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Abstract
The objective of this paper is to present a significant improvement to the approach of Duncan
et al. [1, 7] to analyze the deformations of curves in sequences of 2-D images. This approach is
based on the paradigm that high curvature points usually possess an anatomical meaning, and are
therefore good landmarks to guide the matching process, especially in the .absence of a reliable
physical or deformable geometric model of the observed structures.

As Duncan’s team, we therefore propose a method based on the minimization of an energy
which tends to preserve the matching of high curvature points, while ensuring a smooth field of
displacement vectors everywhere.

The innovation of our work stems from the explicit description of the mapping between the
curves to be matched, which ensures that the resulting displacement vectors actually map points
belonging to the two curves, which was not the case in Duncan’s approach. Moreover, the energy
minimization is obtained through the mathematical framework of Finite Elements analysis, which
provides a rigorous and efficient numerical solution. Moreover we show that the generalization of
our approach can be easily generalized in 3-D to analyze the deformations of surfaces.

We have actually implemented the method in 2-D and we present the results of the tracking of

a heart structure in a sequence of ultrasound images.

Résumé

L’objectif de cet article est de présenter une amélioration importante de la méthode présentée par
Duncan et al. [1, 7] pour analyser la déformation de courbes dans une séquence d’images 2-D.
Cette approche est basée sur le principe que les points de forte courbure ont une signification
anatomique et par conséquent sont importants pour la mise en correspondance des points. De
plus, cette approche n’est pas sous-jacente & un modéle physique ou géométrique des structures
observées dans la séquence d’images.

Nous proposons, comme Duncan et al. [1, 7], une méthode basée sur la minimisation d’une
énergie qui préserve la mise en correspondance de points de forte courbure tout en assurant un
champ de déplacement régulier.

L'innovation provient de la description explicite de I'application mettant en correspondance les
courbes, ce qui garantit que le champ de déplacement met en correspondance des points appartenant
aux deux courbes, contrairement & la méthode de Duncan. De plus, la minimisation de 1’énergie
est faite a 1’aide d'une méthode variationnelle et d’éléments finis. La méthode présentée peut étre
également généralisée au suivi de déformations de surfaces dans des images 3-D.

Nous avons implémenté la méthode dans le cas de courbes 2-D, et nous présentons les résultats

obtenus sur le suivi de la valve mitrale dans une séquence echocardiographique.



1 Introduction

Non-rigid motion of deformable shapes is becoming an increasingly important topic in computer
vision, especially for medical image analysis. Within this topic, we concentrate on the problem of
tracking deformable objects through a time sequence of images.

The objective of our work is to improve the approach of Duncan et al. [1, 7] to analyze the
deformations of curves in sequences of 2-D images. This approach is based on the paradigm that
high curvature points usually possess an anatomical meaning, and are therefore good landmarks
to guide the matching process. This is the case for instance when deforming patients skulls (see
for instance [6, 8, 16], or when matching patient faces taken at different ages, when matching
multipatients faces, or when analyzing images of a beating heart. In these cases, many lines of
extremal curvatures (or ridges) are stable features which can be reliably tracked between the images
(on a face they will correspond to the nose, chin and eyebrows ridges for instance, on a skull to the
orbital, sphenoid, falx, and temporal ridges, on a heart ventricle to the papillary muscle etc. .. ).

As Duncan’s team, we therefore propose a method based on the minimization of an energy

which tends to preserve the matching of high curvature points, while ensuring a smooth field of
displacement vectors everywhere.

The innovation of our work stems from the explicit description of the mapping between the
curves to be matched, which ensures that the resulting displacement vectors actually map points
belonging to the two curves, which was not the case in Duncan’s approach. Moreover, the energy
minimization is obtained through the mathematical framework of Finite Elements analysis, which
provides a rigorous and efficient numerical solution. Moreover we show that the generalization of
our approach can be easily generalized in 3-D to analyze the deformations of surfaces.

