N

N
N

HAL

open science

The Palindrome systolic array revisited

Hervé Le Verge, Patrice Quinton

» To cite this version:

Hervé Le Verge, Patrice Quinton. The Palindrome systolic array revisited. [Research Report] RR-

1578, INRIA. 1992. inria-00074982

HAL 1d: inria-00074982
https://inria.hal.science/inria-00074982
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074982
https://hal.archives-ouvertes.fr

NN

UNITE DE RECHERCHE
INRIA-RENNES

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
Rocaguencourt
BP10b
78153 Le Chesnay Cedex
France

Tel:(1)39635511

Rapports de Recherche

N° 1578

Programme 1
Architectures paralléles, Bases de données,
Réseaux et Systemes distribués

THE PALINDROME SYSTOLIC
ARRAY REVISITED

Hervé LE VERGE
Patrice QUINTON

Janvier 1992

R ENARA

9 r 8 =*

IRISA

INSTITUT DE RECHERCHE EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042 - RENNES CEDEX FRANCE
Tel. : 99 84 71 00 - Télex : UNIRISA 850 473 F
Telécopie : 99 38 38 32

Retour sur le réseau systolique du palindrome
The palindrome systolic array revisited*

Hervé Le Verge et Patrice Quinton
IRISA-CNRS, Campus de Beaulieu
35042 Rennes Cedex, France
c-mail : quinton@irisa.fr

A paraitre dans les actes du colloque international
Rescarch Direction in High-Level Parallcl Programming Languages
Springer-Verlag.

Novembre 1991
Publication Interne n° 618 - 14 pages - Programme 1

Résumé: Lec but de cet article est de présenter le Jangage ALPliA, et son
utilisation pour la synthésc de réscaux réguliers. Pour ce faire, on considere
le fameux exemple du reconnaisscur de chaines palindromes, qui a servi de
support a lillustration de plusicurs méthodes de synthese. On commence
par résumer les principes de ALria. Puis, on explique en détail la synthése
du reconnaisscur de palindromes temps-réel, illustrant ainsi les possibilités
de ALPHA.

Abstract: The purpose of this article is to present a language, ALPIA,
and its use for the synthesis of regular arrays. To this end, we consider the
famous example of the palindrome recognizer, which has served as a support
for the illustration of various design methodologics. We first summarize the
characteristics of the ALrna language. Then we explains in detail the syn-
thesis of a recal-time palindrome recognizer, thus illustrating thie potential of
ALPHA.

*Ces recherches sont partiellement soutcnues par le programme de rechicrches coordon-
nées du MRT C?, et par le projet ESPRIT BRA NANA, numéro 3280

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (URA 227) UNIVERSITL DE RENNES! INSA DE RENNES
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIOUE ET EN AUTOMATIOUE | UNHE DI RECHERCHE DE RENNES)

The palindrome systolic array revisited*

Hervé Le Verge and Palrice Quinton

IRISA-CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
e-mail : quinton@irisa.fr

1 Introduction

As density of integrated circuit increases, parallel arrays — i.e. systolic arrays[Kun82],
wavefront arrays[KAGR82], regular iterative arrays[Rao85], to name a few types-of such
architectures — become one of the favorite architectural style of special-purpose system
designers. The reasons are well known. Parallel arrays have high performances and are
modular, and these properties make them well suited for implementing systems commonly
found in many application areas. On the other hand, the main concern of system designers
is to produce as quickly as possible a special-purpose system — 1.e. a combination of
hardware and software — without default. Parallel regular arrays are complex algorithms,
thus difficult to master. This often leads to errors in the design process.

The purpose of this article is to present a language, ALPHA, and its use for the syn-
thesis of regular arrays. To this end, we consider the famous example of the palindrome
recognizer, which has served as a support for the illustration of various design methodolo-
gies. This algorithm is considered by Cole[Col69], who describes a systolic array. Leiserson
and Saxe[LS81] consider this example to illustrate their Systolic Conversion Theorem.
More recently, Van de Snepscheut and Swenker[dSS89] also investigate the derivation
of paralle] algorithms for the palindrome recognition, by means of stepwise refinement
method.

In Sect. 2, we first summarize the characteristics of the ALPHA language. Then, Sect.
3 explains in detail the synthesis of a real-time palindrome recognizer, thus illustrating
the potential of ALPHA.

