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Abstract .

Fictitious domain approach is a technique to solve partial differential equations on
arbitrary domains, 2, with an iterative method which i3 preconditioned by the separable
linear operator attached to the uniform grid closest to Q2. It is very fast but it uses grids
which are not very smooth near the boundaries. )

In order to evaluate these methods and compare them with more classical methods
like the Finite Element Method on unstructured meshes and the preconditionned conjugate
gradient method, we have applied two of these methods to an industrial problem for which
the solution is known: the computation of the pressure distribution of an airfoil with lift
. an irrotational flow.

At equal number of points the fictitious domain approach is much faster. At equal
precision the fictitious domain approach is also faster; however if a mesh optimizer is used
the Finite Element Method has similar ezecution times

DOMAINES FICTIFS AVEC PRECONDITIONNEURS SEPARABLES
CONTRE MAILLAGES ADAPTES NON STRUCTURES

Résumé .

La méthode des domaines fictifs est une technique pour résoudre les équations auz
dérivées partielles dans des domaines quelconques Q en utilisant les solveurs rapides fac-
torisés sur un préconditionneur issu du systéme linéaire associé au méme probléme mais
sur un maillage uniforme voisin de celur de 2. Ces méthodes sont trés rapides mais elles
utilisent des maillages assez irréguliers prés des bords.

Pour évaluer cette approche et la comparer auz méthodes plus classiques qui suivent
les parois comme la méthode des éléments finis, nous avons résolu par les deuz techniques
un probléme industriel classique: le calcul de la distribution de pression autour d’un profil
portant en écoulement irrotationel.

A nombre de points égal la méthode des domaines fictifs est beaucoup plus rapide.
A précision égale la méthode des domaines fictifs est aussi plus rapide; toutefois avec un
optimiseur de matllage les temps calcul de la méthode des éléments finis sont du méme
ordre de grandeur.



1. INTRODUCTION

The numerical solution of Nonlinear Partial Differential Equations on computers is
expensive yet industrially important (Computational Fluid Dynamics and large displace-
ments Structure Dynamics for examples). Numerical methods on structured meshes are
usually faster than for unstructured meshes; the repetitive structures of the rows of the
linear systems can be exploited and the vectorization of the programs are easier. Yet un-
structured meshes are needed for industrial applications because the geometries are usually
complex. Hence the success of the Finite Element Methods.

By using iterative methods to solve the linear or nonlinear systems it is possible to
retain some of the advantages of the structured mesh approach on problems which involve
complex geometries. One such method is to precondition the linear systems on the general
mesh by the one corresponding to a structured mesh close to it. To retain the ”ijk”
structure of the linear system it is best then to construct the general mesh as follows:
Inbed the domain of integration of the PDE into a larger "fictitious” domain of simple
shape (a rectangle) and deform the umform mesh by moving the nearest points onto the
boundaries of the domain.

It is difficult to trace back who first proposed this method but the Russian school
of applied mathematics has developped it extensively[8].Recently Young et al[17] (see also
[18]) at Boeing have used the method for transonic flows in 3 dimensions and demonstrated
its power in an industrial environment: easier mesh generater and faster linear solver.

The problem we want to address in this paper is the comparison between the fictitious
domain approach and the more classical approach which uses smooth meshes near the
boundaries. The advange of the later is that the mesh can be optimized and/or adapted
with an a priori error estimator [19][20][21]. While it is obvious that the fictitious domain
approach will be faster when compared at equal degree of freedom, it is not clear that it
is so if the methods are compared at equal precision. Thus we have chosen an industrial
problem for which we know the solution: the computation of the lift of a Joukowski airfoil.
It is a linear problem but we feel that it is releveant to the nonlinear situations because
these usually break the nonlinearity into a sequence of linear problems.

So for the numerical solution of this problem we have two finite element methods of
degree 1:

1. The mesh is unstructured the linear system is stored in Morse form and solved by
the Preconditioned Conjugate Gradient method (PCG) and the preconditioner is an
Incomplete Choleski factor which keeps the elements of the neighbors of the neighbors
of the vertices.

2 The mesh is uniform except for the first layer near the boundary. The linear system
is also solved by a PCG but the preconditioner is the linear system corresponding to
the finite difference operator on the uniform mesh including near the boundary. This
operator can be factorized in z and y; hence the preconditioner is the product of two
tri-diagonal linear systems.

The comparison of the methods shows the following:
- At equal number of points method 2 is much faster.
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- At equal precision method 2 is also faster if the mesh of method 1 is not dptimized.
- If the mesh is optimized so that the number of points can be reduced without deteri-
orating the precision then both methods are equally good.

In addition this paper contains a comparison of method 2 for a Neumann problem
and a Dirichlet problem because the calculation of the lift of the airfoil can be done either
with a potential function or a stream function. It is shown that the formulation with the
Neumann condition (potential) is better. '

2. THE PROBLEM.
For a perfect incompressible fluid, velocity fields u which satisfy

Vau=0 (2.1)
Vxu=0 (2.2)

are solutions to the general equations of fluids, the Navier-Stokes equations, if the pressure
is given by

1

- §|"|2~ (2.3)

P =Px

The flow around a wing profile S at rest in an unbounded fluid at constant speed at
infinity u is approximated numerically by a flow in a bounded domain 2 with an outer
boundary I’ at a finite distance ; so € is a two dimensional domain with boundary ' =
I's U S (see Figure 2.1).

