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RESUME

Cet article aborde les problémes liés au déverminage des programmes répartis s’exécutant sur
des machines paralleles @ mémoire distribuée ol les processus ne communiquent que par envoi
de messages. Les principales difficultés liCes au déverminage de tels programmes sont expo-
sées. Les principes pour concevoir et implémenter un dévermineur pour des programmes spé-
cifiés dans le language Estelle sont présentés. Toutes les solutions décrites ont été
implémentées dans un dévermineur distribué appelé EREBUS.

ABSTRACT

This paper addresses the problem of debugging distributed programs executing on distributed
memory parallel computers with message-passing interprocess communication. The main is-
sues of debugging such programs are exposed. Principles for designing and implementing a
debugger for programs specified in the Estelle language are presented. All the described solu-
tions have been implemented in a distributed debugger called EREBUS.
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Abstract

This paper addresses the problem of debugging distributed programs ezecuting on
distributed memory parallel computers with message-passing interprocess communica-
tion. The main issues of debugging such programs are exposed. Principles for designing
and implementing a debugger for programs specified in the Estelle language are presen-

ted. All the described solutions have been implemented in a distributed debugger called
EREBUS.

1 Introduction

Designing environments and tools for building distributed applications is one of the ma-
jor current research challenges in distributed systems. At the present time, effective tools
able to help the programmers in distributed software development are uncommon. The lack
of efficient tools is painful especially as programming applications for distributed memory
parallel computers is difficult.

An efficient debugger must take into account problems peculiar to distributed systems.
Also many aspects of distributed debugging will differ from sequential debugging ones.

*This work has been partly funded by the french national project C3 on concurrency and distribution.

tThis report is an article presented at the 3rd IEEE \Worshop on Future Trends in Distributed Computing
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Even the circumstances in which a debugger is employed are not similar. Generally, a pro-
grammer has recourse to a sequential debugger in order to locate and correct an error. The
use of a distributed debugger could be more widespread. All the observing facilities offered
by a distributed debugger are useful to analyze the behavior of a distributed algorithm, even
if this one is already correct in regard to the specifications. Having an accurate view of an
algorithm’s behavior is very useful in order to improve its performances. In connection with
this, tools for measuring quantitative aspects (number of exchanged messages) and qualita-
tive aspects of the computation (parallelism and concurrency) can be usefully associated to
debuggers [14].

The current paper is divided in two parts. In the first part, we expose some problems we
are faced to when designing a debugger {or asynchronous distributed computing systems. In
a second part, the design and the implementation of a debugger for programs specified in
the ISO-normalized Estelle language are presented.

2 Debugging a distributed program

2.1 Granularity

First of all, the designer of a debugger must define a level of observation and control. This
decision influences all other choices. By defining a granularity, the designer of a debugger
intends to identify instants of the execution where facts can be observed. As a result, a
distinction has to be made between observable actions and undetectable ones. Thanks to
a fine grain (machine instructions) few phenomenons escape to the observation. Yet the
huge amount of information overwhelms the observer. In addition, the debugging activity
depends also on the hardware. Debugging at the level language by choosing a coarse grain of
observation and control resolves these two problems. But then many events become unnoticed
and some aspects of the computation cannot be discussed by the debugger. So, if one tries to
debug at the level language a correct program compiled by an erroneous compiler, the events
which generate a failure will probably be invisible. Defining a granularity is tantamount to
the selection of a subset of detectable errors. In order to take into account the synchronization
among processes, a coarse grain is sufficient and well suited.

2.2 Design of a model

All the facilities offered to the programmer must be cohesive. To reach this goal, a model
of distributed computation is needed. This model must be consistent in regard to the chosen
granularity. Only observable events must be mentioned in this abstract representation of the
computation. All the developed tools have to comply to this model and are relevant as long
as the distributed program satisfies the properties given in the model. Of course the model
must take into account the relative time relationships between events. The conventional
representation of the behavior of a distributed application by the means of three kinds of



action (sending events, receiving events, internal events) can be adopted on condition that
all the occurrences of this actions are observable {11].