2 The ALPHA language

The principles of ALPHA have been presented in detail elsewhere[DVQS91, DGL*91,
LMQ91]. The purpose of this section is just to introduce the non familiar reader with
the notations and main ideas of the language.

The ALPHA language is based on the recurrence equation formalism. It is therefore
an equational language, whose constructs are well-suited to the expression of regular

* This work was partially funded by the French Coordinated Research Program C* and by the
Esprit BRA project NANA.

algorithms. The ALPHA language can also be used to describe synchronous systems, and
therefore, provides a natural framework for the transformation of algorithm specifications
into architectures. Interactive transformations of ALPHA programs can be done using
the ALPHA DU CENTAUR environment, implemented with the language design system
CENTAUR[BCD*87]. ALPHA DU CENTAUR includes a library of mathematical routines
that are used to searth efficient transformations of programs.

2.1 The basics

An ALPHA program is a collection of single assignment equations. ALPHA follows the
classical principles of a structured, strongly typed functional language.

To explain the language, let us consider the ALPHA program, also called a system
of equations, presented in Fig. 1 which represents an iterative version of the calculation

system erample (X : {i|]l <1 < 3} of integer)
returns (s: integer);
var
sum : {i|0 <1 < 3} of integer ;
let
sum = case
{i[s = 0} : 0.(s —=);
{1 <i<3}: X+ sum.(i —i—1),
esac;
s = sum.(— 3);
tel ;

Fig.1. Example of ALPHA program

s = Y°2_, Xi. This program takes an input variable X, indexed on the set {i|l < i < 3}
of integer, and returns an integer s. Moreover, there is local variable sum, defined on the
set {7]0 < i < 3}. Between the keywords let and tel, we find the definition of sum and
s. Each definition provides a synonymy between a variable and an ALPHA expression.
ALPHA variables and expressions are in fact functions from an index domain of Z™ -
the spatial domain of the variable or the expression- to a set of values of a given type
(boolean, integer, real, in the current version.) Spatial domains of ALPHA variables are
restricted to integral points of convex polyhedral domains (see [Sch86] for notions on
convex polyhedra).

2.2 Motionless and spatial operators

ALPHA expressions are obtained by combining variables (or recursively, expressions) to-
gether with two sorts of operators : motionless operators and spatial operators.
Motionless operators are the generalization of classical operators to ALPHA expres-
sions. Operators defined in such a way are usual unary and binary operators on basic
types, and the conditional operator if..then..else. As an example, given one-dimensional

variables X and Y, the expression X + Y represents a function defined on the intersection
of the domains of X and Y, and whose value at index 7 1s X; 4+ Y;.

Spatial operators are the only operators which operate explicitly on spatial do-
mains. The dependence operator combines dependence functions and expressions. Depen-
dence functions are affine mapping between spatial domains, and are denoted (¢, 7,... —
f(i,3,..)) where f is an affine mapping. Given an expression F and a dependence func-
tion dep, E.dep denotes the composition of functions £ and dep. As an example, the
expression sum.(i — ¢ — 1) denotes the expression whose i-th element is sum;_;. Note
that constants are defined on Z°% and (— i) denotes the mapping from Z° to Z : the
definition s = sum.(— 3) in Fig. 1 says that s is sumg (the value of sum at index 3.) The
restriction operator restricts the domain of an expression, by means of linear constraints. - -
In Fig. 1, the expression {i|l1 < i < 3} : X + sum.(i — i — 1) restricts the domain of X
+ sum.(i — i — 1) to the segment [1, 3]. The case operator combines expressions defined
on disjoint domains into a new expression, as the variable sum of program shown in Fig.
1.

The spatial operators allow recurrence equations to be expressed. In Fig. 1, the value
of the variable sum is the sequence of partial sums of the elements of X and is defined by
means of a case, whose first branch specifies the initialization part and the second one
the recurrence itself.