Our approach is particularly attractive in the absence of a reliable physical or deformable
geometric model of the observed structures, which is often the case when studying medical images.
When such a model is available, other approaches would involve a parametrization of the observed
shapes [13], a modal analysis of the displacement field [11], or a parametrization of a subset of
deformations {2, 14]. In fact we believe that our approach can always be used when some sparse
geometric features provide reliable landmarks, either as a preprocessing to provide an initial solution
to the other approaches, or as a post-processing to provide a final smoothing which preserves the
matching of reliable landmarks.

We have actually implemented the method in 2-D and we show how to generalize the approach



in 3-D. We present the results of the tracking of a heart structure in a sequence of 2-D ultrasound

images.

2 Modelling the Problem

Let Cp and Cg be two boundaries of the image sequence, the contour Cq is obtained by a non
rigid (or elastic) deformation of the contour Cp. The curves Cp and C¢ are parameterized by P(s)
and Q(s') respectively.

The problem is to determine for each point P on Cp a corresponding point ¢ on Cg. For doing
this, we must define a similarity measure which will compare locally the neighborhoods of P and
Q.

As explained in the introduction, we assume that points of high curvature correspond to stable
salient regions, and are therefore good landmarks to guide the matching of the curves. Moreover,
we can assume as a first order approximation, that the curvature itself remains invariant in these

regions. Therefore, we can introduce an energy measure in these regions of the form:

Beurse = 3 [ (Ko(s)) ~ Kp(s))" ds 1)
§S
where Kp and K¢ denote the curvatures and s, s’ parameterize the curves Cp and Cg respectively.
In fact, as shown by [7, 12], this is proportional to the energy of deformation of an isotropic elastic
planar curve.
We also wish the displacement field to vary smoothly around the curve, in particular to insure a
correspondence for points lying between two salient regions. Consequently we consider the following

functional (similar to the one used by Hildreth to smooth a vector flow field a.long a contour [10]) :

_ , (Q(s) - P(s)|°
B= [ (Ko()-

ds
Ercgulor = /

measures the variation of the displacement vector PQ along the curve Cp, and the |.|| denotes the

(2)

where

0(Q(3’) - P(s)) |

norm associated to the euclidean scalar product (.,.) in the space R2.

The regularization parameter R(s) depends on the shape of the curve Cp. Typically, R is
inversely proportional to the curvature at P, to give a larger weight to E.,. in salient regions and
conversely to E,.guiqr to points inbetween. This is done continuously without annihiling totally the

weight of any of these two energies (see section 5.2) .
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3 Mathematical Formulation of the Problem

Given two curves Cp and Cg parameterized by s € [0,1] and ' € [0, a] (where a is the length of

the curve Cq), we have to determine a function f such that:

f:{0,1] = [0,q]
s — s
satisfying
f(0)=0 and f(1)=a (3)
and
f = ArgMin(E(f)) (4)
where

(Q(f(s)) — P(s))
ds

The condition (3) means that the displacement vector is known for one point of the curve. In

2
B(f)= [ (Ka(f(s) = Kp(s)Pds+ R [ ds 5)

the trivial case, where the curves Cp and Cy are identical, solving (4) leads to the identity function.

In the model defined above we assumed that:
¢ the boundaries have already been extracted,
o the curvatures K are known on the pair of contours.

These necessary data are obtained by preprocessing the image sequence.

3.1 Boundaries Extraction

The boundaries of the object are obtained with the deformable model {5]. This produces a good
boundary extraction, the detected edges are connected and have an accurate localization. The
deformable model allows also to do a global boundary tracking. This last feature is important in

processing an image sequence, since in this case the deformable model has to be initialized only

once on the first image of the temporal sequence.



3.2 The Computation of the Curvature

The computation of the curvatures of the two curves Cp and Cg is done by fitting a fourth order
B-spline (insuring a C3 continuity) to the extracted boundaries. The control points of the B-spline
are distributed in a non uniform manner, insuring a good localization of the control points near the

points of interest (typically high curvature points). The details of this method are given in [8].