The wake, modeled by a stream line/surface ¥ issued from the trailing edge behind
S, is not irrotational so (2.1)(2.2) hold in  — X. The boundary conditions on ¥ are

ung|zg =0 I is a streamline (2.4)
(Vxu)ng|lg =0 Vorticity is parallel to X. (2.5)
|u|g+ = |u|lg-  Continuity of (2.1) and of the pressure (2.6)

Here ny is the normal to £ and £%, £~ indicate the value from below and above when
the functions are discontinuous.

Problem (2.1)-(2.6) is well posed with boundary conditions on the normal component
of u:

u.njr, = Uoon, unjs=0 (2.7)

2.1 Stream functions.
In two dimensions, (2.1) implies that there exists a scalar function ¥(z) such that
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u=Vxtp={ps -1}’ (2.8)

Then (2.2) reduces to

Ap=0 in Q-I (2.9)

In two dimensions (2.5) is automatically satisfied and (2.4), (2.6) imply the continuity of u
across . This, in turn, will be satisfied if (2.9) is extended into Q2 and ¢ € H%(2). Hence
we consider the following problem:

Ap=0 in Q (2.10)

To find boundary conditions for 3 we use (2.7):
o
os 7
where s is the tangent direction and g is either u.n or zero. This equation can be
integrated and give

(2.11) -

Y|r., = Uoo1T2 — Uso2Z1  YP|s = B, constant. (2.12)

The constant $ is not known but it can be found by asking the continuity of the flow at
the trailing edge P:

op G
%IP*’ = ——|p- (2.13)

It can be shown that there is one and only one solution to (2.10)(2.12)(2.13) because the
solution of (2.10)(2.12) is linear in 3 and (2.13) is an equation to determine 3. Mathemat-
ically it has been shown (see Grisvard [10] for example ) that it is also the only solution
of (2.10)(2.12) which belongs to H?(); when f is not such that (2.13) holds, the solution
has a singularity at the trailing edge and it is in H!(Q) but not in H?(Q).

From a practical point of view the easier way to solve the problem is to use the linearity
in . Let 4° and ! be the solutions of

AP’ =0 in 9, ¥°r. = tc1Z2 — Uo2Z1, ¥°|s=0 (2.14)
APt =0 in  Q, Plr. = Ueo1T2 — U2y, P'|s=1. (2.15)
Then the solution to the problem is

¥ =Byt + (1~ B (2.16)
with 8 such that (2.13) holds, that is



0 a 0
8 |py + B |p-

B = = 2 (2.17)
AL =00y 4 At
2.2 Potential flow.
Another approach is to say that (2.2) implies that there exists ¢ such that
u = Vo (2.18)
Then (2.1) implies that ¢ satisfy
DAp=0:n Q-5 (2.19)
Boundary conditions are
0 0
3—: = Ugo.n 0N [ _6% =0on S (2.20)

Unfortunately, ¢ cannot be extented continuously across £ and (2.4)-(2.6) be satisfied. In
two dimensions there is a jump discontinuity of ¢ across ¥ but the jump B is constant.
Then it is easy to see that (2.6) needs be written only at the trailing edge P. So we obtain
the following condition on ¥ :

elg+ = plg- +5 (2.21)
where the constant § is determined by writing that
| Oy Oy
Llpr = 5olp-. (2.22)

Here again, in practice, the linear dependency of ¢ upon B can be used and one
computes the solutions of (2.19)(2.20)(2.21) for # = 0 and B = 1 and find # by writing

(

Figure 2.1 Flow around an airfoil; ¥ is the wake.
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For both approaches it can be shown that the lift Cy of the airfoil (the vertical com-
ponent of the resultant of the force applied by the fluid on § while neglecting the viscous
effects) is proportional to 3 :

Cy = Bpliteo] (2.23)
where p is the density of the fluid.

2.3 Joukowski airfoils
An analytical solution to the above problem exists for certain profiles 5.
Let

: C?
§=6+2; 2(§) =21 +iz2 =§+£— (2.24)
Let € < 1. When £ = C(1+¢€)e'? —eC and 6 € [0,27], z defines a curve which is a symmetric
" Joukowski” airfoil. It is a conformal transformation so the problem can be solved in £
instead of x.

The velocity on S is (Krisnamurthy [3])

2|uco|

lulis = ~00) [sina — sin(a — 0)] (2.25)
where « is the angle of attack and
02+(1,2—'Czb 2 Cza 214 :
= 7 2
w(0) = () + (s ) (2:26)
with
a=2C%1+¢)?sinfcosb — 2(1 + €)C?sin 8 (2.27)
b= C%(1+¢€)*(cos® § —sin® ) + €2C? — 2¢(1 + €)C? cos § (2.28)
In our numerical experiments we have chosen
30
=0. = — 2.29
e=01 C 157 (2.29)

The relative error between an approximate solution u, and the exact solution is measured
by

(p lun.s? — u.s?dy]?

: (2.30)
[Jr lu-s|*dy]=

precision =

where s is the tangent vector to S.

3. SOLUTION BY THE FINITE ELEMENT METHOD ON UNSTRUC-
TURED MESHES



3.1 Variational formulation and approximation
Consider the formulation of the problem with a stream function:

Ap=0 in Q (3.1)
with Dirichlet boundary condition given by (2.12)

Plr = 3r (3.2)

The variational formulation of the problem is in the Sobolev space of square integrable
functions with square integrable derivatives H!({2). We denote as usual by Hj(2) the
subset of such functions which are equal to zero at the boundary:

/ V$Vw =0 VYw € Hy(R), % —yr € Hy(Q). (3.3)
Q
We approximate the problem by

Find '(/)h such that Yr — Yrp € Hoh and

/ VypoVwp =0 Ywy € Hop (3.4)
Q

where H is the conforming finite element space of degree one. § is divided into
triangles {Tx}1.. Kk such that

- Ti N T, = Q, or 1 vertex, or 1 whole side (resp. side or face) when k # 1

- The vertices of the boundary of UT} are on I’

- The singular points of I' (corners) are on the boundary I'y, of UT.

