N

N

Asymptotic properties of constrained Markov decision
processes
Eitan Altman

» To cite this version:

Eitan Altman. Asymptotic properties of constrained Markov decision processes. [Research Report]
RR-1598, INRIA. 1992. inria-00074962

HAL 1d: inria-00074962
https://inria.hal.science/inria-00074962
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00074962
https://hal.archives-ouvertes.fr

INIA Rapports de Recherche

UNITE DE RECHERCHE
INRIA-SOPHIA ANTIPOLIS N°1598

Programme 1
rchitectures paralléles, Bases de données,
Réseaux et Systemes distribués

ASYMPTOTIC PROPERTIES OF
CONSTRAINED MARKOV
DECISION PROCESSES

Institut National Fitan ALTMAN
de Recherche

en Informatique
et en Automatique

Sophia Antipolis

B.P. 109 Février 1992

06561 Valbonne Cedex
France
Tél.: 93 65 77 77




ASYMPTOTIC PROPERTIES OF CONSTRAINED
MARKOV DECISION PROCESSES *

Eitan Altman
INRIA, Centre Sophia Antipolis
06565 Valbonne Cedex, France
Tel: 93 96 76 37.

January 1991

Abstract

We present in this paper several asymptotic properties of constrained Markov Decision
Processes (MDPs) with a countable state space. We treat both the discounted and the
expected average cost, with unbounded cost. We are interested in (1) the convergence of
finite horizon MDPs to the infinite horizon MDP, (2) convergence of MDPs with a truncated
state space to the problem with infinite state space, (3) convergence of MDPs as the discount
factor goes to a limit. In all these cases we establish the convergence of optimal values and
policies. Moreover, based on the optimal policy for the limiting problem, we construct

policies which are almost optimal for the other (approximating) problems.

Keywords: Constrained Markov Decision Problems, countable state space, finite horizon,

infinite horizon, finite approximations, asymptotic properties.

1 INTRODUCTION

In recent years growing attention was given to solving constrained MDPs (Markov Decision

Problems). Such problems frequently arise in computer networks and data communications,

*This work was supported by the Chateaubriand fellowship from the french embassy in Israel
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see Lazar [17], Spieksma and Hordijk [12], Nain and Ross [18] and Altman and Shwartz [1]. The
theory for solving constrained MDPs was developed by Hordijk and Kallenberg [15], Kallenberg
[16], Beutler and Ross [8], Altman and Shwartz [2, 4], Altman [6], Spieksma [21], Senott [19, 20]
and Borkar [9].

We are interested in (1) the convergence of finite horizon MDPs to the infinite horizon
MDP, (2) convergence of MDPs with a truncated state space to the problem with infinite
state space, (3) convergence of MDPs as the discount factor goes to a limit. In all these cases
we establish the convergence of optimal values and policies. Moreover, based on the optimal
policy for the limiting problem, we construct policies which are almost optimal for the other

(approximating) problems.

In the finite horizon case, the need for approximation arrizes since there are no known
techniques to solve such problems, unlike the infinite horizon case. Of special importance is
therefore to construct a policy that is almost optimal for the finite horizon case, based on a

policy that is optimal (or almost optimal) for the infinite horizon case.

When the number of states and actions in the control problem is not finite, the question
of finite approximation of the state is of interest, since the only general solution known for the
constrained problem is through a LP (Linear Programming) with infinite number of decision
variables (see Altman and Shwartz [2], Altman [6] and Spieksma [21]). In the finite case,
however, a finite LP can be applied to obtain an optimal policy (see Hordijk and Kallenberg
[15] and Altman and Shwartz [4]). The issue of approximating MDPs by other finite state MDPs
was investigated in a few papers of White (e.g. [23]), Cavazos-Cadena [11], Hernandez-Lerma
[13] and Thomas and Stengos [22]. Since in our case additional constraints are introduced in
the control the methods used in tha above papers are not applicable, as they are all based
on dynamic programming techniques. In Altman [6], a general theory for approximation for
the constrained problem was developed and applied for finite approximations. The cost in
Altman [6] is assumed to be non decreasing and some stochastic monotonicity assumptions on
the transition probabilities are made. In this paper, in Section 5, we generalize these results to
costs that are not necessarily monotone, and to transition probabilities without the stochastic
monotonicity property. Yet, we restrict to transitions to “nearest neighbors”, i.e., from each

state we assume that it is possible to move in one step to only a finite number of states.
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The third issue that we treat the convergence of MDPs as the discount factor goes to a
limit. This is of special interest for the case that the discount factor tends to one. Indeed, in
control problems of queueing systems without constraints, an optimal policy for the expected
average cost has often been obtained as the limit of optimal policies for the discounted cost, as
the discount factor goes to one. By proving the continuity of MDPs in the discount factor, we

thus establish the validity of this approach to constrained MDPs as well.