4 Numerical Solution

The characterization of a function f satisfying f = ArgMin(E(f)) and the condition (3) is per-
formed by a variational method. This method characterizes a local minimum f of the functional
E(f) as the solution of the Euler-Lagrange equation VE(f) = 0.

Then solving the Euler-Lagrange equation VE(f) = 0 leads to the solution of the partial
differential equation:

FUQUANR + Kp (N, @A) + § [Kp — Ka(AIKH(F) = 0

+ Boundary conditions

(6)

where Q is a parametrization of the curve Cg, Q'(f) the tangent vector of Cq, K b the derivative
of the curvature of the curve Cg and Np is the normal vector to the curve Cp. The boundary
conditions of equation (6) are f(0) = 0 and f(1) = a (condition (3)) that any solution must satisfy.
In the following we consider null boundary conditions (this is done by a simple change of variables).

The equation (6) is solved by a finite element method. Details on the associated variational
problem and the construction of the approximation space can be found in the appendix.

The term fo, (Ko(f(s)) - K p(3))? ds measures the difference between the curvature of the
two curves. This induces a non convexity of the functional E. Consequently, solving the partial
differential equation (6) will give us a local minimum of E. To overcome this problem we will
assume that we have an initial estimation fp which is a good approximation of the real solution
(the definition of the initial estimation fp will be explained later). This initial estimation defines
a starting point for the search of a local minimum of the functional E. To take into account this

initial estimation we consider the associated evolution equation:

8L3) 1 p1(6) IQUF(sDIF + Kp(s) (Wp(s), QUF(s)) + F [Kp(s) — Ka(F(s))] Ko(£(s)) = 0
f(0,8) = fo(s) initial estimation.

(7)



A stationary solution of the equation (7) is a solution of (6), since, at a stationary state, the
term %% vanishes and the obtained solution satisfies the equation (6).
This evolution equation can also be seen as a gradient descent algorithm toward a minimum of

the energy E.

4.1 Discrete Problem

The discretization of the equation (6) by a finite element method leads to a solution of a linear
system Af = L, where the matrix A is symmetric, positive definite and tridiagonal. Thus the

evolution problem (7) can be rewritten as:

o]
v ar=1 (8)

where the vector Ly depend on the current solution f. This equation is discretized by a finite

difference method and leads to the solution of the linear system:

(Ia+7A)fe = fecr + 7Ly, _,
fi=o = fo
where 7 is the time step.
Thus at each time step we solve a symmetric, positive definite, tridiagonal linear system by a
LU decomposition.

The scheme (9) is iterated as long as ||f; — fi-1|| is greater than a given value ¢ > 0.

4.2 Determining the Initial Estimation f,

The definition of the initial estimation fp has an effect upon the convergence of the algorithm.
Consequently a good estimation of the solution f will lead to a fast convergence. The definition of
fo is based on the work of Duncan et al {7]. The method is as follows:

Let s; € [0,1], = 1...n be a subdivision of the interval [0, 1].

For every point P; = (X(s;),Y(s;)) of the curve Cp we search for a point Q; = (X(s!),Y(s}))
on the curve Cq, and the function f is then defined by fo(s:) = si.

For doing so we have to define a pair of points Py, Qo which correspond to each other. But, first
of all, let us describe the search method. In the following, we identify a point and its curvilinear
abscissa (i.e. the point s; denotes the point P; of the curve Cp such that P(s;) = P;, where P is

the parametrization of the curve Cp).



For each point s; of Cp we associate a set of candidates S; on the curve Cq. The set S; defines
the search area. This set is defined by the point s’ which is the nearest distance point to s; belonging
to the curve Cg, along with L‘“‘lel points of the curve Cq on each side of s’ (where N,cqrch
is a given integer defining the length of the search area).

