N

N

On the adequacy of per models
Roberto M. Amadio

» To cite this version:

Roberto M. Amadio. On the adequacy of per models. [Research Report] RR-1579, INRIA. 1992.
inria-00074981

HAL 1d: inria-00074981
https://inria.hal.science/inria-00074981
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00074981
https://hal.archives-ouvertes.fr

Ile Rapports de Recherche

UNITE DE RECHERCHE N° 1579
INRIA-LORRAINE

Programme 2
Calcul Symbolique, Programmation
et Génie logiciel

ON THE ADEQUACY OF
PER MODELS

Institut National
de Recherche
en Informatique
et en Automatique

Roberto M. AMADIO

Domaine de Voluceau
Rocquencourt
BP10b
78153 Le Chesnay Cedex
France Janvier 1992

1el:(1)39635511 A RPAV A

.18 *

On the Adequacy of Per Models

Roberto M. Amadio
CRIN-CNRS, Nancy!

Abstract

In this note we consider a fixed point extension of the second order lambda
calculus equipped with a call by value evaluation mechanism. We interpret the
language in a partial cartesian closed category of “directed complete” partial
equivalence relations (pers) over a domain theoretic model of a type-free, call-by-
value, lambda calculus. Our main result is that the notions of “syntactic” and
“semantic” convergence coincide.

Résumé

Dans cette note nous considérons une extension de point fixe du lambda calcul
du deuxiéme ordre avec un mécanisme d'évaluation par valeur. Nous
interprétons ce calcul dans une catégorie cartésienne partialement fermée de
relations partiels d'équivalence. Le résultat principal est I'équivalence des notions
syntaxique et sémantique de convergence.

! Group “Prograis”, URA 262, CRIN-CNRS, B.P. 239, 54506, Vandoeuvre-lés-Nancy, FRANCE. E-mail:
amadio@Ioria.crin.fr. “Prograis” is also a joint project with INRIA-Lorraine.

Introduction

Recently the research in the area of “synthetic domain theory” (see, e.g.,
Hyland[91]) has especially addressed the problem of discovering subcategories of
partial equivalence relations (pers) over a partial combinatory algebra (pca) that
enjoy good completeness properties, and that admit certain constructions typical of
domain theory, such as the solution of recursive function and domain equations.

Our concern here does not lie in the construction of models, or in the
categorical abstraction of such construction, but in an attempt at connecting such
models to issues arising in the design and semantics of, say, typed functional
languages. In particular we connect a certain per-interpretation to a call-by-value
evaluation discipline that corresponds to current implementations of higher order
typed functional languages with a static type checker (see, e.g., Cardelli[89]).

The main result establishes the equivalence of the syntactic and semantic
notions of convergence. This is a classical “adequacy” result for domain theoretic
interpretations, as sketched for example in Plotkin(85), after Martin-L5f[83). However,
as far as we know, no results were available, in the case of per-interpretations.

There are two additional points we wish to emphasize:
¢ In order to prove such an adequacy theorem very little structure on the per
model is needed, in particular we do not require working with an O-category.
* The adequacy of the per interpretation is largely independent from the adequacy
of the underlying pca.

Section 5 is the technical core of this paper. The proof of adequacy w.r.t.
standard domain theoretic interpretations, requires the combination of
“admissible predicates” techniques and “reducibility candidates” techniques. In the
proof we propose here, there are two additional twists that are due to the presence
of second order types, and to the interplay between the typed and the type-free
structures. In particular the key of the result lies in the definition of adequacy
relation (5.1), and in the way one associates an adequacy relation to a type (5.2).

In order to make the central result quickly accessible we have delayed the more
or less standard proofs of the first four sections to appendix A. Such sections
contain respectively: (1) the definition of a fixed point extension of the second
order lambda calculus; (2) the definition of the evaluation mechanism of such
language; (3) the description of the basic properties of the partial cartesian closed
category of “directed complete” pers over a cpo model of call-by-value, type-free
lambda calculus; (4) the interpretation of the language in the semantic structure.

1. Language
Types and raw terms are defined by the following BNFs:

Type Variables: tvi=tlsl..

Types: a:x=1ltvl(a—ao) ! (Viv.o)
Term Variables: vi=xlyl..
Terms: M = +lvIQv:iaM) | (MM) | (Atv.M) | Ma) | (Y M)

In the following we will feel free to spare on parentheses, and to omit the type
label in the Y combinator. All types and terms are considered up to o-
redenomination.

A well formed contextT is given by a list of pairs, v: @, in which all variables
are distinct. We write I', v: a to evidentiate the last element of the list, we write
v:aeT to state that v:a occurs in T, and we denote with ftv(I') the collection of type
variables free in types occurring in I'. Note that in the calculus presented here type
variables contexts are left implicit.

As usual a substitution, say o, is a function that associates variables, say v, v;,
..., to formal expressions, say exp, expy, ..., . The domain of a substitution is {v |
o(v)=v}. We assume that such domain is always finite. We denote with [exp;/vy,...,
expn/vnl a substitution whose domain is contained in {vy,..., v,}, and that associates
expj to vj, for i=1,..,n. If 6 is a substitution and exp is an expression then cexp
denotes the expression resulting from the application of the substitution to the
expression, according to the standard rules that take care of bounded variables. We
abbreviate an iteration of substitutions, say 61(..(c,, exp)..), with o1..6,, exp, so, for
example, [r/s][s/t] (t=s) = (r=1).

In a formal system the symbol “=" separates, in an inference rule, the
premisses from the conclusion. If “J” is a judgment of the formal system then we
write “H]”, if such judgment is derivable.

A typing judgment is of the shape '>M:a where I' is always a well formed
context. Derivable typing judgment are specified by the following formal system:

™ =>T>*1

(asmp) xael'= I'oxa

(=D I'xao>M:B = I' > Ax:a.M): (a—P)
(=E) I'o>M: (a—p) , I'DNia = I'>(MN): B
(VD) oM a teftv(l) = I' o AtM): (Vto)
(VE) I'>M: (Vt.a) = I'o MB): [B/tla

(Y) 'oM: (1-~a)—a= I'o Y M: «

This language is intended to represent a second order lambda calculus with a
fixed point combinator over lifted types (one can think of the constant Y, as
having type ((a), (),)—=(),, where: (o), = (1—0), and (0—P) = (x—(p)). The
type (a—B) should be thought as the type of the partial functions from a to .