We finally illustrate the above ideas by the problem of optimal priority assignment where

N infinite queues compete for the attention of a single server.

Previous results on asymptotic properties of constrained MDPs have been obtained by
Altman and Shwartz [4] and Altman and Gaitsgory [5] for the case of finite state space. They
obtain conditions for the continuity of the optimal value and policy of MDPs in the immediate
cost, transition probabilities and discount factor. These results are obtained by applying the
theory of stability of finite LPs. This method is however not extendible to the case of infinite
state space. An alternative method is used by Altman and Shwartz [4] that does not rely on
a LP approach in order to obtain the convergence of the optimal value as the horizon tends to
infinity for the case of discounted cost, and finite state space. The Theory of convergence of
finite state constrained MDPs is applied in Altman and Shwartz [3, 4] to solve adaptive control
problems. A characterization and a study of cases were the optimal values and policies of MDPs

are not continuous is presented by Altman and Gaitsgory in [5].

The structure of the paper is as follows: after presenting the model notation and as-
sumptions in Section 2, we cite in Section 3 key Theorems for approximation. We analyze the
finite horizon problem in Section 4, and then in Section 5 we introduce and analyze the finite
state approximation. The continuity of MDPs in the discounted cost is studied in Section 6.

The problem of optimal priority assignment for N competing queues is finally treated in Section

7.
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2 Model and Assumptions

2.1 The model

Let {X;}{2, be the discrete time state process, defined on the countable state space X; the
action A; at time ¢ takes values in the countable action space A. However, we assume that at
each state y € X there is only a finite number of available actions, A(y). With some abuse
of notation, X x A will denote all possible pairs (y,a) : y € X,a € A(y). The history of the
process up to time ¢ is denoted by H; := (Xo, Ao, X1, 41, ..., X4, A¢). The dynamics is given by

Pray = P(Xpy1 =y | Xs=2;Ai=0a) = P(Xyp1 =y | Himr = b, Xy = 25 Ay = a) (2.1)

A policy u in the policy space U is a sequence u = {ug,u1, ...}, where u;(- | Hi—1, Xy),
applied at time epoch ¢, is a conditional probability measure over A(X;). Denote the probability
measure corresponding to u and initial state z by PY, and the expectation by EY.

A stationary policy g € U(S) is characterized by a single conditional distribution pf|z =
u(e | Xy = z) over A, so that prz = 1; under g, X; becomes a Markov chain with stationary
transition probabilities, given by P2 =37 A pg|$77my. For g € U(9), let 119 := lim,,_, oo [ P?]".
If all rows of 119 are equal, we denote them by 9.

The class of stationary deterministic policies U(SD) is a subclass of U(S) and, with

some abuse of notation, every g € U(SD) is identified with a mapping ¢ : X — A, so that

pﬂz = 0,(z)(+) is concentrated at the point g(z) in A for each .

For any (finite or countable) set B, let M(B) denote the set of probability measures on

2.2 The constrained problem

Let C(z,u) and D(z,u) := {D*(z,u), 1 < k < K} be cost functions associated with each

policy w and an initial state z. The real vector V :={V; , k = 1,..., K} is held fixed hereafter.
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Call a policy u feasible if
DF(z,u) < Vi, k=1,2,... K (2.2)

The constrained optimization problem is:

(COP): Find a feasible v € U that minimizes C(z,u).

C(z,u) and D*(z,u) will stand for either the discounted or the expected average cost,
defined below. Let ¢(z,a),d(z,a) := {d*(z,a), k = 1,..., K} be real (R¥) valued instantaneous
cost functions, i.e. costs per state-action pair. Let 0 < S < 1 be a discount factor. We assume
throughout the paper that Yu € U, z € X, E¥c(X,, A,) and E'd*(X,, A,), k = 1,..., K exist.
We define two versions of discounted cost functionals from X x U to R (see Altman and Shwartz

[4])-

CE(CE,U) = ( Z:O ﬁs)_lEg [ Z:O ﬁSC(XmAS)]
(2.3)
DY@ u) = (Theo )7 B [Thoo B2dM (X, A k=1, K
Chla,u) 1= (1= B)EY [Ty Fe(X,, A,)]
(2.4)
D' e,u) = (1= B)EL [Tl BdH (X, A k=1, K
Cp(z,u) := Et_}wCé(aE,u)
(2.5)
Dg(x,u) = Et_)OODE’t(x,u) E=1,.,K