We note that Q4 = UTy, I'y = QU Tk , {¢'}}* are the vertices of the triangles, and &
1s the longest side of a triangle :

h= ¢ gt - ¢ 3.5
e l¢" — ¢’| (3.5)
Hy = {wh € Co(Qh) : wh|Th € Pl} (3.6)

where P! denotes the space of polynomials of degree 1 and C° the space of continuous
functions. We denote by N the number of interior vertices.

3.2 Numerical solution
Problem (3.4) is a N x N positive definite linear system with respect to the values of
wh on the vertices of the triangulation:

A® = f (3.7)

We have solved it by a preconditionned conjugate gradient algorithm

Algorithm 1



0 . Initialization: : ‘
Choose C € RN*N positive definite (preconditioning matrix ), e small positive, $°
and set g% = h% = —C~1(A®° — b), n = 0.

1 Calculate :

n <gn,hn >c

= (3.8)
"t = @™ 4 pA" | , (3.9)
g1l+l — gn - pnc—lAhn (310)
o Nlg™HIE
yt = LC (3.11)
llg™II&
prtl = gnHl g ampn | (3.12)

2 If || ¢"*!|c < €, stop else increment n and go to 1.

The choice of C is critical for speed. We have tried for C' the diagonal of 4 and the
incomplete Choleski factorization (Maejerinck-Van der Worst [11]). We have also tried
the incomplete Choleski factorization of A where one keeps all the elements A;; which
correspond to two vertices ¢*, ¢’ which are neighbor to a third vertex ¢* i.e. the non-zero
entries of the incomplete factorization are the set of indices {7,j} for which there exists
k such that ¢*,¢* and ¢*,¢’ are edges of the triangulation. This choice is the best if this
preconditionner is further processed so that only the large elements are kept. Thus the
precise definition of C is via the Choleski factorization algorithm as follows:

0. Choose a cut-off number r €]0,1};

1 . Loop 1

Li = [As =Y Ly} (3.13)

k<i

Loop 3 <t :
1 .
ifA% #0 then Li; =——[A;; — Y LiL}] (3.14)
Ajj <
End loops

2 . Loopiy, g <t
if Li; < rmin(Lj;, L};) then Lij = 0 else Lij = Lj;
End loop
3 . Define C = LLT.

The test on A?j is due to the fact that A?j # 0 is almost equivalent to the existence

of k such that ¢*, ¢*¥ and ¢*, ¢’ are edges of the triangulation.
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3.3 Practical implementation.

The Dirichlet condition is implemented via penalty. The matrix A is constructed for
all indices corresponding to a vertex. Then if ¢' is on the boundary A;; is replaced by
10%°4;;. Similarly the :** element on the right hand side is set to 103%yr;

The matrices are stored in Morse form (only the non-zero elements are stored).

The conjugate gradient algorithm is stopped when the relative residual error is less
than 1078,

For the Joukowski condition, experience shows that one can apply condition (2.13) by
replacing Pt and P~ by the triangles which are on S and have P as a vertex.

Figure 3.1 Configuration of the triangles near the trailing edge.

3.4 Mesh Adaption

In order to accelerate the iterative process, adaptive meshes are used to decrease the
matrix size without loss of accuracy. A first computation is performed on a preliminar
coarse grid, then an a posteriori error is analysed. This error defines a Riemanian metric
on the computational domain. Finally, a new mesh is generated by an algorithm of Voronoi
type, applied into this metric.

We first present the mesh generation process which, once the metric is given, is in-
dependant of the idea of adaption and will generate triangles as equilateral (in the given
metric) as possible and of a given area.

The Delaunay-Voronoi type mesh generation process is based on a point insertion
process which connects vertices to obtain triangular elements. The Delaunay criterion
tends to produce triangles as equiangular as possible; it prescribes that no vertex of a
triangle may be contained in the circumcircle from any other triangle; this can be proved
[12] to be equivalent to the fact that this triangulation maximises the minimum of the
six angles in any pair of adjacent triangles. Lawson’s algorithm [13] based on diagonal
swapping is applied in order to satisfy this property; for each pair of triangles which
constitute a convex quadrilateral, we examine the two positions for the diagonal and choose
the one satisfying the Delaunay property.

The first set of nodes consists of boundary nodes generated in such a way that the
length of boundary edges is (in the metric) a given length. Then a first mesh is being
generated connecting these nodes and new points are added at the center of triangles as
soon as their area is larger than a given area.

When applied in the Euclidean metric, the previous algorithm produces triangular
elements as equiangular as possible for a set of vertices with constant density. Adaptation is

9



introduced by a change of metric. Depending on it, points density and elements stretching
vary on the domain.

Let M = M(P) be a 2 x 2—matrix, positive definite, continuous for all point P. It
determines on the plan a Riemanian metric. The length of a parametric curve {v(7),7 €
[0,1]} in the new metric is the value of

[ O MaE) s

Assuming that the variation of M is smooth on the domain, we can locally considere M(P)
as a constant. Then the norm ||.||p associated with the new metric is (locally) defined by

IXN3 = XTMX, VX € Q.

The matrix M being symmetric, its eigenvalues are real and its eigenvectors are or-
thonormal. If we denote by A;, A, (resp. d;,d;) the eigenvalues (resp. the eigenvectors)
of M, then a unit vector for the norm |-l will be measured by 1/4/Ag for the euclidian
norm, if it is in the direction di, (k = 1,2).

