp, DT for three quantities. The results are better accurate than with a
min-mod limitation on the three quantities as is shown in figure 4.

II1.1. The second order scheme

Let us denote by Ui"’i the inner approximations in the mesh ¢ of U™ (x4, /2 £ A2 /2).
The construction of AU is discussed latter.
Then, the second order, in space and time, scheme we use is

Ui = UM+ o(FYUM Y+ F-(ULT) - FYURH - FP(UMT)) =0,
(34) Ui—=Ui+o(FHUF)+ F~(U3,) - FH(UL,) - F~(U7)) =0,
Urtl =(ur 4+ Uy)/2.



This particular Runge-Kutta scheme will preserv nonnegativity, while we would be
unable to prove it with other schemes. The reason is that U and U will have nonnegative
density and temperature and then a convex combination of them, as U,"+l will also,
since p and pT are concave functions of U.

IT1.2. Nonnegativity of p, T and limitations.

We now prove that the scheme (34), with light limitations on a centered prediction
of the derivatives, preservs nonnegativity. We use the variables p,u and £ = p"/p =
S771 and set

Api = sgn(pi+1 — pi-1)Min(|piv1 — pi-1l/4, pi),

(35) Au; = sgn(uis1r — vi—1)Min(|uipr —uizr|/4, VTi /(v = 1)),
AE,‘ = sgn(Z,-+1 - E,’-])Min(|2,'+1 - E,'_1|/4,E,'/4).

Then, following the idea introduced in [7|, we set (droping the exponent n)
(36) p< = pi £ Api,uf =y, :tAu,,E =X, + AL,

where u; and £, are computed for conservation of momentum and energy by

+. + - + +2 Pz - i
piui + piu; = 2piu;, p; /‘7+————- piu; 24+ ——— =2L,.
[ Il } 1 1 1 v+(')""1) 1 t

This is readily achieved for the second order modifications of u;, ¥; given by
(37) w; = u; — pAug, p = Api/pi.

and I, is the positive root of the polynomial

(37") CZ* —(A+B)Z + (B - A)AT; — CAZ? =0
where
A= (pi—A8p:)",B=(pi+8pi)",C=2pT; + 5 (ﬂ - 1)(Au)?/(y - 1)
we add to the centered prediction (35) the supplementary limitation
(377) |AT;| < (A + B)/2C,

then it is easy to check that (37’) has indeed a unique non-negative root £,. Also pft >0
and thus we obtain the

Theorem 5. The scheme (34)-(37) preservs the positivity of p and T, under the
CFL condition (|u:'i| +4/BTM e <1/2. O

10
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Proof of Theorem 5. First of all let us show that U has nonnegative density and
temperature.
We use the following kinetic scheme

(38)  Fi— (M T2+ oot Y o £ — ot Y +eT fT] =0,

with the same equation for g, and

prit _ it (WD) JreE s ke e

N

We claim that (38) stems, using the same combination as in Section I, the scheme (34).
Indeed, we just have to check that the second term of (38) gives U ; this occurs since

/ [(1,0,0%/2)(f7 + f17) +(0,0,1)(¢1* + g7 )]dv =
=U,n++Uln_ =2Uln’

thanks to (36). Now to check the nonnegativity of f, we need 1/2 > ofv|, which gives
the CFL number of one half. O

At this level, the limitations involved in (35) are very light giving however few
oscillations (figure 2). Let us go one step further and consider the maximum principle
on the entropy.

II1.3. Limitation by maximum of entropy.

We still denote ¥ = p?/p and we now require to have the maximum principle on S
or L. Therefore we impose the additional limitation in (35), (377)

(39) IAS| < Maz(Zi, Sig1, Tie1) — T

This implies a maximum principle on ¥;4,/, up to a second order term because ¥;+; /2
is given through X, and not ¥; in (36). It seems impossible to perform second or-
der reconstruction, satisfying the conservativity requirements (36) and the maximum
principle on ¥ or S.

In figure 3, we show the numerical results obtained coupling the scheme (34)-(37)
to the additional limitation (39) ; the oscillations around the contact discontinuity are
damped completely and it remains only an overshoot before and after the shock waves.
This is also true for other tests problems : Lax shock tube, blast waves problem.

Remark : The choices of p and u as prir;litive variables for the reconstruction is
somewhat arbitrary here. Only ¥ plays a particular role. Let us only point out that they
lead to particularly simple computations, and they are natural in the kinetic schemes.
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figure 3 : sod shock tube . 200 points.
second order scheme with
the only limitation on the
entropy (6).
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