When g = 1, (2.5) reduce to the well-known definition of the expected average cost, since in

that case S2t_,3° = t + 1. For 8 < 1 the definition (2.5) are a normalized version of the

standard expected discounted costs
Cp(z,u):=(1-B)E; [Z ﬁsc(Xs,As)] = tlim Ch(z,u) = tlim éé(m,u) (2.6)
s=0

and similarly for Dg(z, u). The addition of a normalizing factor, e.g. in (2.3) is important when
one is interested in continuity of the (finite horizon) cost in the discount parameter, especially at
B = 1. This is especially important in Section 6. Another advantage of using the new definition

(2.5) is that it enables to obtain the same LP for both the discounted and expected average cost
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for solving COP (see e.g. Altman [6]) This enables to reduce problems of continuity, sensitivity
and singular perturbations of constrained MDPs in the discount parameter 8 as § — 1, to the
corresponding problems in Mathematical Programs for which the theory is well known (see e.g.

Altman and Shwartz [4]).

Finally, for u € U(5), define ¢(u) = {c(y,u)}, y € X, where ¢(y,u) = >, c(y, a)pgw.

2.3 Assumptions and Notation

Let 11 : X — IR be some function. Following Dekker and Hordijk [10] and Spieksma [21], define

the p-norm of vectors 7 € X and of matrices P € X x X as

I7ll, = sup pz" |7
X

s
(2.7)
-1
IPIl, = sup pz" > | Paylisy
zeX yeX
For a subset M C X, let ps P be the taboo matrix corresponding to P, i.e.
_ Pacya Yy Q ‘M[
MPry = { 0. ye M (2.8)

A MDP is said to be p-uniform geometric recurrent (u-UGR), if a finite set M and a a < 1
exist, such that for any u € U(SD),

M P, < a. (2.9)
The following assumptions are used frequently in the paper:
B1: Under any g € U(SD), X consists of a single ergodic aperiodic class, (with no transient

states).

B2: there exists some policy u (not necessarily an optimal policy) such that

DF(z,u) < Vi, k=1,2,... K (2.10)
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B3: The family of stationary probabilities {7%(:)}, 7% € M(X), corresponding to policies
u € U(9),is tight.

B4(i): There exists some function p € X — R such that if 3 = 1 then p, > 1 and the MDP
corresponding to the dynamics {Pgqy} is p-UGR; if § < 1 then o, 0 < a < 1 such that for all
we U(SD), I8P, < a.

B4(ii): both ¢(-,-) d*(-,-), k = 1,..., K are bounded below, and 3R < oo such that

[max, c(e,a)], < R, |max, d.k(y,a)H <R k=1,.,K.
n

B5: For any z,a, Pzqe has finite support (that may depend on z, a).

We shall often need the following result, extending B4(i) to U(.5).

Lemma 2.1 Assume B4(i). Then for any u € U(S5),

P, <o, ifg=1
(2.11)
IBP*), <a, ifB<1

Proof: For any u € U(S5),

1P, = Suguzl DI Prayplpliy < Sugugl > [ max Peaypllpy = 1PV, (2.12)
rE yEX a rE yEX

where w € U(SD) is a policy that achieves the max in 2.12. [ |

The following notation is used below: §,(z) is the Kronecker delta function. For any set
B, 1{B} is the indicator function of the set, |B| the cardinality of this set (if B is finite then
| B| is the number of elements in B). For vectors D and V in R¥, the notation D < V stands
for Dy, < Vi, k=1,2,..., K, with a similar convention for matrices. For two matrices (, @) of
appropriate dimensions, ¢ - () stands for summation over common indices (scalar product). Q7

denotes the transposed of the matrix Q.
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3 Key Theorems for Approximation

In this Section we quote some results on approximations of constrained Markov Problems.

Assume that for any initial state z and policy u we have a sequence of approximations C,(z, u)
and D¥(z,u),n = 1,2,... of the costs C(z,u) and D*(z,u) with k = 1,2, ..., K. Below C(z,u)
and D¥(z,u) will stand for either the expected average cost 3 = 1 or for the discounted cost

B < 1, where as Cy,(z,u) and D¥(z,u), may be arbitrary functions from X x U to R™.

Consider the following sequence of problems:
COPy, : Find C,(z) which is given by:
Co(z) == infuep{Cn(z,uw); DE(z,u) < Vi, k= 1,2,...,K}.

Let C(z) be the optimal value of COP. Note that COP, may not have any optimal

policy even if it is feasible. Moreover, there may not exist any e-optimal stationary policy for

COP,. In Theorem 3.1 below,

Theorem 3.1 Assume

(1) B2 and that c(-,-) and d*(-,-) are bounded below.