During mesh generation, all measures are understood in the sense of this metric, i.e. :

o the length of boundary edges which controls boundary discretization,
o the elements area controlling the density of nodes,
¢ the quality criterion (Delaunay criterion) controlling the elements shape.

We now discuss how the matrix M is defined in order to satisfy an adaption criterion.
The mesh adaption is based on an error estimate for a selected key variable ¢ of the
problem; more precisely, for all examples considered here the metric is determined in order
to equidistribute the interpolation error, or the maximum of its gradient. We assume that
a first solution of the problem under consideration has been computed on a given mesh
(background mesh) and we assume also that continuous piecewise linear approximations
of the different variables are applied, so, for the key variable g, the interpolation error
depends on second derivatives of ¢.

We first consider the interpolation error on an edge a; of the triangulation

1 1/2
E; = (h_/ (0 —6)? d:v)

where & is the linear interpolant of o and h; denotes the length of a;. It can be shown [14]
that
E,‘ jad h?ld"la‘l

with ¢'|s; an approximation of the second derivative of o in the direction of a;. We
introduce the Hessian matrix of o; it can be splitted according to its eigenvectors:

_ [ d%c/0z* B0 /0zdy\ _ Ay O T
H”(aza/ayax 28yt ) =Bl a B
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And matrix M is defined by

w=r(Tgl 0=

Then we have
E,’ >~ Ia;rHa,'l < a,-TMa,n

We consider that the mesh will be “optimal” if the error is equidistributed; so we will
choose the length h; of each edge satisfying the condition :

T =
a; Ma; = c,.

that is, the mesh is equilateral and of edge length |/co, in the metric defined by M.
Another error estimate can be equidistributed, which gives better results for numerical
tests further performed. It is the elementary gradient error

Ex = max||V(o - 6)(z)|

It is proved in [15] that, if A; A2 > 0, an optimal mesh is obtained by the construction of
an equilateral mesh, for the metric associated with

T
M=H'H.
This error estimator 1s more sensitive to variations of o.

Mesh adaption is based on the interpolation error of a key variable o. The obtained
mesh depends heavily on the choice of this variable. From our experience in adaption for
CFD equations, we know that the velocity (or Mach number) gives good results. So we
have taken o = ||V x ||, although it is not approximated by a continuous piecewise linear
function in the discretised problem.

For the considered computational cases, the error F; does not varies enough to produce
meshes which are fine near the body and coarse far from it. That’s why adapted meshes
are generated with the metric M = H' H, that is, the gradient error is equidistributed.

Finally, we have to take care that the trailing edge is not a singularity for ¢, but it is
one for both intermediate solutions %° and %!. So, an adapted mesh for the key variable
o = ||V x 9| will not be refined near the trailing edge of the profile and solutions ¥° and
¥! will not be accurate there. Consequently, computation of the coefficient S can’t be
precise. To avoid that, adaption has been performed for the solution %? of problem (2.15).
Thus, obtained meshes are coarse except around trailing and leading edges.

The initial mesh was a previous coarse mesh around a NACA airfoil. An adapted
mesh has been created for the nonlifting case, but around the Joukowski airfoil. A third
mesh has been adapted for that case, and resolutions have been performed for lifting cases.
Then the last adapted mesh has been generated for each computational case.

3.4 Results .
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In all tests the precision on the residual is set to 107° in the conjugate gradient
algorithm. The cut-off number r is set to 0.1. The test have been run from Fortran on an
Apollo workstation DN 4000.

3.4.1 Angle of attack=0.

First a mesh is built around the Joukowski airfoil described in Section 2.3 at zero angle
of attack with the mesh generator EMC? (Hecht-Saltel [16]) (Figure 3.2) and a computa-
tion is done to obtain a criterium for the mesh adaption. The following performances are
found

- Precision 3.15%

- Number of vertices: 2503

- Number of triangles: 4888

- Number of iterations of conjugate gradients: 34

- Computing time 80" of which 26" is for building C

Thus this would be the computing time if no mesh optimization where performed.
Then the mesh of Figure 3.3 is obtained with mesh adaption. The problem is solved again
and the following performances are found (Figure 3.4):

- Precision 3.12%

- Number of vertices: 1063

- Number of triangles: 2010

- Number of iterations of conjugate gradients: 23

- Computing time 23” of which 8” is for building C

(Notice that only one Dirichlet problem needs to be solved in the nonlifting case
because 3 = 0).

3.4.2 Angle of attack= 2°
The initial mesh of 3.4.1 is also used to find a better mesh with the mesh adaption
program (Figure 3.5). Then the following performances are obtained (Figure 3.6):

--Precision 2.3%

- Number of vertices: 1584

- Number of triangles: 3076

- Number of iterations of conjugate gradients: 21 and 18
- Computing time 40” of which 11" is for building C

3.4.2 Angle of attack= 5°
The initial mesh of 3.4.1 is also used to find a better mesh with the mesh adaption
program. Then the following performances are found (Figure 3.7):

- Precision 3.9%
- Number of vertices: 1545

12



- Number of triangles: 3001
- Number of iterations of conjugate gradients: 18 and 20
- Computing time 38” of which 10” is for building C

13
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4. SOLUTION BY THE FINITE ELEMENT METHOD ON RECTAN-
GULAR LOCALLY FITTED MESHES VIA FICTIOUS DOMAINS.