The length of the search area plays an important role in the determination of fy. The parameter
N,earcn depends on the shape of the curves Cp and Cq. If the curve Cyg is similar to Cp (i.e. if Cp
undergoes small deformations) then N,.qrcn can be small. But in the opposite case N, ;,cn must
be large enough to include the corresponding points of Cp and Cg. In the presented experimental
results we have set N,.qrch = 10.

Among these candidates, we choose the point which minimizes the deformation energy:
1
E=3 [ (Kalf(s)) - Ke(s)?ds (10)
S5

where §g;, = [3; — %,s; + %] and § denotes the length of a characteristic structure.

The length of the characteristic structure depends on the shape of the curve Cp. If the curve
Cp has small structures (such that corners) the parameter § must be small, not to smooth these
structures by computing E (10) over a large set §.5;. This parameter allows to do a local matching
process between the curves Cp and Cy.

In some situations this method fails, and the obtained estimation fp is meaningless, leading to
a bad solution. Figure 9 shows an example where the method described in [7] fails. This is due to
the bad computation of the search area S;. To compute more accurately this set, we have added
a criterion based on the curvilinear abscissa. Consequently, the set defining the search area S; is
defined by the point s’ which is the nearest distance point to s; belonging to the curve C¢ such
that s; ~ 2%, along with H‘-‘“‘f“——l points of the curve Cg on each side of s..

Figure 10 illustrates the use of this new definition of the set S; for the same curves given in
figure 9. This example shows the ability to handle more general situations with this new definition
of the search area S;.

As noted above, the search area S; can be defined only if we have already chosen a point P,
and its corresponding point Q. The most salient features in a temporal sequence undergo small
deformations at each time step, thus a good method for choosing the point Py is to tal;e the most
distinctive point so that the search for the corresponding point becomes a trivial task. Consequently
the point Pj is chosen among the points of Cp with maximal curvature. In many cases this method

provides a unique point Py. Once we have chosen the point Py, the point Qp is found by the local
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search described above.

5 Defining the Parameters

In this section we discuss the choice of the parameters used in our model. The parameters are: the

space discretization step h, the time step 7 and the regularization parameter R = R¢g,(s).

5.1 The Space and Time Steps h and 7

We have shown that solving equation (7) leads to a solution of a linear system (9). This system is
solved at each time step 7 and the accuracy of the solution depends on the value of Cond(Ig+7A4) =
| Ia + T Al {|(Za + 7A)~1|| which is the condition number of the matrix (I + T7A). In the optimal
case Cond(Ig+71A) = 1. In practice we will choose the parameters h and 7 such that Cond(I;+7A)
is closest to one. An easy way to do so is to search for an upper bound of Cond(I;+ 7A4) and then
choose the space and step discretization steps such that the upper bound is closest to one.

Let us consider the matrix norm:

1
1 2
(aiz)ij=1..nlll = 7 (Z Sup; |a,-,-|2)
thus,

Cond(I4 + A)<1+—1‘—(—[’~)2
AT TR S T 2 \1 458

where n is the dimension of the matrix A and 8 = g—}i is the diagonal element of the matrix A (8
is obtained by the finite element method).

Consequently, choosing 8 ~ 1 which means that h and T have similar values, leads to:
Cond(Ig+ T7A) < 1.12,

insuring that the matrix I + 74 is well-conditioned.

5.2 The Regularization Parameter R = R¢,(3)

The energy E (5) is defined by an energy of deformation E..,,. which measures the difference
between the curvatures of Cp and Cg and a regularization energy E,.guiar Which constrains the
solution f to be smooth. The balance between these two energies is defined by the regularization

parameter R¢,(s).



The parameter R(Cp) allows the algorithm to deal with curves which have locally a constant
curvature. In this case the energy E ... is locally constant and the regularization parameter
R(Cp) constrains the solution to be smooth. In this case setting R(Cp) = 0 the energy F is locally
constant and consequently any function f € H1(0,1) satisfies VE(f) = 0, leading to a degenerate
case.