(2) lim,,_ o Cr(z,u) = C(z,u) and lim,_, DE(z,u) = D*(z,u) for every stationary policy u
and a given initial state x, uniformly in v € U(9).

(3) B <1, or {# =1 and B1 holds}.

Then (i) lim, ., Cp(z) = C(z).

(ii) Choose a sequence £, — 0. Let r(n) be a &,-optimal policy for COP, if COP, is feasible,

otherwise let it be an arbitrary stationary policy. Let w(n) be a stationary policy that satisfies
Colw,w(n)) < Cala,r(n)),  Dh(e,w(n) < Dife,r(n)), k=12 K. (3.1)

Let w be an arbitrary accumulation point of w(n), n = 1,2, ... i.e. there exists a subsequence

{n:}52, such that for all z € X,a € A,

. w(n;)
zlggo Paly

= Py (3.2)

Then w is optimal for COP.
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Proof: The Proof of the Theorem is given in Altman [6] under slightly different conditions for
g = 1. It follows from Proposition 5.1 (vi) p. 97 of Flos [21] and Lemma 2.1 that B3 holds. The
condition A4 there follows from B1, and condition A3(i) is implied by B1 and B3, see Hordijk
[14] Section 10.

Next we construct a policy which is almost optimal for COP, for all n large enough.

Let w* be a policy for which (1). the following limit exists

t t
Ple,uy.a) = Jim [ 5] 30 5 PAXL = 3, A, = a) (33)
s=0 s=0
(2)
C(z,u) = c- f(z,u), DMz, u)=d* - f(z,u), k=1,..,K, (3.4)

and (3) u* is e-optimal for COP. Let u(¢) be the policy that satisfies (3.3), the linear repre-
sentation (3.4) and such that

f(xv u(e)) = (1 - €)f(l‘, U*) + Ef(CL‘, U) (35)
(The existence of these policies under the conditions of Theorem 3.1 is established in Altman

[6])-

Theorem 3.2 Let —M, M > 0 be a lower bound on the immediale costs ¢. Under the condi-
tions of Theorem 3.1, u(e€) defined in (3.5) is é-optimal for CO P, for all n large enough, where
é¢=¢C(z,v)+ M+ 3].

4 The finite horizon case

Let COP, denote the COP with finite horizon costs Cj(z,u) and Dj(z,u). Let Cf(x) be the

optimal value for COP,.
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Theorem 4.1 Assume B2, B4, and either Bl or 3 < 1. Then

(1) limy, oo C’g(m) = Cp(x).

(2) Choose some € > 0. Let u* be an e-optimal (or optimal) policy for COP that satisfies (3.4)
(e.g. any e-optimal stationary policy). There exists some N(€) such that for all n > N(€), the
policy u(e) satisfying (3.4) and (3.5) is é-optimal for COP,,, where € is given in Theorem 3.2.
(3) Choose a sequence &, — 0. Let r(n) be a &,-optimal policy for COP, if COP, is feasible,
otherwise let it be an arbitrary stationary policy. The stationary policy w obtained by applying

the limiting procedure in Theorem 3.1 (ii) to the policies r(n) is optimal for COP.

Proof: Assume first § < 1. Then,

[Cato.m)— Cotom]| < 1=t |3 8P| e, < TELEAE )
k=0 u
Ch(e,u) — Cj(e,u) = (1 — B)Ch(e,u) ([1 - Z ﬁl) — B)B T CE(e,u)  (4.2)
and hence
5 n+liq _
eae,0) - C3e,0)] < w (4.3)
Combining (4.1) and (4.3) we get
n+1 _
Jorto - o] < 2008 )

and similarly for Dg(o,u). Hence the conditions of Theorem 3.1 and 3.2 are satisfied, which

establishes the proof for § < 1.

Next, let = 1. B4 implies that 3r > 0 s.t. [[II*||, < r, [[[P*]"[|, < r, uniformly in

n € IN and w € U(S). This follows from Proposition 5.1 p. 97 in Spieksma [21] for u € U(SD)
and generalizes readily to U(S) due to Lemma 2.1. The MDP satisfies u-geometric ergodicity,
ie. Ip>0,a < 1, s.t.

I[P — T, < pa™, Vi € IN,

(4.5)
1P ], <p
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for all w € U(SD) (see Key Theorem I, p. 24 in Spieksma [21]). This easily extends to all
uw € U(S) by Lemma 2.1. Hence for all v € U(S) and n € IN,

n k
B My, < PREk0” PR
# n+1 (n+1)(1-a)

, (4.6)

and similarly with Dj(e,u). Hence the conditions of Theorem 3.1 and 3.2 are satisfied, which

establishes the proof. [ ]
It immediately follows from (4.1) that

Corollary 4.1 Let 8 < 1. Then Theorem 4.1 holds also for the finite horizon discounted cost

@g(x, u) replacing C3(x,u), and similarly with ﬁg(x, u).