2. Evaluation
The canonical forms are the well-typed terms without free variables, but
possibly with free type variables, that are generated by the following grammar:

Cu=*| Avia. M) | (Atv. ©)

The evaluation “—" is specified as a relation between terms without free variables
and canonical forms. If M—C then M and C have the same type, so one may also
think of “—" as a family of relations indexed over types. The definition of the
evaluation relation proceeds by induction on the structure of a well-typed closed

term.

(l‘) = "—)‘

(asmp) “we never evaluate a free variable”

(=D = Ax:aMeoix:aM

(—=E) Modx:aM', NaC', [C'/xIM'-C = MN-C

(VD) MnC = AMMoAt.C

(VE) Moit.C = Moa-[a/t]C

(Y) M(Ax:1.YM)»C = YM~C (for x fresh variable)

We write Ml if FMw—C, for some canonical form C, and MT otherwise. Note that
the definition of “-" gives directly a deterministic procedure to reduce, if possible,
a closed term to a canonical form. Hence each term can reduce at most to a
canonical form. Canonical forms always reduce to themselves.

Observe that we evaluate under type abstraction. On one hand this
corresponds to the fact that in actual implementations of the language the type-
checker is static, hence no information about type abstraction and type application
appears at run time. On the other hand, as it will become clear in section 4, this
choice is important in capturing the behavior of the interpretation of second order
types as intersections.

3. Semantic Structure

In the presentation of the per-model we take a minimalist approach, by
presenting only those properties and constructions that are needed in the proof.
We refer to Amadio[90] for more information about the relevance and the context of
the structures discussed below.

Conventions (category of dcpos)

A set X is directed in the poset (P, <) if @=XcP, and Vx,ye X.9ze X.(xsz A y<z).
A poset is directed complete (dcpo) if it has joins of its directed subsets. Two
mathematical expressions including partial operations, say ej, e, are Kleene
equivalent, written ej=e,, if either they are both defined and they are equal, or
they are both undefined. We also write el (efl) if a mathematical expression is
defined (undefined). A partial (Scott-)continuous function between two dcpos,
h:(D,<p)—(E, <g), is a partial function between the dcpos D and E such that for any
directed set X in D, f(UX)=Uf(X) (whenever we take the join of an indexed set of
mathematical expressions, such join is defined if the join of the defined
mathematical expressions is defined). We denote with dcpo the category of dcpos
and partial continuous functions. This category is (equivalent to) a partial
cartesian closed category in the sense of Moggil88]. Given two dcpos, D, E, we
denote with D—E, the partial exponent, that is the collection of partial continuous
functions pointwise ordered.

3.1 Realizability Structure

We assume to have an object D in the category of dcpo that has its partial
functional space as a retract, i.e. i: (D—=D)=D, j: D—=~(D—D), jei = idp_.p in dcpo. We
define a partial operation of application over D as: de & j(d)(e). From this operation
one can define, as usual, continuous operations of pairing, < , >:DxD—-D, and
projection ni:D—D, (i=1,2) such that ny<d,d'> = d, and ny<d,d'> = d".

More Conventions (category of ppers)

A partial equivalence relation over D (per) is a binary relation over D that is
symmetric and transitive. We denote with A, B,... pers over D. We write: dAe for
(de)e A, [d]p for {eeD | dAe}, 1Al for {deD! dAd), [A] for {{d] | de |Al}. A partial
morphism between pers, f: A—B, is a map f: [A]=[B] such that

JheD. Vde |AL (£(IdI)0 A hdef(d]y) v EIdIDN A hdM).

We denote with pper the category of pers and partial morphisms of pers. Such
category is (equivalent to) a pccc where terminal, product (in the related category of
total morphisms), and partial exponent pers are defined as follows:

14 DxD, dAxBe < mjdAmnje A npdBnje,
h pexp(A, B) k & Vd,e. dAe = (hdBke v (hdll A kel)).

The interpretation of the language is based on the following category of directed
complete pers and partial maps. One may think of this category as a loose
analogous of the category of dcpos and partial continuous maps. We will see that it
retains the basic properties of the category of ppers, and moreover it has a fixed
point combinator over “lifted” objects. The proofs of these results follow Amadio[89].

3.2 Definition (directed complete pers)

A per A is directed complete (dcper) if for any directed set X in DxD, if XA then
UpxpXe A. We define dcpper as the full subcategory of pper whose objects are
dcpers.

3.3 Proposition (basic properties of the semantic structures)

(1) dcpper is a pccc.

(2) dcpers are closed under arbitrary intersections.

(3) dcpper is reflective in pper, that is the inclusion functor from dcpper to pper
has a left adjoint.

(4) dcpper has fixpoints over objects of the shape pexp(1,A).

4. Interpretation

In this section we define an interpretation of the language based on the
semantic structures just introduced. By convention if 1: VoW is a partial function
from a collection of variables, v, to a set of values, W, then for veV, and aeW we
define: tfa/v](v') = if v' = v then a else ©(v').

Types. The interpretation of a type, given a type assignment n: tv—dcper, is a
dcper, defined by induction as follows:

[1h=1

Ithh =n(®)

[o—BIn = pexp(laln, [BIn)
Wt.(l]'f] = ﬁA dcper[am[A/t]

Terms. An assignment is a partial function p: v—=Ujp, dcpe,[A]. A type
assignment n is compatible with an assignment p, w.r.t. a well-formed context T, if
for any x:aeT, flaln =@ = p(x)M A (faln#D = p(x)e[laln]); we shortly write
this as nTrp. The interpretation of a judgment H > M: ¢, given 7, p, such that
NTrp, is either undefined or an element in [[aln] (equivalently it is a partial map
from the terminal object to [aln). Such interpretation is defined by induction on
the length of the typing judgment. Observe that some clause may fail to be defined,
hence the use of Kleene equivalence. Suppose HZ > M: a, we write M{ if for any
type assignment 7, and any p, [@>M:alnp U, and M1 otherwise.