Experimenting the algorithm with different types of curves gave us an empirical method for
choosing the regularization parameter R(Cp). If the curves Cp and Cg have some characteristic
points (typically points of high curvature), one then choose R(Cp) such that the energy Erve is
preponderant. In the opposite case, i.e if the curvatures Kp and K¢ are nearly constant (in this
case we have the situation described above), one must choose the parameter R(Cp) such that the
energy E,.guiar is preponderant.

In both cases the parameter R(Cp) should not have the extremal values R(Cp) = 0 or
R(Cp) > 1. If R(Cp) = 0 then each point matches the point of closest curvature, leading to
function f very rough. Setting R(Cp) > 1 leads to an excessive regularization and the obtained
solution will be the identity function.

In the presented experimental results we set R(Cp) = I-{-_Klp(s—)z'

6 Experimental Results

The method was tested on a set of synthetic and real image sequences. The results are given by
specifying at each discretization point P; ¢ = 1...N of the curve Cp the displacement vector
u; = PfQ,-. At each point P; the arrow represents the displacement vector ;.

The first experiments were made on synthetic data. In figure 3, the curve Cg (a square) is
obtained by a similarity transformation (translation, rotation and scaling) of the curve Cp (a
rectangle). The initial estimation fp is shown in figure 3, and the solution after a few iterations
of the scheme (9) is given in figure 4. We can note that the algorithm computes accurately the
displacements of the four corners. This result was expected since the curves Cp and C¢ have salient
features which help the algorithm to compute accurately the displacement vector u;.

Figure 5 and 6 give an example of the tracking of each point on an ellipse deformed by a
similarity. This figure illustrates the robustness of the algorithm, since in this example, locally, the
curvature is modified by the similarity transformation.

These two examples characterize the algorithm: the displacement vectors are computed accu-
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rately when, locally, the curvature of the curve Cp varies significantly, otherwise the regularization
energy prevails over the deformation energy and smoothes the solution.

As described in section (4.2) the computation of the initial estimation is crucial. In the following
experimentation we have tried to define the maximal error that can be done on the estimation of
fo without disturbing the final result. In figure 7 we have added a gaussian noise (¢ = 0.05) to a
solution f obtained by the scheme (9). This noisy function was taken as an initial estimation for
the iterative scheme (9). After a few iterations the solution f is recovered (8). It appears that if
|f — fo| < 4h (where h is the space discretization step), starting with f, the iterative scheme (9)
will converge toward the solution f. The inequality |f ~ fo| < 4h means that for each point P on
the curve Cp the corresponding point @ can be determined with an error of 4 points over the grid
of the curve Q.

The tracking of the moving boundaries of the valve of the left ventricle on an ultrasound image
helps to diagnose some heart diseases. The figures 12, 13, 14 and 15 show a temporal tracking of
each point of the valve during a cardiac cycle. The segmentation of the moving boundaries over the
whole sequence was done by the snake model [5]. Figure (2,left) shows the initial estimation of the
boundary. This estimation is given by the user once on the first image of the temporal sequence,
the rest of the sequence is processed almost automatically [9]. The user gave 4 initial estimations
for the whole temporal sequence (30 images) due to the movements of the valve which undergoes
big deformations at some characteristics periods of the cardiac cycle. Figure (2,right) shows the
obtained segmentation of the boundary of the first image. In figure 11 a global tracking of a part
of the image sequence is showed! . This set of curves are processed as described in section (3.2) to
obtain the curvatures and the normal vector of the curves. The figures 12, 13, 14 and 15 show the
tracking of some points of the valve during the whole temporal sequence. The results are presented
by pairs of successive contours. One can visualize that the results meet perfectly the objectives of

preserving the matching of high curvature points while insuring a smooth displacement field.

7 8-D Generalization

In this section we give a 3-D generalization of the algorithm described in the previous sections. In
3-D imaging we must track points on located surfaces, since the objects boundaries are surfaces

(as in [1]).