5 Finite approximations

In this Section we consider the problem of approximating the Controlled Markov Chain (CMC)
which is characterized by the dynamics (i.e. the transition probabilities) P4, by a sequence
of Controlled Markov Chains C'MC), governed by the dynamics {Pyqy(m)}, m = 1,2,.... We
denote by Cg(m;x,u) and Dg(m;x,u) the costs (given in (2.5)) under policy « and initial state
z corresponding to CMC,, and discount factor 5 (0 < § < 1). Define similarly Cg(m;.r,u)
and Dj(m;z,u) the finite horizon costs given in (2.3). Let Cg(m,z) denote the optimal value

for COP,,.

We shall construct the C M), such that for all z,y € X, a € A lim,,_o Pray(m) =
Pray- We then show that the construction ensures that lim,, ., C2(z,u) = CP(z,u) and
lim,, oo DEF(2,u) = D¥P(z,u), k =1, ..., K uniformly in « € U(S) and hence by Theorem 3.1
lim, .., C%(z) = CP(z).

Introduce the following approximation scheme FA:

(i) For each m = 0, ... the state space is decomposed in two disjoint classes of states: E™, which

contains a finite number of states, and T7".
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(ii) Under any stationary policy u, £™ is a recurrent class, 7™ is a transient class, and absorp-
tion into the positive recurrent class takes place in finite expected time from any initial state.
(iii) Ep C Epy1, m=1,..; By :={0}; E = X.

(iv) There is some partial order on X; CMC is u-UGR and p is non decreasing in X w.r.t. the
partial order.

(v) The following holds:

= Pﬂ:ay T € E’rn7 /NS Em—l
> Pa:ay {ANS Em7 y € Em\Em—l
=1{y=1} zd FE,

where 1 is some arbitrary state such that 1 € N, F,,. Moreover, for every m > 0 and each
y € E,\E,_1 and z € F,,_1, we have 2 < y w.r.t. the partial order in (iv), if z and y are

comparable.

For u € U(S), denote Py (m) := 3=, Peay(m)pj),

Theorem 5.1 Consider a sequence of finite approximations C'O P, oblained by applying FA.
Assume B2, B4, B5 and {B1 or § < 1}. Then

(1) im,, o Cg(m;z) = Ca(z).

(2) Choose some € > 0. Let u* be an e-optimal (or optimal) policy for COP that satisfies (3.4)
(e.g. any e-optimal stationary policy). There exists some N (€) such that for all m > N(¢), the
policy u(e) satisfying (3.4) and (3.5) is é-optimal for CO P,,, where € is given in Theorem 3.2.
(3) Choose a sequence &, — 0. Let r(m) be a &,,-optimal policy for COP,, if COP,, is feasible,
otherwise let it be an arbitrary stationary policy. The stationary policy w obtained by applying

the limiting procedure in Theorem 3.1 (ii) to the policies r(m) is optimal for COP.

Proof:
|Cg(m;z,u)— Cg(z,u)] < |C’g(m;w,u)—Cg(m;x,u)‘
+ ‘C’g(m; T,u)— Cg(x,u)‘

+ ‘Cg(x, u) — Cp(z, u)‘
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By (4.4),(4.6), |C’g(x,u) - C’g(x,u)‘ converges to zero as n — oo uniformly in u € U(S).

Next we show that this also holds for the first term. Without loss of generality, assume
that 1 € M (1 is the state defined in FA (v), and M is defined in (2.9)). We have for any
weU(S)forg=1

s Pe(m)ll, = sup pz' Y [Py
v€Bm  ygM

= ;rel%xugl Yo Pyt > Piy(m)uy]
" _yeEm—l\M yEEm\Em_l\M

-1

S max f Z qu‘byluy + Z P;‘Lylul/
zEEm
Ly€EEm-_1\M YEEm\Em_1\M

-1

< maxpt D, Fou
" yeX\M

< P,

For B < 1 we get similarly |[8P%(n)|, < [8P*(n)|,. We show that this implies that the

first term in (5.2) converges to 0 as n — oo uniformly in U(S) and in m. Consider a new
M D P* which is identical to the original MDP, except that in each state an extra action is
added that allows to reach state 1 in one step w.p.l. Let U(S*) and U(SD*) be the set
of stationary policies and stationary deterministic policies in M DP*. Let P* and C’g(x,u)
correspond to the transition probabilities and cost associated with the new MDP. For each
policy « € U(S) and m in the original MDP, there exists w € U(5*) such that P¥(m) = P¥,
and thus Cj(m;z,u) = Cg(m,z,w). It is easily seen that the new MDP is also u-UGR with the
same M and a. The conditions of Theorem 4.1 therefore hold for M D P*. It thus follows from

(4.1),(4.6), that ‘Cg(m; z,u)— Cg(m;z, u)‘ converges to zero as n — oo uniformly in u € U(S).