™ IF>*1mp=[d], ,fordeD.
(asmp) I o x;: oyInp = p(x;)

(=D Il o Aix:aM:a—Bnp = (he D! Vde | Al. (f(d)¥ = hdef(d)) A (F(A)T = hdM)}
where: A =laln, f(d) = I x:0 > M:BInplldl/x] .

(=E) [FOMN:Binp = [M>M:a—Bnp - [MN:alnp
where: A & la}n, B= [B]ﬂ, [h]pexp(A,B) . [d]A = [hd]B .

(V1) oAt M:Vtalnp = if FA.(f(A)N) then T else (he DI VA dcper. hef(A))
where: f(A) = [['> M:an[A/t]lp .

(VE) IToMB:[B/tlalnp = [MM:Vt.alnp IBn
where: F =AA.lain[A/t], NF = Mgy dcperF(A)r [h]an = [h]F(B) .

(Y) IMYM:anp =[U, k()]o
where: B = [(1—=a)—=alm, [klg = [MOM:(1—a)—alnp,
k() = T, k(n+1) = k i(Ade D.k(n)) .

Note: We retain the attention of the reader on three points:

(1) Something has to be done in order to show in the clauses (-I) and (VI) that
certain collections of realizers are not empty.

(2) When we apply a term to a type (clause (VE)), we keep the same realizer, this
connects with the choice of evaluating under type abstraction.

(3) In the (Y) clause the existence of the fixed point combinator, which was
announced in proposition 3.3.(4), takes a concrete shape. Its construction takes
advantage of an iterator one can build in the realizability structure.

The following is proved by connecting the interpretation of a typed term in the
per-model to the interpretation of its underlying type free-term in the realizability
structure.

4.1 Proposition (Typing Soundness)
If FI' > M:a then, for any 1 and p such that nTp, we have:
[Co>M:iamp | = [Co>Malmp e [laln].

Proviso (on type substitution)

In the following o, 1,..., denote substitutions of types for type variables. We now
specify top-down what it means to apply such substitutions to a typing judgment.
As usual one has to treat cautiously bound variables.

Judgment: o o M:a) = o' > cM:oa

Types: ol =1; ot=o(t); o(a—P)=co—of; .
o(Vt.a) = Vr.o[r/tlo, where r is a fresh variable.

Contexts: ©(x1:0t1,..., Xp:0lp) = X1:001,..., Xp:00n

Terms: o» =% ox =x; o(Ax:a.M) = (Ax:ca.0M); o(MN) = o(M) o(N);
o(At.M) = Ar.o[r/t]M, where r is a fresh variable; oc(Ma) = cMoa;
G(YQM) = YOQGM

Having defined the notion of type substitution in a typing judgment the next thing
to verify is that provability is invariant under type substitution, and that type and
term substitutions commute with the respective semantic substitutions. The
following lemmas are proved by induction on the length of the typing.

4.2 Lemma (Type Substitution)
Suppose H 5 M:a. Then:
(1) If 6 is a type substitution then Fo(F'>M: o).
(2) For any type-assignment m, for any type substitution o, and for any
assignment p such that nT;rp, we have:
[ooM: o) Ip=IT>Malnp
where: N'(t) ¢ lotIn.

4.3 Lemma (Term Substitution)
If FI',x:o0 > M:B, and HI" > N:a then
(1) I o [N/xIM:B
(2) For any type-assignment 7, for any assignment p such that nTpp,
[C > Nialmpld = [> [N/xIM:BInp = [[,x:a > M:BInp’
where: p' 2 p[II' > N:almp /x].

The following is proved by induction on the structure of C.

4.4 Lemma (Canonical Forms are Defined)
If HD 5 C:a, where C is a canonical form, then for any 1 and p, [& > C:alnp .

The following is proved by induction on the deduction of the evaluation
judgment.

4.5 Lemma (Invariance under Evaluation)
If FMC then, for any n and p, [> M:alnp = > C:alnp .

5. Adequacy

We want to prove that given a well typed closed term M, MU iff MJ. It is easy
to show that if Ml then M{, as the interpretation is invariant under evaluation
(4.5), and the interpretation of a canonical form is defined (4.4). In the other
direction an iterated attempt of generalizing the induction hypothesis leads to the
following

5.1 Definition (adequacy relation)
Let be a type assignment. A relation S ¢ |laln! x A®_ is an adequacy relation of
type a, w.r.t. the type assignment 7, if it satisfies the following conditions:

(C.1) hSM = Ml.

(C2) {hpln<p directed inD A Vn.h SM = (Upoh,) SM.
(C.3) (hSM A FMoC A FM'HC) = hSM'.

(C4) (hSM A hlaInh) = h'SM.

We denote with AR(a, 1) the collection of adequacy relations of type a, w.r.t. the
type assignment 1. Observe that, for any type a, the empty set is an adequacy
relation of type a.

If one thinks of h as an element in the equivalence class corresponding to the
interpretation of the term M, then condition (C.1) corresponds to what we need to
prove, i.e. Ml = Ml. Condition (C.2) says that an adequacy relation is a kind of
admissible predicate, in that it is closed under directed sets. Condition (C.3) says
that an adequacy relation is invariant w.r.t terms that reduce to the same canonical
form. The formulation of this condition seems to be new; it has the advantage of
being simple and of not requiring a finer analysis of the evaluation relation as the

closure of a “one-step” reduction relation. Condition (C.4) says that an adequacy
relation is invariant w.r.t. the equivalence induced by the corresponding per. This
condition comes from the choice of representing adequacy relations as relations
over the field of a per rather than over the collection of its equivalence classes .

We wish to assign to each type a an adequacy relation, parametrically in a type
assignment M. In order to do this correctly we need to introduce two further
parameters:
(i) A type substitution o.
(ii) An adequacy relation assignment, 8: tv=Uq ypeAR(a,), (henceforth
ar-assignment) that depends on 7.
Let n be a type assignment. A substitution 6 and an ar-assignment 6 are
compatible, w.r.t m, if 6(t)e AR(ct, n), for any t. We write this fact as: oTy6.

Proviso (on bounded variables and substitution)

In order to simplify the notation, in the following definition and proofs,
whenever we bring a substitution under a bound variable we assume that the
bound variable has been suitably redenominated so that it does not interact with
the substitution.