2.3 Reproducibility

Distributed program, when executed on distributed memory machines with message-
passing interprocess communication, can exhibit non-deterministic behaviors because of the
non-determinism of the message transmission delays and also because some programming
languages offer non-deterministic constructs, e.g. CSP, Ada and Estelle. Given the same
input, the program may show different but nevertheless correct behaviors. In order to detect
an error, several successive executions of the same program are generally necessary. For
obvious reasons, each execution must be similar [12, 13]. As it is impossible to reproduce
a computation identically in all details, an equivalence between two behaviors of a same
program must be defined. A formal and unambiguous definition of equivalence between
executions has to be found in regard to the model.

2.4 Consistent global states

An effective debugger has to provide {acilities for monitoring the evolution of every single
process as well as the relations between processes, i.e. the evolution of processes states as a
whole. As mentioned above, the statc of a single process (a local state) is defined at some
particular moments. The global state of a program being executed is made of the states of all
processes and of all communication channels, whose state is the list of in transit messages. As
every process evolves asynchronously with respect to the other processes, and as computing
a snapshot of the global state is not an instantaneous operation, only some snapshots are
consistent with respect to message transmission causality [4]. More precisely, presenting to
the debugger user a snapshot where some message has been received but not sent should
be forbidden, because the causality rule stating that a message reception occurs after the
emission 1s not respected in this case.

During the debugging activity, halting or restoring the computation back into a consistent
global state is a common request. Most of the time, the exact halting state is not defined by
the request. One state must be chosen among all the possible consistent global states which
respect the constraints imposed by the user's request. Instead of choosing at random a global
state, it is more interesting to define particular states in regard to the user’s request. The
definition of minimal and maximal global state is a possible solution to this requirements.
The concept of minimal state appeared in [5]. A formal description of these states can be
found in [1]. If a user selects a global state by choosing the local state of some process, the
relevant local states for the other processes are determined thanks to those formal definitions.
In the case of the minimal state, all the processes are restored in a state such that the
corresponding global state is the earliest consistent one. The definition of maximal state is
dual to the minimal’s one. If the halting condition identifies an error, the user will discover
the error’s origins thanks to the minimal state. The maximal state will be useful in order to



understand how this error could produce forthcoming faults.

3 Implementation of a debugger

Introducing the language The Erebus debugger controls the execution of distributed
programs described with a subset of the ISO Estelle language (3], named the Echidna lan-
guage [7]. In a few words, Estelle is a cross-breed between Pascal and communicating auto-
mata: a program is made of processes which use message passing communications. Messages
travel along FIFO channels which ensure transmission without loss, duplication or alteration.
Each Echidna process is an automaton, described as a set of transitions from one control
state to another one. Each process also owns a set of Pascal local variables and a set of
communication ports where messages received but not consumed are queued. Each transi-
tion has a guard expression, stating a condition upon the local variables’ values or upon the
type and field values of the first message of some port queue, and an action block formed
by a Pascal instruction block. Processes evolve asynchronously by repeating the following
actions: evaluate all transitions’ guards, sclecting one of the transitions which have a guard
evaluating to frue and then executing the Pascal action block of the selected transition. If
its guard includes a message reception statement {rom some port then the first message in
this port queue is consumed.

Echidna programs differ from Estelle ones by the absence of dynamic reconfiguration fa-
cility (i.e. the set of processes is static, as is the set of interprocess communication channels),
and by the fact that using shared variables is forbidden.

Although this presentation is very short, most of the main features of the language are
given. The semantics of an Echidna program is indeed simple and clear, thanks to the well-
known communicating automata model; for instance, the state of a stopped program is a
well-defined notion: the state is the cross-product of every process’ state (control state, values
of local variables and input queues) and of the sequence of messages under transmission on
every communication channel.

Executing an Echidna program The user of the Erebus system is able to submit an
Echidna program for execution on different computers with centralized or distributed ar-
chitectures. Although the program is compiled into machine language for the desired host
computer, the user never sees the machine language version. Hence, choosing an architec-
ture for execution is a matter of speed and cost, because an Echidna program describes a
parallel system whose meaning remains the same, whatever the computer executing it. Of
course parallel machines are well suited to fast execution of these programs, but a common
workstation is sufficient. This enables debugging strategies where a program is executed on
a fast, distributed machine until some event occurs (breakpoint detection, assertion failure)
and then the debugging task is performed on a personal workstation, freeing the parallel
machine for use by other people. After some debugging is done, the user may go on with the
fast execution mode on the parallel or distributed computer. Switching between low and high



speed execution modes can be achieved because the user operates at the source language
level.