Choose some €. Since both the first and the last term converge to zero uniformly in

uw € U(S), it follows that In(€) such that

‘C’g(m;x,u) - Cg(e)(m;x,u)‘ < €/2, ‘C’g(ﬁ)(x,u) - C’g(x,u)‘ < €/2 (5.2)
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B5 implies that for any n and @, 3L(n,z) s.t. Ym > L(n,z), YVu € U(S),
‘C‘g(m; z,u) - Ch(z, u)‘ =0. (5.3)
Combining this with (5.2) we obtain Yu € U(5), Ve > 0,
|C(m;z,u)— Clz,u)| <€ (5.4)

for all m > L(n(e),z), and hence as m — oo, C(m;x,u) converges to zero uniformly in u €
U(S). We obtain similarly the uniform convergence of D(m;z,u). Thus the conditions of

Theorem 3.1 and 3.2 are satisfied, which establishes the proof. [ ]

6 Convergence in the discount factor

Let CO Py denote the COP with cost Cg(z,u) and Dg(z,u), where 9 < 3 < 1. Let Cg(z) be
the optimal value for C'O Pg.

Theorem 6.1 Lety — (3, 0<v,8 < 1. Assume B2, B} and {BI or 3 < 1}. Then

(1) i s C () = Cila).

(2) Choose some ¢ > 0. Let u* be an e-oplimal (or optimal) policy for COPg that satisfies
(3.4) (e.g. any e-optimal stationary policy). There exists some A(e) such that for all v such
that |y — B < A(e), the policy u(e) salisfying (3.4) and (3.5) is é-optimal for COP,, where ¢
s given in Theorem 3.2.

(3) Let v(m) be a subsequence converging to 3. Choose a sequence &, — 0. Let r(m) be a
Em-opltimal policy for COPg if CO P, is feasible, otherwise let it be an arbitrary stalionary
policy. The stationary policy w obtained by applying the limiting procedure in Theorem 3.1 (ii)
to the policies r(m) is optimal for COP — §.

Proof: For any v and 3 such that 0 < v,3 <1,

1Cy(z, u) = Cp(a, u)”# <

(6.1)
HC,Y(.I, u) — Cl(z, U)Hu + HC,?(.%, u) — Cp(z, u)HM + HCE($’U) — Cp(z, u)HH
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According to Theorem 4.1, the first and last term converge to zero as n — oo uniformly in U(S5).
For any ¢, 3 N(¢) such that for n = N(¢), the first term and the last term in (6.1) are smaller
than €/3 for any v such that |y — 8| <€, ¥ < 1. (This follows from the fact that the term on
the right hand side of (4.4) is continuous in 3 in (0,1), and converges to 2R(1 — o)~} (n + 1)~!

as # — 1). Next we examine the second term. For any v € U(S) and n = N (e),

y\® AV =0 25=07" D=0 P "
n i ﬁj | .
) e (6.2)
‘72:% _EZ:O ,-./s E?:O ﬂs_ ' 1 ﬁ

IN

n or 77’/67" 1 1 i i )
- - = o R B <1
7; -ES:O 75 ES:O ﬁs_

Let 6(€) be such that for all v that satisfy |y — 8| < 6(¢), the second term in (6.1) is less
than €/3. It then follows that ||C'(z, u) — Cg(z, u)|, <€, Vy such that [y — 8] < min{e, 6(¢)}.

Hence C,(z,u) converges to Cg(z, ) uniformly in U(S5), and similarly with D.(z,u). Thus the
conditions of Theorem 3.1 and 3.2 are satisfied, which establishes the proof. [ ]

7 Application to a queueing model

Consider the following discrete time system (Altman and Shwartz [1], [2] Section 6, Nain and
Ross [18], Spieksma [21]). Packets of information of N different types, such as data files, video
and voice signals, compete for access to some shared resource. Each type of arriving packets
waits in a buffer till it gets access to the resource. At the beginning of each time slot, priority is
given to one of the traflic types according to some prespecified decision rule, and the packet is
served for one unit of time. Service problems and errors due to noises are modeled by allowing
the service to fail with positive (class dependent) probability. If the service is successful, the
packet disappears from the system; otherwise, it remains in the queue. The problem C'O FPyycyes

is to find a scheduling policy that minimizes a linear combination of the average delays of
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some types of traffic (typically, of the noninteractive types) subject to constraints on (linear

combination of ) average delays of other types (typically the interactive traffic).