2.3 Basic transformations

As any functional language, ALPHA follows the substitution principle : any variable can be
substituted by its definition, without changing the meaning of the program. Substituting
sum in the definition of s in program of Fig. 1, gives the program shown in Fig. 2. One

system erxample (X: {1]1 <1< 3} of integer)
returns (s:integer);
var
sum : {1]0 < ¢ < 3} of integer ;
let
sum = case
{iji =0} : 0.(s —);
{ili>0}: X+ sum.(s = i = 1);
esac;
s = {(case
{ili =0} : 0.(+ —);
{sli >0} : X + sum.(s —» 1 = 1);
esac).(— 3);
tel ;

Fig.2. Program 1 after substituting sum by its definition

can show that any ALPHA expression can be rewritten in an equivalent expression, called
its normal form, whose structure is composed of a unique case, and all dependencies are
directly associated with variables and constants. This normal form is also called Case-
Restriction-Dependence form. The normalization process often simplifies an expression,

and can be used, together with the substitution, to do a symbolic simulation of an ALPHA
program. For example, the definition of s in program (2) becomes after normalization :

s= X.(—3) + sum.(— 2);
and by repeating this process :
s=X(—3)+ (X(=2)+ (X(—= 1)+ 0.(=)));

which is just the definition of s.

A change of basis can be applied to the index space of any local variable, using a
straightforward syntactic transformation of the equations [LMQ90): in order to apply
the change of basis defined by a unimodular dependence function dep to a variable
X, one needs to replace the definition domain of X by its image by dep, to replace
right-hand side occurrences of X by X .dep, and finally to replace the equation X = exp
by X = ezp.dep~ . The case when dep is not unimodular can be dealt with by first
embedding the variable X in a higher dimensional index space. The change of basis
transformation is the core of space-time reindezing, as will be shown below.

3 Synthesis of a real-time palindrome recognizer

The goal of the following ALPHA exercise is to show how the classical systolic palindrome
array described in [Col69] can be synthesized from “as high-level a specification as possi-
ble”. After describing this initial specification, we outline each one of the transformations
needed to reach an ALPHA program “reasonably close” to the hardware description of
the solution. All transformations, but a few ones that we will mention, were performed
using ALPHA DU CENTAUR, that is to say, fully automatically. However, the choice of the
transformations to be applied and the order of their applications was manual. We should
emphasize that the goal was not to find out a new palindrome recognizer, but rather to
prove by construction the correctness of an implementation of the classical solution.

3.1 The problem and its initial specification

Let a = ag.....an,—1 be a string of n characters. It is said to be a palindrome if, for all
i, 0< 1< n-1, q;is equal to a,-;—;. The problem we want to solve is to find out a
real-time palindrome recognizer, that is to say, a device which reads a; in increasing order
of 7, and answers immediately after reading a,-; whether ag....an_; is a palindrome or
not. From this informal description of the algorithm, we get the first ALPHA program
of Fig. 3. The program takes the string a as input, and returns a boolean function pal,
defined as

pal, = /\ (ai = an—i-1). (1)

0<i<(n-1)/2

Without loss of generality, the actual program presents the derivation of a bounded
palindrome array, able only to handle strings of at most 8 symbols. The definition of pal
uses the reduction operator red od ALPHA, whose precise description and operation are
beyond the scope of this paper{Lev91].

system palindrome (a: {§|]7 > i > 0} of integer)
returns (pal : {n|n > 1} of integer);

let

pal=red(A, (i,n—n), {i,n]8>n>2i+2}:a(iin—d)=a (in——i+n—1))
tel ;

Fig. 3. Initial specification of the palindrome algorithm

3.2 Serialization of the reduction operator

Figure 4 shows the program, after replacing the reduction operator by a recurrence. To
do so, we need to introduce a new variable, p, defined over a domain of dimension 2. This
variable is defined by a recurrence, initialized with the null element of A, i.e., true. The
recurrence is done by decreasing value of the index ¢ in the reduction of equation (1).
The result palof the program is now defined by pal, = pg 5.

system palindrome (a: {i]i > 0;7 > i} of integer)
returns (pal : {n|n > 1} of integer);
var
p:{t,n|i >0;82> n;n> 2142},
{i,n]t > 1;2i+ 1> n;n > 21;8 > n} of boolean ;
let
pal = {i[8 2 i5i 2 2} : p.(i — 0,1);
p = case
{,nli > 1,2+ 1> n;n > 2i;8> n}: true.(i,n —);
{Hin]i>0;8>nm;n>2i+2}:p(i,n—i+1,n)A
a(i,n—id)=a. (ijn - —i+n—1)
esac;
tel ;