3.1 From source file to program execution

A user executes and debugs an Erebus source program by invoking a compiler from
her user interface; the compiling and linking operations are then performed by the Echidna
system [7]. The Echidna program is compiled into a C file, which is then compiled by a
standard C compiler into an object file. This file is independent from the target architecture,
but the final executable file is not, as it is made by linking the previous object file with a
runtime defined and tuned for the target architecture. The runtime acts as a layer hiding
peculiarities of the underlying operating system and hardware; namely, it performs two
important tasks:

o it schedules the processes on one processor and fires transitions of these processcs,

e it provides the processes with an interprocess communication facility complying with
Estelle’s semantics.

Distributed execution of an Erebus program In the following paragraphs we focus
on the issues related to the execution of an Erchbus program on a distributed memory parallel
computer (DMPC for short). The first phase of execution starts by loading the same program
on every processor of the DMPC; in other words, every processor’s local memory contains a
copy the code of all processes and a copy of the runtime. Every processor starts executing
the runtime. Erebus processes which are going to execute on processor z are locally created
by the runtime executing on ¢; the runtime also creates communication channels between
each process on 7 and processes on the same or on other processors. Then every runtime
starts scheduling transitions for the processes on its processor.

Transition scheduling The concept of transition and transition scheduling is an impor-
tant one, regarding Estelle and Erebus program semantics. The Echidna compiler translates
each transition of each Echidna process into a function G, which implements the guard
expression, and a procedure A, which implements the action. During the execution of the
program, the schedulers (one for each processor) execute the following algorithm for every
process P:

1. Check for incoming messages, so that the queues which contain the message received
but not consumed are up to date.

2. Evaluate every function G,,...,G, (assuming that process P has n transitions); some
of the G; may refer to the type of the first message in some queue.

3. Execute one procedure from the set {A,|G; evaluates to truc}.



This algorithm is repeated forever; from the language point of view, Estelle or Erebus
processes never terminate.

One main issue about this algorithm is the non-determinism of the transition selection;
this non-determinism is also a vital part of the Estelle language definition. Thus, the una-
voidable non-determinism of distributed, message-passing set of processes is included in the
language.

3.2 Granularity and model

The grain of observation and execution is the Estelle transition. When a transition is
fired, the Pascal body is executed and its execution is atomic: all instructions in the body
are executed and their executions cannot be individually observed.

The representation of a computation in terms of sending events and consuming events is
consistent with this grain. The execution of a transition can be particularized into a sequence
of events. At most one consuming event placed at the head of the sequence can be eventually
followed by a succession of sending events. The special case of a transition where no message
is consumed or sent can be considered thanks to the notion of internal event.

No reference is made to the reception of messages by a process. Only the consummation
of a message is observable.

3.3 Implementing the reexecution facility

The reexecution facility implemented in the Erebus debugger aims at helping the user in
the following way: a first execution of the program is performed, using a DMPC to achieve
high speed. At some point during this first execution, the computation is stopped. Then the
debugger enters the interactive mode, where the user has access to each state reached by the
initial computation. Because of the parallelism and interleaving of events in the distributed
initial execution, each of the states presented to the user is in fact a member of an equivalence
class: two global states are equivalent if and only if each process executes the same events in
the same order. All the causal relationships between events are preserved whereas temporal
properties are not conserved. One of the state of the class was reached during the initial
execution, but it is impossible to know which one.

Logging data to enable replays The reexecution facility relies on some important pro-
perties of Echidna or Erebus programs, namely the fact that there is at most one message
reception for each transition, that a reception specification indicates one sender only, that the
communication is FIFO and point-to-point and that the topology of the interprocess channel
network is static. Thanks to these features, the amount of data one has to log to change a
non-deterministic automaton into a deterministic one is very limited. Assuming that every
transition of a process has a unique identity number within the scope of this process, logging
identities of the transitions fired during the initial execution is sufficient to replay the same
sequence of transition. More precisely, each time the scheduler fires a transition, it appends



the transition’s identity to the log file. All schedulers behave so during the initial execution.
Schedulers log into their own local log files, without mutual synchronization.