5.2 Definition (associating adequacy relations to types)
Let a be any type. For any type assignment 1, any substitution o, and any ar-
assignment 6, such that cTne, we define a relation
R(a, 6,0) ¢ loaln | x A%,
by induction on the structure of o, as follows:

(1) R(,o0,0) 2 {(h, M)eDxA% | M)
(tv) R(t, o,6)26(t)
(=) R(a—B, 5,0) £ {(h, M)e Ho(a—P)In | x A%, .p) |
Ml A (dR(e, 0,6)N = (hd R(B, 0,6) MN v hdM))}

(Y) R(Vta,o,6) 2 {(h, Me Ho(Vt.o)n | x A%viq |
Ml A VB. ¥Se AR(B, n). h R(a, [B/t]o, 6[S/t]) MB)

5.3 Lemma (coherence of the definition)

Let o be any type. For any type assignment 1, any substitution o, and any ar-
assignment 6, such that 6T,,6, we have: R(o, 0, 8)e AR(o0, 1).
Proof

By induction on the structure of the type a we verify that R(a, 6, 8) is well
defined and belongs to AR(oa, 1) as it satisfies (C.1-4).

(1) R(1, 6, 8)e AR(1, n), as one can easily verify that {(h, M)e DxA%, | M!}
satisfies (C.14).

(tv) R(t, o, 6)=6(t)e AR(ct, n), by the assumption: oTne.
(=) By definition R(a—B, o, 0) ¢ llo(a—B)in| x A%(qp) - and satisfies (C.1).

(C.2): Suppose {hp}n<q directed, and Vn. h R(a—B, o, 6) M. Then:

(i) Upeg hy€ Ho(a—P)In |, because [o(a—f)Ine dcper.

(i) For any deD, (Upc h)d =Uy hd, and {(hyd | hpdl), o is directed, if not
empty.

(iii) Suppose d R(a, ©, 6) N. There are two possibilities:

(a) (Upe h,)d T, and we are done.

(b) (Un<e hyy)d U, that implies h_d{, for some m, and therefore h d R(B, 6, 6) MN,
for all n2m. We can then apply the ind. hyp. on B to conclude (U, h,,d) R(B, ©, 6)
MN, i.e. by (i, if) (Un<e hy)d R(B, 5, 6) MN.

(iv) By combining cases (iii.a-b) we have: U<, h R(a—B, 6, 6) M.

(C.3): Suppose (h R(a—B,0,00 M A FMC A FM'sC). Then h R(a—B, ¢, 6) M’
because:

(i) M'e A%;,_.g) and Ml (as the evaluation preserves the type).

(ii) Given N, F MN-C' iff F M'N-C'.

(iii) Suppose d R(q, 6, 8) N. By (ii): hdft v (hdy A MNI A M'NU). In the first case we
are done, in the latter one shows: hd R(B, 6, 6) M'N by applying the inductive
hypothesis on B, and (C.3) with (ii).

(C.4): Suppose (h R(a—8, 5,6) M A hlo(a—B)In h').
Then, by definition of pexp: d loaln d' = (hd [6fIn h'd' v (hd T A h'd).
To show h' R(a—B, 6, 6) M we have to verify:
d R(o, 6,6) N = (h'd R(B, 5, 6) MN v h'dfl).
But: h'dl < hdf, and h'd} = hdl = (hd R(B, 5, 6) MN)
= (h'd R(B, o,) MN), the last implication by ind. hyp. on B and (C.4).

(V) By definition R(Vt.a, 6, 8) c |Io(Vt.a)In| x Ayt o) and satisfies (C.1).
Observe that for any type B: (6T,8 A SeAR(B,n)) = [B/tloT 0IS/1].

(C.2) Suppose {hu}n<(directed, and Vn. h R(Vt.a, 6, 6) M. Then,
VB. VSe AR(B, n). h,, R(c,, [B/t]o, 6[S/t]) MB

Hence, by induction hypothesis on a, and (C.2):
V. VSe AR(B, n). Uh<e hy, R(a, [B/t]o, 6[S/t]) MP

and this implies by definition of R(Vt.a, o, 6):
Un<o by R(Vt.a, 6, 0) M

(C.3): Suppose (h R(Vt.a, 5, 0) M A FMC A FM'=C).

Then h R(Vt.a, o, 6) M' because:

(i) M'e A%vt.o) and M.

(ii) For any B, - MB-C' iff F M'B-C".

(iii) For any B, for any Se AR(B, n), we can apply (C.3) on a (using (ii) and ind. hyp.),
with substitution [B/t]o, and ar-assignment 6[S/t] to conclude:

h R(o, [B/t]o, 6[S/t]) M'B . Hence: h R(Vt.a, ¢, 0) M'.

(C.4): Suppose (h R(Vt.a, 5,00 M A hlo(Vt.a)in h).
Then, by definition: VB dcper. h [caln[B/t] h'.
To show h' R(Vt.a, 0, 6) M we have to verify:

10

VB. VSe AR(B, n). h' R(a, [B/t]o, 6[S/t]) M.
But for B = [Bln , we have [caln[B/t] = [[B/tloaln , by the type susbstitution lemma.
Hence h [[B/t]oaln h', and we can apply ind. hyp. on @, and (C.4). O

5.4 Theorem (semantic and syntactic convergence coincide)
Suppose F (x3: a4),...,(xn: @) D M: a. Then for any type assignment 1, any
substitution 6, and any ar-assignment 6, such that oTne, we have:

if d; R(oy, ,0) C;, fori=1,..n, and [o(T' > M: a)inld/x] = [hl
then h R(a, ¢, 0) [C/x]cM.

where: T = (x1: &t),....(xp: ot) ; [d/x] = [[d;] Al/xl,...,[dn]An/ xpl ; Aj = looin for i=1,..n;
A=looln ; [C/x]1=[Cy/x1,..., C/Xp) -
Proof

In order to have a quick understanding of the statement observe, as an instance:
if F @ 5 M: oo where M and a have no free type variables, and [& 5 M: alnp = [h],
then hR(a, id, 8)M, for arbitrary 7, p, 6. Hence, by (C.1), we have: Ml = Md.

We now proceed with the proof, by induction on the length of the typing.

(*) Then loT" o * 1In[d/x] = [d]1 ,and d R(1, 6, 8) *, by def. of R(1, g, 6).
(asmp) Then [oT o x;: ooyIn[d/x] = [djl4, and d; Rley;, 0, 6) Cj, by assumption.