*Courtesy of 1. Herlin {9]
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In [15] the authors have shown on a set of experimental data, that the extrema of the larger
principal curvature often correspond to significant intrinsic (i.e. invariant by the group of rigid
transformation) features which might characterize the surface structure, even in the presence of
small anatomic deformations.

Let Sp and Sg be two surfaces parameterized by P(s,r) and Q(s',7'), and let kp denote the
larger value of the principal curvature of the surface Sp at point P.

Thus the matching of two surfaces, leads to the following problem:

find a function

f: R® > R?

(8,7) = (s',7)
which minimizes the functional:
B(f) = [ (xa(f(s,m) = mp(s,r)dsdr
ir, [ |HQUter) = o)
Sp

Os
where ||.|| denotes the euclidean norm in R3. Its resolution by a finite element technique can be

2

dsdr + R,
Sp

2

B(QUS(s,m)) = Py 4

or

done as in [4], and the results should be compared to those obtained by [1]. We are currently

working on the implementation of this 3-D method.

8 Conclusion

We presented a significant improvement to Duncan’s team approach to track the motion of de-
formable 2-D shapes, based on the tracking of high curvature points while preserving the smooth-
ness of the displacement field. This approach is an alternative to the other approaches of the
literature, when no physical or geometric model is available, and can also be used as a complemen-
tary approach otherwise.

The results on a real sequence of time varying anatomical structure of the beating heart perfectly
meet the defined objectives.

Our future work will concentrate on the 3-D generalization of this approach.
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9 Appendices

In this section we give the details about the minimization of the energy (5). This minimization
is done in three stages. First, establish the partial differential equation from the Euler-Lagrange
equation. Second, construct the associated variational problem and then solve this problem with
a finite element method [3].

9.1 Euler-Lagrange Equation

A local minimum of E (5) satisfies the Euler-Lagrange equation: VE = VEcyrye + RV E,egular =0

For any function u, we have;

V Eurve(f) 1 = =2 /c,. (Kp(s) — Ko(f(s))]| Ko £(s))uds (11)

and

VE,equar(f) u = -2 c,,<3(P (s) - Q(#(s))) 9 (Q’(f(s))u(s)))ds

ds ' s
_ 2(Q(f(s)) - P(s))
I c,,< 2) ,Q(f(s))u(s)>ds

~2 /cp (F/($)QI(f(3)) + F'(8)Q"(£(8)) — P"(5), Q(£(s))) u(s) ds

Q is a parametrization of the curve Cg thus (Q’,Q") = 0 (where the (.,.) denotes the euclidean

scalar product in R? and ||.|| the associated norm). We have also the relation
P"(s) = ~Kp(s)Np(s)

where P” denotes the second derivatives of P, Kp the curvature and Np the normal vector to the

curve Cp. Hence,

V() u= =2 [ (£() [QUDI + Kplo) (Wp(s), Q') o) ds  (12)

Since the equations (11,12) are satisfied, independently of the function u, we have the partial

differential equation:

{ FINQUAN + Kp (Np, Q) + 4 [Kp - Ka(DIEH(f) = 0 )

+ Boundary conditions

given in section 4.
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9.2 The Variational Problem

A method for solving the equation (13) is to consider the associate variational problem. This
consists in defining a bilinear form a(f, ¢) and a linear form L such that solving the equation (13)
is equivalent to solve:

find a function f such that:

a(f,9) = L(g) Vg€ H'(0,1) (14)

2
(H'(0,1) is the space of functions v € L?(0, 1) such that f; (fﬂ-) ds < +00).
Let g € H'(0,1), multiplying equation (13) by g and integrating it, yields:

L1 fatds = [ (K (¥p,QU0) + 3 K> ~ Ka(NKG() 0ds

The bilinear form is then defined by:

1
a(f.9)= [ 1QUII f'o'ds

and the linear form L is given by:

1) = [ (Ke (Ve Q) + 5 1Kp ~ Kol KG(N) gds

One can easily check that f is a solution of equation (13) if and only if f is a solution of the
variational problem (14).
The variational problem (14) has a unique solution since the bilinear form a(f, g) is continuous,

Hl.elliptic and L is continuous.