Guiding the scheduler The set of schedulers performs a replay by resetting all processes
to their initial states and then by reading their log files from the beginning. Upon each cycle
of transition’s selection and firing, each scheduler is bound to follow the log file data to select
the transition to fire. When the imposed transition is not fireable (i.e. its guard evaluates to
false), the scheduler waits until it becomes fireable. This means that the transition is waiting
for a message which was consumed by the selected transition during the initial execution but
has not arrived at this point of the reexecution. No other information is needed to replay the
behaviour of each process, as the local states are recomputed implicitly by the reexecution of
each transition: neither the contents of the variables, nor the type and field values of received
messages are stored.

For sake of simplicity, we omitted in the preceding paragraphs the problems related to
non-deterministic sources of values, such as wall clocks and random number generators. The
solution implemented in the Erebus debugger is similar to the scheduler log system. During
the initial execution, every call to a wall clock or random number service is trapped by the
runtime and the value given to the process is logged. During replay, these service calls are
answered directly by the runtime, which reads the values from the service call log file. The
sequence of wall clock times and random number values is then the same than the initial
one.

The current implementation of Erebus stores the log files of cach scheduler into the local
memory of the processor executing this scheduler. As the amount of information may be
important, data must be compressed. To this aim, a data compression algorithm is used [9].
Nevertheless the maximal duration of an exccution is limited by the local memory space.
In order to reproduced an execution on any computer, the saved data must be encoded
independently from the machine.

During the gathering, the probe effect induced by the debugger interference must be
limited. No extra synchronization must occur. Hence schedulers do not exchange messages
with a file system, in order not to increase the network load.

3.4 Breakpoints and execution control

Local breakpoints Common sequential debugging techniques make use of manual or
automatic setting of breakpoints (automatic setting allows step by step execution) with
machine instruction or source line granularity. Describing halting conditions with predicates
on the state is also possible. Such features need to be considered in a distributed context.
Considering the cost of global state computation, we want to keep the possibility of defining
breakpoints on any single process. Such breakpoints are named local breakpoints, as they do
not mention other processes’ states or events. One can specify them as predicates on the
local state or as a trace of local events. More formally, a set of breakpoints made of event
traces defines a language and well-known techniques of language specification and parsing



are available.

Global breakpoints Global breakpoints specify conditions over more than one process.
A simple form of these is a disjunction of local breakpoints: the computation stops as soon
as one local breakpoint condition is satisfied.

However, this form of breakpoint is not powerful enough to express frequent behaviors of
a distributed computation: one is often interested in pin-pointing situations such as overta-
king of specific messages (e.g. release indication received before request indication), etc [6].
Such breakpoints are difficult to define precisely and to monitor {15}, because they involve
computations on disseminated local states, and such computations are costly and also non-
instantaneous. A lot of theoretical and practical work has still to be done to determine the
costs and algorithmic complexities of distributed breakpoint evaluation, i.e. what kind of
breakpoints are useful and reasonably cheap to monitor [5].

Halting or restoring the computation An implementation of a distributed breakpoint
mechanism must provide mechanisms to reset the global state into the minimal or maximal
state when an halting condition is satisfied. This problem is similar to transaction rollback
mechanisms in databases [2] and to failure recovery techniques in distributed systems [16,
10, 8]. Common techniques rely on checkpointing. The local states are periodically recorded
and messages received by the processes between checkpoints are logged. The storage space
occupied by the saved data increases indefinitely and periodic discarding of old information
must be made to avoid running out of storage. A protocol must allow sites in the system to
agree on which obsolete information can be discarded [2].

Snapshots With the help of the log files, any process behavior occurring during the initial
execution can be replayed, by performing a deterministic reexecution from the initial state.
While this technique saves a lot of space, because no global state are logged, it is costly from
the reexecution time point of view. Therefore, saving the global state of the program from
time to time can be useful. Periodic checkpoints are used by the replay module to restore
the program state; the other states are reached by deterministic reexecution, starting from
the restored global state.

3.5 User interface

Until now, we have addressed only the runtime aspects of a distributed debugger. A
man-machine interface has to be designed to control the distributed kernel and the facilities.
The quality of the debugging tool depends from this graphical user interface.
4 Conclusion

In this paper a compiler for Estelle programs [7] is used and its associated debugger has
been presented. The concepts exposed in this paper are fundamental for defining what a

8



distributed debugger is. Parts of the debugger are now implemented, namely the execution
replay, other parts are under study. These studies concerned the definition of a breakpoint
system and its implementation. More precisely, the time and message complexities of inter-
esting breakpoint languages have to be studied in order to find a trade-off between the power
of expression and the computation costs of these breakpoints.
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