(=I) Suppose he [o(T" o Ax:a.M:a—B)In{d/x]. Then by the interpretation definition:
vde |Al. (f(d) = hdef(d)) A (f(d)T = hdM)} where: A =localn,

f(d) = lo(",x:0c > M:B)In[d/x][[d]5/x] .

We have to show: h R(a—B, ¢, 8) [C/x]lo(Ax:a.M), that is:

() [C/x]o(Ax:a.M) , that holds because an abstraction always converges.

(ii) d R(et, 5, 0) N = (hd R(B, o, 8) [C/x]o(Ax:a.M) N) v (hdT).

Observe: [C/x]o(Ax:0..M) = Ax:ca.[C/x]oM.

Also: F (Ax:oa.[C/x]oM)N-C iff - [C'/x][C/x]oM—C and FN~-C'

Suppose hdl, we can apply the inductive hypothesis on the provable judgment
I,x:a > M:B to get hd R(B, 5, 8) [C'/x][C/x]oM. Hence by (C.1) [C'/x][C/x]oM{, and
by (C.3) we get (ii).

(=E) Suppose de [o(I'>MN:p)In[d/x] then we have to show d R(B, o, 8) [C/x]c(MN).
By the definition of the interpretation we have helo(I'>M:a—B)In[d/x], and
d'elo('oN:a)In[d/x], such that hd'lopn d.

By induction hypothesis we have: h R(a—B, o, 8) [C/x]o(M), and

d' R(a, 0, 0)[C/x]o(N). By definition of R(a—p, o, 6) we can conclude:

hd' R(B, 6, 8) [C/x]o(MN), and by (C.4) d R(B, o, 8) [C/x]o(MN).

(VI) Suppose helo(I'>At.M:Vt.a)in[d/x] then we have to show:

@) [C/xJo(t. M)

(ii) VB. VSe AR(B, n). h R(e,, [B/tlo, 6[S/t]) [C/x]o(AtM)B .

Observe: [C/x]o(At.M) = At.[C/x]oM. By induction hypothesis applied to I'oM: «, we
have, V. VSe AR(B, 1) : h R(q, [B/t]o, 8[S/t]) [C/x][B/tloM.

Observe: I [C/x]o(AtM)B - C' iff F [C/x][B/tloM — C', and apply (C.3).

11

(VE) Suppose he lo(ToMB:[B/tle)In[d/x], then we have to show:

h R([B/tla, o, 8) [C/x]o(MB).

By induction hypothesis applied to I'oM: Vt.a, and the definition of R(Vt.a, o, 6)
we have: h R(a, [of3/t]o, 6[S/t]) [C/x]JocMop, and observe o[p/tla = [cfB/tloa.

(Y) Suppose [U, kin) 14 = lo(T>YM:a)In[d/x], where: ke [o(T'oM:(1—a)—a)In{d/x]
for some k. We show that for any n big enough k(n) R(a, 6, 6) [C/x]cYM. We
conclude by (C.2): U, k(n) R(a, 0, 8) [C/x]oYM. By induction hypothesis on
I' 5 M: (1—a)—a we know: k R((1=a)=a, ¢, 6) [C/x]oM. Observe:

() i(AdeD.M R(1-0), 6, 8) Ax:1.[C/x]cYM.

(i) i(Ade D.k(n)) R((1—a), 6, 8) Ax:1.[C/x]cYM =

k i(Ade D.k(n)) R(a, o, 8) [C/x]oM (Ax:1.[C/x]cYM) v k(n+DT .

Use (C.3) to conclude k(n) R(a, o, 6) [C/x]oYM, for n big enough. O

Note (on the generalization of the inductive hypothesis)

We have emphasized in italic the points in the proof above where one
discovers the need to generalize the inductive hypothesis, and to adapt the
definition of R.

(1) The need of working with a judgment, 'oM:a, where I' may be a non empty
context, already appears at the (=I) case. Here also appears the need for some
condition of closure under expansions, this problem also arises in the cases (VI),
and (Y). How to formalize this condition is a tricky point, the simplest solution we
could find is formalized as condition (C.3).

(2) In the case (—E) it becomes evident that an adequacy relation associated to an
— type should satisfy certain functional properties. This leads to clause (-) of
definition 5.2. A similar problem arises when dealing with second order types.
Here however we hit the problem of resolving a potential circularity in definition
5.2. Hence the need to introduce an abstract notion of adequacy relation and the
notion of ar-assignment. Substitution are introduced in 5.2 to ensure that the
definition is “well-typed”. We emphasize that similar problems arise in the
context of proofs of (strong) normalization of Girard system F (see, e.g.,
Girardé&al(89], chpt. 14).

(3) Finally the way the fixed point is computed in the interpretation naturally
suggests the introduction of (C.2) in order to deal with clause (Y).

6. Conclusion
(1) Relating model-theoretic and operational pre-orders
We write I' D M<;,N: o, if FT D M: o, F 'S5 N: @, and for any “context”
CI] such that - @ > C[M]: B, and @ 5 C[N1]: B, we have: C[M]! = C[NN.
This defines an operational preorder on terms. In the standard domain theoretic
case it is easy to prove, as a corollary of the correspondence between syntactic and
semantic convergence, that the pre-order induced by the model (definition left to
the reader) is contained in the operational preorder defined above.
When considering per-models there is a natural intrinsic way (Rosolini[86]) to
order the equivalence classes:

12

Let A be a per over D. We define the intrinsic preorder < over [A] as

follows: x<ay if Vh: A=1 (h(x)d = hy)d)
How does the intrinsic pre-order relate to the operational pre-order ? We expect
that the former is included in the latter, but to have a proof as simple as in the
domain-theoretic case some additional model-theoretic information seems
needed. In particular one needs to show that contexts induce monotone operators
w.r.t. the intrinsic pre-order, and this seems to depend on the fact that products,
used in the intepretation of second order types, have a pointwise intrinsic
preordering. We do not have such a property available for the model described
here. There are other per models that enjoy this property, e.g. the model of
complete extensional pers over Kleene partial combinatory algebra (Freyd&al.[901).
We expect that the “architecture” of the proof of our main result (5.4) can be
applied to such per-models. Hence we suspect that for such models a standard
proof of the theorem relating intrinsic and operational pre-ordering will go
through.