4.1 Variational formulations and approximations

We will consider problem (2.1)-(2.6) within the potential flow formulation (2.18)-(2.22) under
the assumption that a streamline T is given. It follows from Section 2.2 that the solution
function ¢ is a linear combination of the solution functions ¢, and ;:

Y =1+ P2 - (43)

where ,

Ap, =0 in Q

0

-B‘%l = Up-n on [y (4.2)

dp1 _

—3%‘ =0 on S
and

Ap; =0 inQ\Z
%1-0 onl,US (4.3)

P2 |s+= o2 |g- +1.
We replace (4.2) by:

o1 € H\(Q) : /n Vi, - VwdQ = /Fw(um - n)w d Vw € H'(Q) (4.4)
and (4.3) by: |
p2 € HYQ\Z), ¢ |s+= 92 |s- +1 : /Q\E Voo Vwd =0VYwe H'(Q).  (4.5)
To solve (4.4) and (4.5) we apply the finite element method from Section 3. Thus we get
ot e HA(): /ﬂ Vol Vutdn = /F (oo mjutd Vot € HYQ)  (46)
for problem (4.4) and
oh € HHOW\Z), ! [ge= @ |5- +1 : /ﬂ Ve Tutd =0 Vot e Hi(0) (@)

for problem (4.5).
Both FEM-problems (4.6) and (4.7) lead to the system of linear algebraic equations

A = f (4.8)

with the same symmetric positive semidefinite N x N-matrix A but with different right hand
side vectors f. In both cases system (4.8) is compatible because f L ker A.
The value of N is equal to the number of mesh vertices belonging to Q.
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4.2 Fictitious domain (fictitious components) approach

System (4.8) will be solved by a preconditioned conjugate gradient method (3.8)-(3.12) with
the only difference that instead of C~! we will use a symmetric positive semidefinite N x N-
matrix H with ker H = ker A, i.e. the null-spaces of H and A will coincide.

The construction of a preconditioner H is based on the fictitious domain idea with re-
spect to algebraic problems [1, 7]. For this reason it was originally named as the fictitious
components method [4, 5, 7]. Different kinds of preconditioners can be proposed. Here we
will use separable preconditioners [6, 9]. To introduce separable preconditioners we have to
use rectangular meshes for rectangular domains.

The fictitious domain method with separable preconditioners includes several stages:

1. embedding of an original domain 2 into a rectangle I1: I1 D §;
2. construction for Il of a rectangular mesh locally fitted to 0%;
3. definition of a separable matrix B related to the domain II;

4. definition of a preconditioner H via the matrix B;

5. choice of the initial guess ®° for the PCG-method (3.8)-(3.12) to operate within
a subspace of h-harmonic finite element functions;

6. solving systems Bv = ¢ with sparse right-hand sides g, by a fast separable
method.

The PCG-method is similar to Algorithm 1:

®°=Hf, (4.9)
n=0 - 480 f, |
= O = Heo, (4.10)
1. Calculate: (HeyTen

pt = ST AR (4.11)

o™t = ¢ — p"h", (4.12)

£ = €0 — pm AR, (4.13)

g™t = HE, (4.14)

"= %, (4.15)

Rrtl = g(nt1) _ ympn (4.16)

2. If || €**! |lu< ¢, stop else increment n by 1 and go to 1.
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4.3 Implementation
4.3.1 General description

Implementation of the fictitious domain method for our problem includes the following steps.

a). Choosing a rectangle I = [Zmin, Zmax] X [Ymin, Ymax] such that T 2 . We will
suppose that ['o, = OII.

b). Constructing a rectangular grid I, = {(2:,¥;), t =1,...,nz, j = 1,...,n,}, where
21 <2< .. K ZTpgy Tt = Trminy Tny = Tmaxy Y1 < Y2 < oo < Ynyy Y1 = Yminy Yn, =
Ymax- Let us denote

Chinp =T T t= 1,0 —
h§+1/2 =yinn—Yh,J=1.,n,—1

The couples [(zi,y;), (Zit1,¥;)] and [(z:,¥;), (%, ¥j41)] will be refered as "grid
edges” and the quadrangles with vertices (z;,¥;), (Ti+1,¥;)s (Tit+1,Yj41)s (Tis Y1)
as "grid cells”.

c). Definition of the matrix B.
Let us consider problem (4.2) on the rectangle II:
Apy =0 in I

%ﬁ:um-n on OII.

Let us triangulate the grid I, by means of cell diagonals and approximate prob-
lem (4.17) according to (4.4). We obtain the system of linear algebraic equations

(417

BY = f (4.18)

with symmetric positive semidefinite Ny x Ng-matrix B where No = nzn,. It has
the following elements by, £k =1,...,No, I = 1,..., Ng:
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4

hm1s2 + Pia1p

4 fie=1, l<ixr<ng, [fe—jl=1

Gets)/2
T ifie=14 =1, |jx— sl =1;
2h(j,,+j()/2 Ne=2 =1, | Ik Jil = 1
_hﬁ,—lz if iy = i) = nay |k — il = 1;
2h, 45072 PHEUE e BT IO =5
(]

ba=1{ h'_,.,+h . .
K 1/2 1 =g, 1<ji<ny, |lta—tul=1;

t

h . .. '

—myad2 fg=ga=1li—4l=1
(e +i)/2

hY .

— 5 if e =gi=mny, lie—ul =1;

(ix+i1)/2
[ 0 otherwise if k # ;
No
bk = = by
=1
12k

Here, some ordering (ix, ji), k = 1, ..., Ny, of vertices of II, has been used.

d). Construction of the grid £, by means of the local fitting of II, to S will be
considered in Subsection 4.3.2. ‘

e). Definition of a preconditioner H via the matrix B will be considered in Subsec-
tion 4.3.3.

4.3.2 Mesh generator

In the present work a locally fitted grid was constructed by means of the following algorithm.