At time ¢, M customers arrive to queue i, 1 < i < N. Arrival vectors M; = {M}, ..., MM}
are independent from slot to slot and form a renewal sequence with finite means A;. During
a time slot (t,t+1) a customer from any class i, 1 < ¢ < N may be served, according to some
policy, which is a prespecified dynamic priority assignment. If served, with probability u; it
completes its service and leaves the system; otherwise it remains in its queue. (g; should not
be confused with the p-norm introduced in Section 2. We use the same notation for both since

both are widely used in Literature with this notation). A generic element of the state is given

by z = {z',2?,...,2"N} and it represents an N dimensional vector of the different queues’ sizes.

Throughout we restrict to non-idling policies.

Assume p := YN, \i/u; < 1. Consider the linear cost function ¢(z,a) := SN, c;a'
and d*(z,a) = YN, d¥at for 1 < k < K, where ¢; and d¥ are non-negative constants. Thus

the costs C(z,u) and D¥(z,u) are related to linear combinations of expected average length

of the different queues, and C'OP,yeyes has the form: find v € U that minimizes C(z,u) s.t.

D*(z,u) < Vi, k=1,..., K, where V} are given constants. Consider the expected average cost.

By Little’s law these quantities are proportional to the respective waiting times in the different

queues.

Let G = {g;} be the set of all strict priority policies, i.e. each type of customer has an
index, and a customer of a given type is served only if there are no customers with lower priority
in the system, and if it is the first in its buffer. Let |G| = L. For the unconstrained control
problem, there exists an optimal policy within G; it is the well known “uc” rule, for which the
priorities are set according to increasing order of the yu;c; (see Baras et al. [7]). Thus, the queue
for which p;c; is the largest has the highest priority, and so on. Optimal policies for C'O Pyyeyes
are obtained by time multiplexing between the different g;’s. More specifically, define an L
dimensional vector parameter @ = {ay,aq,...,ar}, where a is a probability measure. Define
a “cycle” as the time between two consecutive instants that the system is empty. During any
cycle, a fixed g; is used. A PTS policy & is defined as a policy that chooses different policies g;

in such a way that the relative average number of cycles during which ¢g; was used is equal to
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a;, as t goes to infinity. (The precise definition can be found in Altman and Shwartz [1]). It is

shown in Altman and Shwartz [1] that

L
THe,é) =) ;[ (,95) (7.1)
=1
and
L L
Ci(z,a) =c- fH(z,a) = Zajc Nz, g5) = ZajCl(m,gj). (7.2)
7=1 7=1

where f is defined in (3.3). For a given § > 0, consider the following LP: find o € M({1,..., L})
that
L
minimize ZajCl(x,gj)
j=1
L
subject to Zaij(x,gj) < Vi — 6, k=1,...,K
j=1
Ci(z,g;) and D¥(z,g;) can be obtained as in Nain and Ross [18]. Let a*(§) be the solution of
LP with a given 6. Altman and Shwartz [1] show that 4*(0) is an optimal policy for C'O Pyyeyes-
Under B2, it can be shown that there exists some 6* > 0 such that &*(6) is feasible for CO Pyyeyes

(this follows from the fact that the PTS policies are sufficient for CO Pyyeyes, see Altman and
Shwartz [1]).

In the following Theorem we consider (1) a sequence of problems C'O for the

n
Pqueues

systems with buffers of sizes R* = {R7},...,R}}, 1 <n < 0o, where COP; is the one with

queues

all buffers infinite, and R® C R™! (where the inclusion is strict). Assume without loss of
generality that the initial state z satisfies € N2, R™. (2) The problem with finite horizon

and (3) convergence in the discount factor.

Theorem 7.1 . Assume B2. Then
(i) im,, o Cp(z) = C(2), limy, o Cg(m;z) = Cg(z), limy_.3 Cy(z) = Ca(z).
(ii) Let § = 1. Choose some 0 < € < 1. Let u(¢) be the PTS policy with

a=ca*(6%) + (1 —€)a™(0). (7.4)
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Then for all n large enough u(e) is é-optimal for COP}, ., s; for all m large enough u(e) is
é-optimal for CO Pyyeyes with finite horizon m; for all B close enough to 1, u(¢) is é-optimal for

COPS,.... ¢ =C(z,a(6%)) + 3].

queues”
(7ii) In case that there are no constraints, for all n large enough the pc rule is e-optimal for

COP

qucuess Jor all m large enough it is €-optimal for CO Pyyeues with finite horizon m; for all