(2) Call-by-name, Subtyping, and Recursive Types
It seems worthwhile to recall that a call-by-name version of the calculus can be
easily coded in the calculus presented here with the standard idea that the call-by-
name functional space, say a—B, is coded as (1-a)—fB. We also recall that per-
models have been used as a semantic foundation for typed functional languages
with a notion of subtyping(Cardelli&Longo[90]). Our result suggests that this is an
adequate approach.

We expect that our main result extends to recursive types once we take as
semantic structure the collection of complete “uniform” pers over a D-infinity
model, as presented in Amadio[89]. The basic idea is to “stratify” the definition of the
adequacy relation associated to a type. Formally one introduces an intermediary
family of adequacy relation R(n, a, o, 8), where ne . The adequacy relation R(x, G,
6) is obtained by a process of completion of the sequence {R(n, a, g, 6) | new}.
Roughly R(n, a, 6, 0) represents R(c, o, 8) cut at the n-th level of the construction
of the underlying D-infinity structure. We refrain from going into this point since
the development of the model requires a certain number of rather ad hoc
conditions that would only obscure the main ideas we have discussed.

(3) Independence from the Adequacy of the Realizability Structure

It is well know that to every, say closed, term M of type o one can associate its
“erasure”, i.e. a type free term er(M) such that: IMJper = [ler(M)IP](5) (a).

In Amadio[90] we suggested that a “cheap” adequacy theorem could be obtained by
the following schema of implications:

IMIper I =5y lerM)IP U =) erM)! =3, Ml

where (1) follows by a result of type (a), (2) follows by the adequacy of the
realizability structure, and (3) follows by a comparison of the evaluations. The
weak point of this chain of implications is (2). As a matter of fact we have shown
that the adequacy of the per model is independent from the adequacy of the

13

realizability structure w.r.t. the related type-free language. Following
Baeten&Boerboom(79] one can build a realizability structure D that is not adequate in
that IQIP {, where Q = (Ax.xx)(Ax.xx). Of course one can still hope to show (2) for
terms coming from the erasure of a typed term. But then we have basically to
reprove the same result presented here following a “type-assignment” style.

References

Amadio R. [1989] "Recursion over realizability structures”, Info.&Comp., 91, 1, (55-85), also appeared
as TR 1/89 Dipartimento di Informatica, Universitd di Pisa.

Amadio R. [1990] "Domains in a Realizability Framework", in Proc. CAAP91, Brighton, SLNCS 493,
Abramsky S., Maibaum T. (eds.), (241-263), full version ai:apeared as Liens TR 19-90, Paris.

Amadio R., Cardelli L. [1990] "Subtyping Recursive Types", in Proc. ACM-POPL91, Orlando, full
version appeared as DEC-SRC TR #62, Palo Alto.

Baeten J, Boerboom B. [1979] "Q2 can be anything it shouldn't be", Indag. Math., 41, (111-120).

Cardelli L. [1989] "The Quest language and system", pre-print DEC-SRC, Palo Alto.

Cardelli L., Longo G.[1990] "A semantic basis for Quest", in Proc. ACM-Lisp and Functional
Programming 90, Nice.

Freyd P., Mulry P., Rosolini G., Scott D. [1990] "Extensional Pers”, in Proc. 5th IEEE-LICS,
Philadelphia.

Girard].Y., Lafont Y., Taylor P. [1989] "Proofs and Types", Cambridge University Press.

Hyland M. [1991] "First steps in synthetic domain theory", in Proc. Category Theory 90, Carboni&al.
(eds.), Springer-Verlag, (to appear).

Martin-Lof [1983] "The domain interpretation of type theory", in Proc. Workshop on the Semantics of
Programming Languages, Dybieré&al (eds.), Chalmers University, Goteborg.

Moggi E. [1988] "Partial morphisms in categories of effective objects”, Info.&Comp., 76, (250-277).

Plotkin G. [1985] "Denotational semantics with partial functions”, lecture notes, CSLI, Stanford 1985.

Rosolini G. {1986] "Continuity and effectiveness in Topoi", PhD Thesis, Oxford University.

Nancy, Wed, Dec 11, 1991.

14

Appendix A
In this appendix we present the proofs of the results stated in the first four
sections of the paper.

Properties Semantic Structure (Proposition 3.3)

(1) dcpper is a pccc.

(2) dcpers are closed under arbitrary intersections.

(3) depper is reflective in pper.

(4) dcpper has fixpoints over objects of the shape pexp(1,A). Such fixpoints are
the least ones (up to equivalence) w.r.t. the intrinsic pre-order.

Proof

We sketch the main ideas of the techniques described in Amadio[89], Amadio[90].

(1) 1t is enough to verify that (i) 1 is a dcper and that (ii) AxB, A—B are dcpers if
A, and B are dcpers.

(2) Immediate.

(3) This means that the inclusion functor from dcper to pper has a left adjoint,
say L: pper—dcpper. Define L(A) = M {Bedcper | ACB}. This is well defined because
of (2). Next show: VAe per. VBedcper. pexp(A, B) = pexp(L(A), B). Hint: this can be
proved by induction once it has been observed that L(A) can be characterized as the
closure of a certain operator G over A.

Namely define: G(A") = TC(Sup(A")), for A' per
where: Sup(A’) = {UX | XcA', X directed}, and TC(A") is the transitive closure of A'".
Then inductively: Gp(A) = A, Ggi1(A) = G(G,(A)),

Gy(A) = UgrGo(A) (for A limit ordinal).
Hence L(A) = Gp(A) for some B, and one shows pexp(A, B) = pexp(G4(A), B) by
induction.

(4) Define Fix = i(Ake D. U, k(n)), where k(0) = 1, k(n+1) = k i(Ade D. k(n)).

One shows: for any dcpper A, Fix € |pexp(B, A)l,
where B = pexp(pexp(1,A),A).
Observe Fix k = U, ., k(n). Show by induction on n that:
kBk' = k(n) Ak'(n) v (k(n)T A k'(n)f).
Since A is a dcper conclude: LU cok(n) A U k') v (Upeok@T A Uy k'), O

Typing Soundness (Proposition 4.1)
If F[> M:a then, for any 1 and p such that nTp, we have:
IFoMiahp l = [CoMalp e [laln].