Step 1. Starting with the point P (see Fig. 2.1) we trace the curve S clockwise and
find a sequence d,d,...d,, of grid edges and vertices which are succesively crossed
by this curve (d; = P).

Step 2. Construction of a sequence M = P, P,...P, of grid vertices to be modified
later.

Initially we set P, = P (see Fig. 5.1) and then we succesively consider the ele-
ments d;, j = 2,...,m. Let P...P, t < n, be the points already included into M
for a given 3. Two cases are possible:

1) d; is a vertex of Il;.
In this case we add it to M (P, = d;) iff it has not yet been included.
2) d; is an edge of II, with ending points P(1), P(2).

If P = P, or P® = P, then we don’t add any point to M for the given j.
Otherwise we include one of the points P!}, P(?) into M as P,,,. If P() = P, for
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some i < t then we add to M the point P, and vice versa. If both points are
not yet included into M then we add the point nearest to S.
Step 3. Modification of the vertices Py, P, ..., Py.

For each grid vertex P; € M we find a point P; € S nearest to P; and then
substitute P; for P;.

Let us denote the new grid by fl;. and also S = 131 132...13,.131. This broken line
approximates the curve S (the bold line in Fig. 5.1).
Step 4. Triangulation of modified cells.

At this step we triangulate the grid cells of [T, which have at least one modified
vertex P;, 1t < n: P; # P.. Each cell is divided into two triangles by drawing
a diagonal. If one of diagonals of a cell belongs to S, then we choose it for
the triangulation. Otherwise we choose the shortest diagonal.

Step 5. Construction of {2y.

At this step we construct a grid (24 for the finite element approximationt to
the problem under consideration. We include into Q) every cell of II, belonging
to 1 and also the triangles whose barycenters belong to ).

The result of this algorithm can be seen on Fig. 5.1 for the particular profile S.

4.3.3 Definition of a matrix H

Let us represent the matrix B in the block form:

By B,
B = , 4.2
[le B (4.20)

where By is an N x N matrix and the same vertex ordering is used for Aka.nd B;;. Hereafter
we will identify the Np-dimensional vectors and the grid functions on Il using the vertex
ordering of (4.20).

Let us introduce the Schur complement matrix
Bs = B, — BB By, (4.21)

and define H as follows:
H = B}, (4.22)

where the symbol "+” denotes the generalized inverse of a matrix.
To multiply some vector ¢ by the matrix H it is necessary to solve the following system

of equations:
B[Zi]:[é} (4.23)

H{ = %. (4.24)

System (4.23) can be solved by means of the well-known fast direct method that uses
separation of variables (see Subsection 4.3.5).

It is easy to see that
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4.3.4 Implementation within the subspace of h-harmonic functions

Let us introduce the matrix

C = Bs— A. (4.25)

It is easy to see that all the rows of Bg and A coincide except for the rows corresponding to
vertices P; € Sy (marked by squares in Fig. 5.1) and neighboring vertices of € (marked by
circles in Fig. 5.1). We denote by Sh the latter set of vertices. Thus, all the rows of C are
equal to zero except for the rows corresponding to vertices of S, U Sx. The total number of
such vertices is of the order of N'/2,

It follows from (4.9), (4.10), (4.22) and (4.25) that

€ =—-CHf. (4.26)

Hence, {0 € im C, i.e. this residual vector is equal to zero everywhere except on the vertices
of Sy U Si. Let us also consider the vectors Ag® and AR® (see (4.10):

Ag® = AR = ¢ — CHE. (4.27)

These two vectors are also equal to zero everywhere except on the vertices of S, U S,.
Method (4.11)-(4.16) can be rewritten as follows:

Ten

pt = (—%g"—j}—f,;—, (4.28)
Co™*! = Co" — p"Ch", ' (4.29)
£t = — pnAR™, (4.30)
Aghtl = ¢t — CHE, (4.31)

n+1\T ¢n+41
- —————(H(i{ F;,g,‘ , (4.32)
AR = Agtnt)) oy Ap®, (4.33)

It is easy to see from (4.29)-(4.31), (4.33), that all the vectors £*, Ag", Ah™ (and, of course,
Cg", C®") belong to the image of C, i.e. are equal to zero everywhere except on the vertices
of Sy U Si. In other words, all the grid functions u} corresponding to ®" from (4.12) and all
the errors ¥™ = uj — uj, are h-harmonic grid functions everywhere except on the vertices of
Sp U Sh.

Thus, we can implement this iterative process by storing only O(N'/?) components of
vectors ", Ag™, Ah", Cg", CO" (beca.use the other components are equal to zero). Cal-
culation of llnear combma.tlons of vectors in (4.27), (4.29)-(4.31), (4.33) requxres O(N'?)
arithmetic operations.

Let us consider the calculation of a vector C H€ which is necessary for implemention of
(4.26), (4.27) and (4.31). It follows from (4.20)-(4.25) that

CH£ = Cvl = (Bu - A)‘Dl + Blg‘vz. (434)

It is easy to see from (4.34) that to calculate vector C HE we need values of v, only at vertices
of 55U Sy (marked by circles and squares in Fig. 5.1) and also we need values of v, at vertices
of I1, \ Q4 neighboring to S, (marked by small triangles in Fig. 5.1). We denote by S, the
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latter set of vertices. A total number of vertices of S, is also of the order of N1/2. Thus,
while a vector v from (4.23) is known the calculation of C H¢ requires O(N'/?) arithmetic
operations.