9.3 Obtaining the Discrete Problem: The Finite Element Method

So far, we have been dealing with the continuous form of the equation (13) to show the existence
and the uniqueness of the solution. Here, we will use the Galerkin’s method to approximate
the variational problem (14) by a discrete problem defined over a finite dimensional subspace
Vi C HY(0,1). The associated discrete problem is:

Find f, € V3 such that a(f;,,gh) = L(gn) Vgn € V. (15)

To insure the convergence of f, toward f (solution of 14), we construct the space V} with the

finite element method.
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Let consider a subdivision UIL, [ih, (i + 1)h] of the set [0,1] and a basis function {¢;}i=1. v of
the subspace V}, (see figure 1). The space Vj, generated by these basis functions, fulfil the necessary
conditions of the finite element method.

Thus Vfy € Vi we have fn = 3N, fu(ih)é.

Using this relation the discrete problem (15) can be reformulated as:

N
Find fp(ih),i=1...N such that Y fa(ih)a(di,gn) = L(g9n) Van € Vi (16)
=1
This equation (16) holds also for the basis functions {@$;}i=1..n;, hence the discrete variational
problem can be rewritten as

N
Find fa(ih),i=1...N such that > fa(ih)a(é:, ¢;) = L(¢;) Vi=1...N. (17)

=1
This gives a linear system A F = L to solve, where A = (a(¢s, ;)10 F = (fa(#h));zy. n and
L = (L(®i))i=1..n - The solution of the linear system A - F = L is done by a LU decomposition

since the matrix A4 is positive definite, symmetric and tridiagonal.
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10 Figures

Figure 1: The finite element basis function used to discretize the continuous variational problem.

Figure 2: A example of processing the image sequence by a snake model to extract the boundaries
of the moving object. Left: the initial estimation given by the user. Right: the boundary of the
valve once the snake model have converged. The initial estimation is given only 4 times for a

temporal sequence containing 30 images.
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Figure 3: The rectangle (in grey) is deformed by a similarity (translation, rotation and scaling)
to obtain the black square. In this figure we represent the initial estimation of the displacement

vector of the curves (left) and the plotting of the function fy (right).
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Figure 4: A representation (displacement field and the plotting) of the solution obtained by the

algorithm. We can note that the displacement of the four corners is computed accurately.
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Figure 5: Another synthetic example, in this case the curvature along the curves Cp and Cg varies
smoothly. This often produces as a consequence in the computation of fp that several points of the

curve Cp (in grey) match the same point of Cq (in black).
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Figure 6: The optimal solution obtained by the algorithm. We remark that the each point of the
black curve matches a single point of the grey curve, and that, maximum curvature points matched

together.
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Figure 7: In this example we have corrupted an obtained solution with a gaussian noise (¢ = 0.05)

and considered this corrupted solution as an initial estimate fp.
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a

Figure 8: The minimum of F starting with the initial estimation plotted in the previous figure.
We have noted that if || f — fol| < 4h the algorithm still converges towards the realistic solution.
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Figure 9: This example shows the problem that can occur in the computation of the initial estimate
based only on the search in a given area. The initial estimation fo(top) and the obtained solution

(bottom).
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Figure 10: In the same case of the previous example, the computation of the initial estimate based
on the local search and the curvilinear abscissa, gives a good estimation fy, which leads to an

acturate computation of the displacement function.
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Figure 11: Temporal tracking of the mitral valve, obtained by the snake model[9].
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Figure 13: Experiments on a valve sequence (time 9-17)
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Figure 14: Experiments on a valve sequence (time 17-25)
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Figure 15: Experiments on a valve sequence (time 25-29)
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