A direct proof of this result by induction on the length of the typing judgment does
not seem to work as we hit the problem of showing in the case (=I), and (VI) that
certain collections of realizers are non-empty. Hence, it appears that a natural
argument to prove the existence of such realizers is to consider the interpretation
in the realizability structure of an underlying type-free lambda term.

15

The function er (erasure) takes a typed term and returns a type-free term in the
language generated by the following BNF (as usual v stands for the variables):

Pu=#lvIQAv.P) I(PP)I(Yy P)
It is defined by induction on the structure as follows:

er(*) =% er(x) =x; er(x:a.M) = (Ax.er(M)); er(MN) = (er(M)er(N));
er(AtM) = er(M); er(Mp) = er(M); er(YM) = (Yyer(M))

Given a realizability structure (D, i, j) as in 3.1 we can define a standard
interpretation of the lambda calculus introduced above. We denote with 1 a partial
function from variables to D. Define:

(*) 'k=d for some fixed de D (D supposed non-empty !)
(asmp) Ixkr=1(x)
(abs) IxPhk =i(Ade D.IPkId/x]).
(ap) [PQk =j(IPI)(IQkK)
(Yy) [YyPk = U, ., h(n)
~ where: h=IPk, h(0) =, h(n+1) = h i(hde D.h(n)) .

Given a context I, a type assignment m, an assignment p s.t. nTrp, and an
assignment 1, we say that p is compatible with t w.r.t. T, and write pTy, if for any
variable x inT: (p()l & 1)) A (POl = 1(x)e p(x)).

We can now state a proposition stronger than 4.1.

Proposition (erasure)

Suppose I > M:a. Then for any 7, for any p s.t. nTrp, for any ts.t. pTre:

(1) Fr>Mialnp | & leriMlx 4.
If [[>M:amp then:

2) lerM)kt e |Al , where A =laln.

() IF>M:almp =[lerM)k] .
Proof

By induction on the length of the typing. We refer to the notation in the
interpretation definition.
*) MIF>*1np =[d],,lerMk =d. (2)de D, D= [[1ln]. 3) de[d],.
(asmp) (1-3) By definition of pTr.
(=I) (1) Both interpretations are always defined.
(2) Use ind. hyp. on T, x:a > M:B to show:

dAe = (erMkld/xIT A lerM)kle/x]M) v (lerM)k[d/x] B [er(M)kle/x)).

3) Letx = {he D| Vde |Al. (fdl = hdef(d)) A (fdTl = hdf)}. We show:
(i) h, h'ex = h la—p h', and @ii) h la—=BIn h' A hex = h'ex. Apply ind. hyp.
on f(d). (i) Observe: d {aln d' = (f(d)J = hd, hd'ef(d)) A (f(d)T = hdT A hd').
(i) Observe: Vde IAl. (f(d)} = hd, h'def(d)) A ((d)T = hdlT A h'dM).
Finally prove: [Ax.erM)k e II' o Ax:a. M:BImp .

16

(—E) Left to the reader.

(VD) (1) IMAtM:Vtainpl & VA.(FAN) o lerMhl o lerdtMkl.

@K VA.lerMk e llaln[A/t]! then lerMk € 1My gcper laIn[A/t]1.

(3) Let x = fhe D| VA dcper. hef(A)}). We show:

@ h h'ex = h My gepedaM[A/t] B (i) h Ny gepedain[A/t] ', hex = h'ex.

(i) Since by ind. hyp., for any A dcper, h, h'ef(A)e [[aIn[A/t]). (i) Since, for any A
dcper, h [ain[A/t] k', he f(A) = h'ef(A).

(VE) Left to the reader.

(Y) Left to the reader, this requires an inductive argument of the type already seen
for the (Y) clasuse. 0O

Note
Of course we could define a combinator Yy directly in the type-free calculus as
follows:

Yy = Af. f (Az.(oy(f) oy(), wy(f) = Ax. fAz. xx).
In order to have an intuition of Yy behavior let us B-reduce (Yy f):

(Yy) —g f Az.(0y(f) wy(f), and
(@y(f) ay(f) = Ax. fz. xx))) oy(f) —g fRz. (0y(H) wy(H))

One may think of Yy f as: f (Az.f(Az. f{(Az. f(Az.)))). The problem is that there is no
reason why the interpretation of Yy should behave like the interpretation given in
the clause (Yy) above, and we need such an intepretation to prove the “erasure”

proposition! For instance taking the realizability structure described in Appendix B
we have: [Yy (Af. f «) kt U, whereas we wish: [Y \f: 1=a. f) Inp T, O

Type Substitution (Lemma 4.2)

Suppose FI' > M:a. Then:

(1) If o is a type substitution then o('>M: a) .

(2) For any type-assignment 7, for any type substitution o, and for any
assignment p such that nTrp, we have:

[cCoM:a)Inp=ITF>M:an'p

where: n'(t) ¢l ot In.
Proof

Both assertions are proved by induction on the length of the typing.

(1) M H" >* 1 then oI’ > *: 1, since ol is a context.

(asmp) If x: aeT then x: caeol.

(=D I Fx:a > M:B then ol ,x:00 > 6M:0p, by induction hypothesis. Hence:
oIS Ax:oa. oM: ca—0f = o(I'> Ax:a. M: a—=f) .

(=E)If FI > M: (0—=P) and FHON:a then Fol o oM: (ca—of) and FoI'>oN:oa.
Hence: FoI'>(cMoN): off = o(T'o>(MN): B).

17

(VI) Redenominate t so that it does not interfere with the substitution. If F-T' > M:
and teftv(l) then t o(' > M: o), by induction hypothesis. Hence I oI' > At.cM:
Vt.oa.

(VE) If FT o M: (Vt.a) then ol > oM: Vt.oa for suitable t, by induction
hypothesis. Hence: I o' > cMop: [oB/tloa = o' o MB): [B/tla).

(Y) If FT'5 M: (1=a)—=a then I oI 5 6M: (1-oa)—00, by induction hypothesis.
Hence: I o' 5 Y5,0M: oa = o(I' 5 Y M: o).

