AITRAS : a real time expert system for signal understanding

François Charpillet 1 Yifan Gong 1 Jean-Paul Haton 1 Dominique Fohr 1 Daniel Dobbeni
1 SYCO - Basic Models and Applications of Perceptive and Cognitive Processes
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : This paper deals with a multi-agent architecture that we have developed for signal understanding. The architecture we propose has been developed in the framework of the AITRAS ESPRIT project of the EEC which aims at designing a new shell for the implementation of real time signal interpretation systems. The strong points of the architecture are : - the connection between low level signal and pattern recognition modules on one hand and symbolic interpretation on the other, - a mixed structure combining a blackboard model with explicit communication between modules by a message passing mechanism. In this respect, this new architecture extends the specialist society model that we developed earlier (Gong, 1989), - the integration of hypothetical reasoning. In this paper, we will mainly concentrate on the first demonstrator of the project. It concerns eddy current inspection for the non destructive examination of steam generator tubes in nuclear power plant. We will emphasize the enhancement that Artificial Intelligence technology provides in order to deal with such applications.
Type de document :
Rapport
[Research Report] RR-1590, INRIA. 1992, pp.9
Liste complète des métadonnées

https://hal.inria.fr/inria-00074970
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 17:06:03
Dernière modification le : jeudi 11 janvier 2018 - 06:20:00
Document(s) archivé(s) le : mardi 12 avril 2011 - 20:21:00

Fichiers

Identifiants

  • HAL Id : inria-00074970, version 1

Collections

Citation

François Charpillet, Yifan Gong, Jean-Paul Haton, Dominique Fohr, Daniel Dobbeni. AITRAS : a real time expert system for signal understanding. [Research Report] RR-1590, INRIA. 1992, pp.9. 〈inria-00074970〉

Partager

Métriques

Consultations de la notice

305

Téléchargements de fichiers

74