To calculate the scalar products from (4.28), (4.32) it is sufficient to know vectors H¢", A"
only at vertices of S, U S, because the second multiplier, " or Ah™, is not equal to zero only
at these vertices. Calculation of these scalar products requires O( N/?) arithmetic operations
as well.

It follows from above that the implementation of the method under consideration requires

O(N'/?) computer memory locations and O(N'/?) arithmetic operations except for solution
of problem (4.23).

4.3.5 Partial solution algorithm

To implement the method considered the linear system of equations
By = ¢, - (4.35)

should be solved at each step, where a right-hand side £ belongs to the subspace imC, i.e.
it can be distinct from zero only at vertices of S, U S,. It is necessary to calculate a solution
v only at vertices of Sy U Sy U S,. This problem is called "the partial solution problem”.
Now we will describe an algorithm for solution of this problem which was proposed in
(2, 4]. It is a modification of the well-known fast direct method that uses separation of
variables.
System (4.35) can be rewritten as follows (see (4.19)):

1 - 1 -1
’x I D T - "L_—x p—rp D )
( 3/2 + )vl 3/2 v2 61

1 . 1 1 Ayt Py pern 1 o,
;i-'z-lﬂv‘—l-*-((hf—l/z+hf+1/2)1+ 2 b T)v, 7‘--:'E+_1/—2vx+1—D &,

1=2,..,n.—1,

hZ _
—E-?—‘_l_vﬂz—l + (7{1’ : 21 + "z2 M2 D—IT)U"S = D-—ls'nz’

(4.36)
where v;, ¢ = 1,...,nz, is a n,-vector of values on a grid line ¢ = z;; &, ¢ = 1,...,n,, is
the same vector for the right-hand side £; T is the following symmetric tridiagonal n, x n,-
matrix:

[ L - 0 0 ]

B, kg
1 1 1 1
0 - + - 0
T = Ry 1 Ry Ry Rl , (4.37)
1 1
0 0 -
Pr’a,—l/z h:,,—l/z J
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D is the following diagonal n, x n,-matrix:

hV
__32/_2 0 0

0

D= h.‘;"l/?;; ’gﬁ'l/? (4.38)

0

BY
0 .- e 0 _'*.uz—_lﬂ |
and 7 is the n, x n, identity matrix.
Let us consider the following eigenvalue problem

D™'Tw = Mw, (4.39)
which is equivalent to the generalized symmetric eigenvalue problem
Tw = ADw. (4.40)

Let us denote the eigenpairs of (4.39) by {\,w'}, I =1,...,n,,. It is well known that the set
.of vectors w!, | = 1,...,n,, is a D-orthogonal basis in R™. We will suppose that it is a
D-orthonormalised basis:

(Dw’,w) = { 0 otherwise. (4.41)
We will try the solution to (4.36) in the form:
ny
v =) vw', i=1,..,n,, (4.42)
=1

where v, [ = 1,...,n,, are some coefficients. Let us represent a right-hand side of (4.36) in
the same form:

D =Y &ul,i=1,..,n,. (4.43)
{=1
It follows from (4.41) that
f=w &)=Y G, i=1.,n, I=1,.,n, (4.44)
=1

Substituting (4.42) and (4.43) into (4.36) we obtain n, independent linear systems of
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equations with the tridiagonal n, x n.-matrices:

| ( + %ﬂmv: ALt
) 1/2"%—1 + ((72. T + 1= A + Moire ; hfﬂg'\l)"g - 7{‘,:1—/21;".“ =&,
t=2,..,n,—1, (4.45)
Rt R S, = 6
l=1,..,n,

Thus, we have the following algorithm for solving (4.35):
Algorithm. For I =1,2,...,n,

1. Calculate £, ¢ =1, ...,n,, for a given ! by means of formula (4.44).

2. Solve system (4.45) for a given ! by means of the Gauss elimination method for
tridiagonal matrices, i.e. we calculate the coefficients v;.

3. Add the lth items in (4.42) only for vertices of S, U Sy U S,.

Let us estimate the number of arithmetic operations in this Algorithm. The first step
requires O(N1/?) operations for each I because {;; can be nonzero only at vertices (z;,y;) €
S,US8, and dim S, U S, = O(NV?). The third step requires O(N'/?) operations for each I as
well because we calculate v;; only at vertices (z;,y;) € SyUSyUS) and dim S, U §, U S, =
O(N'?). The second step obviously requires O(n.) operations for each I. Hence, partial
solution of problem (4.35) requires O(N'/2 4 n.) - n, = O(N,) arithmetic operations.

It is easy to see that it requires O(N'/?) computer memory locations.

It follows from the present and previous subsections that the method under considera-
tion requires O(N'/?) computer memory locations and each step requires O(Np) arithmetic
operations.

Remark. To use the above Algorithm we have to know the eigenpairs {\,w'}, | =
1,...,ny, of problem (4.39). They are known in an explicit form if the grid y;, 7 = 1,...,n,,
is uniform. Otherwise they can be calculated using QR-algorithm and method of inverse it-
erations. It requires O(n2) = O(No) arithmetic operations as well, because T is a tridiagonal
matrix and D is a diagonal matrix.

4.3.6 Calculation of an approximate solution

After completion of the iterative method (4.26)-(4.33) we do not yet have the approximate
iterative solution & itself. We only have the vector C®"mx. To calculate  we use the fol-
lowing obvious relation for the precise solution ®:

Bs® =C® + f. (4.46)
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Substituting C®"m= by C® in (4.46) we obtain
& = H(CO®™™ + f) = HC®"™ + §°. (4.47)

Only some components of ® are usually needed in practice. To calculate them we can
solve the corresponding partial solution problem (4.35) with the right-hand side C ®"= 4 f.