(2) Observe NTgrp = n'Trp, as for any (x:) in I: foaln = laln".
M I[o@Coxw)p=[dl;=I'o>o«1hp.
(asmp) [ocFox: o) Mp=zpx)=[Tox:alnp.
(=I) Observe o(I',x:a0 > M:B) = ol x:00 > cM:0P. For any de llcaln| = Ilaln'l, we
have by ind. hyp.: IoT",x:00 > oM:oBnp[[d]a/x] = IT,x:a > M:BIn'p[[d] 5 /x]. Hence by
the definition of the interpretation:

[o(" o Ax:a.M: a—=B)Inp =T o Ax:a.M: a—fn'p.

(=E) Immediate application of the inductive hypothesis.

(VI) As usual we assume that the bound variable t has been suitably
redenominated. Then for te ftv(I) we have: n[A/t]Tsp , for any A. Hence by ind.
hyp.: o> oM:caln[A/tlp =Il'> M:aln'[A/t]p. By the definition of the
interpretation: [o('oAt.M:Vt.a)inp = [F'oAt.M:Vt.aln'p.

(VE) Apply ind. hyp. observing: [o([B/tla)In =1 [B/tla I'.
(Y) Again an easy application of the ind. hyp.. O

Term Substitution (Lemma 4.3)

If FI',x:a > M:B, and FT" > N:a then
(1) FI o [N/xIM:B
(2) For any type-assignment 1, for any assignment p such that nTrp,

Il > N:alnpl = IT 5 [N/xIM:Bhnp = [T x:a © M:fInp’

where: p' 4 p[II"' > N:alnp /x].
Proof

Both assertions are proved by induction on the length of the typing.
1) M [N/x]*=+,andF > * 1.
(asmp) Say: y:Bel’ = T, x:a D y:B. If x=y then [N/x]y =N, and } > N:a ;
otherwise FI'> y:f, by (asmp).
(—I) First we observe that a rule of exchange is derived in the sense that:
HI, x:a, y:o' © M:B implies T, y:a', x:a > M:B with a proof of the same length.
Next, say: I'x:a, y:p > M: B' = T, x:a D Ay:B.M: B—f'. Then we apply the ind. hyp.
onT, y:B, x:a © M: B' to conclude: T, y:B o [N/x]M: B'. By (=) we conclude: FI" >
Ay:B.IN/xIM: B—=p'.
(—E) Direct application of ind. hyp. .
(VD) Say: I'x:a > M: a teftv([,x:a) = I[x:a > (AtM): (Vt.a). By ind. hyp. FI" ©

18

[N/x]M: o, and by (VI) we conclude: I o (At.[N/x]M): (Vt.).
(VE) Direct application of ind. hyp. .
(Y)Direct application of ind. hyp.

(2) Left to the reader. O

Canonical Forms are Defined (Lemma 4.4)

If HJ > C:a0 where C is a canonical form, then for any 1 and p, [> C:alnp 4.
Proof

We recall: C::= * | (Av: a. M) | (Atv. C). Hence we proceed by induction on the
structure of C.

(C=* Then [@ > *1Imp U

(C = Ax: a. M) Then [@ o Ax: a. M: a—Binp L.

(C = At. C) Then, for any A, [& > C: aln[A/t]lp { by inductive hypothesis, and
therefore [@ o At.C:Vtalnp 4. O

Invariance under Evaluation (Lemma 4.5)
If FMC then, for any n and p, @ > M:alnp =D > C:alnp .
Proof '
By induction on the deduction of the evaluation judgment.
("), (=I) Trivial.
(=E) By applying the ind. hyp. and the term substitution lemma we have:
[D > MN : Binp =& > Ax:a.M": a—=Blnp [@ > C: alnp =
Ix:a>M': BinplIB > C:almp /x]1 =13 > [C'/xIM'": BiInp =D > C: Bnp.
(VI) By ind. hyp. .
(VE) By applying the ind. hyp. and the type substitution lemma we have:
[D > Ma: [a/t]BInp =[S o (At.C): Vt.fInp [alnp =
(D o C: Binlla/tlp =2 o [a/t]C: [a/tIBMp .
(Y) By ind. hyp. and [& > M(Ax:1.YM) : alnp = [> (YM) : alnp . O

Appendix B

In this section we build a realizability structure D such that [QIPl, where Q =
(Ax.xx)(Ax.xx). The construction is a straightforward adaptation of the Pw model
construction, and of certain observations in Baeten&Boerboom[79] on the surprising
effects that certain codings can have on the interpretation.

Consider the collection of subsets of natural numbers ordered by inclusion, say
Pw, as an object of the category dcpo. Suppose we are given two bijective codings:
<, > xw—-, e: 0P, 0. We define Graph,;: (Po—Pw)-Pw, and
Fun: Po—(Po—Pw) as follows:

Graph(f) = {<n, m> | fle))l A meflep))
Fun,(X) = AY. if Z#Q then Z else 11,
where: Z = {m!3n.(<n, m>e X A e,CY))

19

Verify the Fun, o Graph, = id(p,.py)- We set: XY = Fun(X)(Y), and we denote
with PwV the realizability structure resulting from this construction.

Next we expand the definition of IQJP®” .
XX = {m | 3n.(<n, m>e X A e cX)} if not-empty, T o.w.

For ® = Ax.xx, [0lP®Y = Graph (AX. XX) = {<n, m> | epe,d A meegep) =
{<n, m> | meepe,} = {<n, m> | Ix.(<x, m>ee, A e, ey}

Hence IQFF®" = {z | Iw.(<w, z>elwlf®" A e, dwlP®")} if not-empty, T o.w.

Let us now consider codings? such that:

<1,0>=0, and e; = {0}.

We claim: 0e [QIP®" . Take w=1. Then:
(i) <1, 0>elwlPoY iff Ix.(<x, 0>ee; A e cep).
But take x=1 and we have: (<1, 0> = 0se; A ejge)).
(ii) e;clwlPe’ iff Oceqe; iff 3n.<n, O>ee; A e cey).
But take n=1 and we have: (<1, 0>ee; A ejcey).

Conclusion, for such codings: [QIP®"{ . 0O

2 such codings are effective and can be easily built.

20

ISSN 0249 - 6399