0 close enough to 1, it is é-optimal for C'OPqﬁ

UEUES *

Proof: B4(i) and B4(ii) are satisfied by Spieksma [21] Theorem 9.1. Moreover, the function

has the form
N

ue) = [T+ )" (75)

i=1
where z are some numbers with z; > 0,Vi. It is easily seen that this implies (iv) in the finite
approximation scheme FA, and that the other features of FA are satisfied as well. B1 is satisfied
(see e.g. Altman and SHwartz [2]) and B5 clearly holds too. The Theorem then follows by
applying Theorems 4.1, 5.1 and 6.1. [ ]

References

[1] E. Altman and A. Shwartz, “Optimal priority assignment: a time sharing approach”,

IEFEFE Transactions on Automatic Control Vol. AC-34 No. 10, pp. 1089-1102, 1989.

[2] E. Altman and A. Shwartz, “Markov decision problems and state-action frequencies,”

SIAM J. Control and Optlimization. 29, No. 4, pp. 786-809, 1991

[3] E. Altman and A. Shwartz, “Adaptive control of constrained Markov chains”, IFFFE
Transactions on Automatic Control, 36, No. 4, pp. 454-462, 1991.

[4] E. Altman and A. Shwartz, “Sensitivity of constrained Markov Decision Problems”,

Annals of Operations Research, 32, pp. 1-22, 1991.

[5] E. Altman and V. A. Gaitsgory, “Stability and Singular Perturbations in Constrained

Markov Decision Problems”, submitted to IFEF Transactions on Aulomatic Control,

1990.



Asymptotic Properties of Constrained MDPs 19

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

E. Altman, “Denumerable constrained Markov Decision Problems and finite approxima-

tions”, under revision, 1991.

J.S. Baras, D.-J. Ma, and A. M. Makowski, “K competing queues with geometric service
requirements and linear costs: the pc rule is always optimal,” Systems and Control

Leltters, 6 No. 3 pp. 173-180, August 1985.

F. J. Beutler and K. W. Ross, “Optimal policies for controlled Markov chains with a
constraint”, J. Mathematical Analysis and Applications 112, 236-252, 1985.

V. S. Borkar, “Ergodic control of Markov Chains with constraints — the general case”,

manuscript.

R. Dekker and A. Hordijk, “Average, sensitive and Blackwell optimal policies in denu-

merable Markov decision chains with unbounded rewards”, Mathematics of Operations

Research, 13, pp. 395-421, 1988.

R. Cavazos-Cadena, “Finite-state approximations for denumerable state discounted

Markov Decision Processes”, J. Applied Mathemalics and Optimization 14 pp. 27-47,
1986.

A. Hordijk and F. Spieksma, “Constrained admission control to a queuing system” Ad-

vances of Applied Probability Vol. 21, pp. 409-431, 1989.

O. Hernandez-Lerma, “Finite state approximations for denumerable multidimensional -

state discounted Markov decision processes”, J. Mathematical Analysis and Applications

113 pp. 382-389, 1986.

A. Hordijk, Dynamic Programming and Markov Potential Theory, Second Edition, Math-

ematical Centre Tracts 51, Mathematisch Centrum, Amsterdam, 1977.

A. Hordijk and L. C. M. Kallenberg, “Constrained undiscounted stochastic dynamic
programming”, Mathematics of Operalions Research, 9, No. 2, May 1984.

L. C. M. Kallenberg, Linear Programming and Finite Markovian Control Problems,
Mathematical Centre Tracts 148, Amsterdam, 1983.



Asymptotic Properties of Constrained MDPs 20

[17] A. Lazar, “Optimal flow control of a class of queuing networks in equilibrium”, IFEF

Transactions on Automatic Control, Vol. 28 no. 11, pp. 1001-1007, 1983.

[18] Nain P. and K. W. Ross, ”Optimal Priority Assignment with hard Constraint,” Trans-
actions on Automatic Control, Vol. 31 No. 10, pp. 883-888, October 1986.

[19] L. I. Sennott, “Constrained discounted Markov decision chains”, submitted, 1990.
[20] L. I. Sennott, “Constrained average cost Markov decision chains”, submitted, 1990.

[21] F. M. Spieksma, Geometrically FErgodic Markov Chains and the Optimal Control of
Queues, Ph.D. thesis, University of Leiden.

[22] L. C. Thomas and D. Stengos, “Finite State Approximation Algorithms for Average
Cost Denumerable State Markov Decision Processes”, OR Spectrum, 7, pp. 27-37, 1985.

[23] D. J. White, “Finite State Approximations for Denumerable State Infinite Horizon Dis-
counted Markov Decision Processes with Unbounded Rewards”, J. Mathematical Anal-

ysis and Applications 86, pp. 292-306, 1982.