4.3.7 Generalization

It is easy to see that the same method can be used for the stream function approach (2.8)-
(2.17). In this case a vector £ € imC can be nonzero only at the vertices of S) (marked by
circles in Fig. 5.1). To calculate a vector C H we need the values of v, (see (4.23)-(4.24))
only at the vertices of S, and also we need values of v, at vertices of Si (marked by squares
in Fig. 5.1).

4.4 Numerical experiments

In this Section we present the numerical results for the Joukowski airfoil described in Section
2.3 solved by means of the fictitious domain method.

We chose Il = {(z,y): =z € [-5,11], y € [-5,5]}, T = OI, |uw| = 1, and placed
the profile S so that the leading edge has the coordinates (0,0) and the trailing edge P -
the coordinates (1,0).

The rectangular grid IT was constructed as follows. First, we chose some basic minimum
stepsize hmin. Then we constructed a grid Tno, Tag41y..-,Tnag4ns ON the segment [0, 1] of the
X-axis as follows:

Tny = 0,

Tn041 — T = hmins

Tig1 — X4 . 0
Pzt =q =const, i =n+2,..,n]+nl-1,

where the value of n; was chosen "by hand”. Besides, we constructed the uniform mesh
with the stepsize hmin 0n a segment [—fmax, fmax] Of the Y-axis where tmax = n3hmin, nf =
2([#=2] 4 1), tmax is @ maximum thickness of the profile S [3]:

3v3

= —¢.

tmax - 4

Outside the rectangle {(z,y): z € [0,1], ¥ € [~fmax; tmax]} We constructed a mesh with
a stepsize exponentially increasing (moving away from §) along each of the axes X and Y/,
i.e. the ratio of two neighboring steps was equal to ¢; > 1.

The grid shown in Fig. 5.1 corresponds to the following values of these parameters:

hoin = 0.01, n] =40, ¢. = 1.3.

Then
ne = 76, n, = 56, No = 4256.

The calculations were carried out on this grid and also on the grid with the parameters:

honin = 0.005, n? = 50, g, = 1.3,
ne = 88, n, =76, No = 6688.
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In the experiments we used the potential function approach described in Section 2.1 as
well as the stream function approach described in Section 2.2. In each calculation we solved
two linear system of equations with the same matrix. It is easy to see that for zero angle of
attack it is sufficient to solve only one system of equations because § = 0 (see (4.1)). Besides,
the function ¢, in (4.1) doesn’t depend on the angle of attack a, hence, it is sufficient to
find it only once in a set of calculations for several values of @ on one and the same grid.
But we didn’t use these possibilities intentionally.

The criterion € from Section 4.2 was chosen empirically so that the precision (2.30) should
not considerably change for n > nmay.

The results of calculations for the stream function approach are presented in Table 5.1.
The results of calculations for the potential function approach are presented in Table 5.2.
In the third column of these tables the number of iterations needed for solving both linear

systems with the precision ¢ are shown. Computing time is given for the computer Apollo-
DN4000. It includes time for:

1) grid and problem generation (~ 10% of time);
2) solution of the eigenvalue problem (4.39) (~ 10% of time);

3) solution of two linear systems of equations by means of the iterative process
(4.26)-(4.33) (~ 80% of time);

4) postprocessing (4.47) (~ 2% of time).

It doesn’t include time required for plotting. :

The functions [uff™**™[? |g, [uf”*" |2 |5 as well as the exact solution |u®=*<t|? |5 (see
Subsection 2.3) are presented in Figure 5.2 (for a = 5°).

Analysis of Tables 5.1-5.2 and Figure 5.2 shows that the solution of the problem consid-
ered by means of the potential function approach takes a little more time than by means of
the stream function approach (on the same grid). Nevertheless, the potential function ap-
proach requires sufficiently less computing time for obtaining a given precision (2.30). Thus,
it is preferable to use the latter.

It should also be noted that the value of ¢ in the stream function approach must be
greater than in the potential function one.
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The first grid
hmin = 0.01, ni = 40, ¢; = 1.3, n; = 76, n, = 56, No = 4256

Angle of attack | ¢ Number | Computing | Precision (2.30)
a of iterations time (in %)
0° 1074 20 177 3%
2° 10~4 19 16” 3.9 %
5° 10~% 24 19” 7.3 %
10° 10~° 23 18” 15.5 %

The second grid
Rmin = 0.005, n = 50, ¢, = 1.3, n, = 88, n, =76, Ny = 6688

Angle of attack | ¢ Number | Computing | Precision (2.30)
a of iterations time (in %)
0° 10~° 30 36” 2%
2° 10~ 37 43" 2.3 %
5° 10-° 34 40” 4 %
10° 10~° 34 40” 8.3 %

Table 4.1. Results of calculations for the stream function approach

The first grid
hmin = 0.01, ni =40, ¢; = 1.3, n, = 76, n, = 56, Ny = 4256

Angle of attack | ¢ Number | Computing | Precision (2.30)
a of iterations time (in %)
0° 10-3 22 19” 0.9 %
2° 1073 30 24" 11 %
5° 1073 31 257 21 %
10° 1073 32 25” 4.4 %

The second grid
hmin = 0.005, n? =50, g2 =1.3, n, = 88, n, =76, Ny = 6688

Angle of attack | ¢ Number | Computing | Precision (2.30)
a of iterations time (in %)
Q° 1073 24 33” 0.5 %
2° 10~ 36 45” 0.6 %
5° 10-3 37 46” 0.9 %
10° 103 38 47" 1.7 %

Table 4.2. Results of calculations for the potential function approach
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Figure 4.1. The locally fitted grid for the problem considered
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