Fig.4. Version after serialization of A

3.3 Uniformization

The next transformation, referred to as uniformization, pipelining, or localization in the
literature, is rather complex. The definition of p in the program of Fig. 4 contains two
instances of the variable a which are not two-dimensional. The uniformization transforma-
tion aims to replace these instances by new variables Af and A2, which are defined by in-
duction on the domain of the variable p, in such a way that the arguments of the equation
be defined on the same domain, thus leading to uniform recurrence equations] KMW67].
The interested reader will find in [QD89] details on this transformation.

system palindrome (a: {il{ > 0; 7 > i} of integer)

returns (pal: {rn|n > 1} of integer);

var

A2:{t,n]i > 0;8 > n;n > 2i + 1} of integer;

Al: {i,n]i > 0;8 > n;n > 21 + 2} of integer;

p :{i,n|t>0;82>n;n>242},

{t,n|n > 2i;§ > 1,8 > n;2i+ 1 > n} of boolean ;

let

pal = {i|8 > ;5 > 2} : p.(s — 0,1);

p = case
{i,nin>21;§ > 1;8 > n;214+ 1 > n} : true.(i,n —);
{i,n}i>0;8>n;n>2i+2):p.(i,n — i+ 1,n) A Al = A2;
esac;

Al = case
{i,n]i>0;3> 6;n=2i+2}:a(i,n — i)
{i,n]i>0;8>n;n>2143}:Al.(i,n —i,n—1);
esac;

A2 = case
{i,nli=0;8>n;n>1}:a(i,n — —i+n—1)
{£,n|8>n;i>15;n> 2141} : A2.(i,n = {—-1,n - 1};
esac;

tel ;

Fig. 5. Version after uniformization

3.4 Connecting Af and A2

The uniformization of the occurrences of a in the definition of p done in Sect. 3.3, has
the effect of introducing two different flows of a data: one for the variable A1, and one
for A2. This situation, although perfectly correct, is undesirable from the point of view
of the architecture design, as it will result in two flows of data carrying the same values.
To avoid this problem, one can “connect” these flows, by noticing that the initial values
of A1, defined in the branch

{i,n]i>0;3>4n=2i+2}:a.(i,n—1);

of the case expression, are in fact equal to A2.(i,n — i, n—1). The result is shown in Fig.
6. This rather heuristic transformation cannot be done automatically. However, one can

Al = case
{t,n[i>0;3>4n=2i+2}: A2.(i,n — §,n — 1);
{i,n[i > 0;8>n;n>2i+3}: AL (i,n —i,n—1);
esac;

Fig. 6. Connection Af and A2

prove that the resulting program is equivalent by repeated substitution and normalization
of A2 in the new equation.

a)

3.5 Initialization of p

A similar transformation has to be applied to the initialization part of the equation which
defines p. The idea behind this transformation is, by anticipating the final shape of the
architecture, to avoid broadcasting an initialization control signal to all the cells of the
architecture. To this end, the initialization part of the definition of p is split in two sub-
equations, each one defined on one segment domain (see Fig. 7). Then, uniformization is

applied on each new equation.

p = case
{i,n|7 > 241 > 1;2i+ 1 =n} : true.(i,n —);
{i,n]i > 1;4 > i;n = 2i} : true.(i,n —);
{i,n]i > 0;8 > n;n > 2142} : p.(i,n =1+ 1,n) A Al = A2;
esac;

Fig.7. Splitting the initialization part of the definition of p

system palindrome { a: {iJi > 0;7 > i} of integer)
returns (pal : {n|n > 1} of integer);

var

init2: {¢,n}t > 1;4 > 1;n = 2i} of boolean;

initl : {i,n|7 > 21;4 > 1;2i + 1 = n} of boolean;

let
p = case
{1,n»|7>2i;i>1;20 4+ 1 = n} :init];
{i,n|t > 1;4 > i;n = 2i} : init2;
{{,n|1 >0;8>n;n>2142} :p.(i,n —1i+1,n) A Al = A2;
esac;
initl = case
{i,n|3 =n;1 =i} : true.(1,n —);
{i,n]72>24;i> 2,21 +1=n} :initl.(i,n = i~ 1,n - 2),
esac;
init2 = case
{i,n|2 =n;1 =1} : true.(s, n —);
{t,n[{ > 2,4 > t;n =21} : nit2.(i,n = i—1,n = 2);
esac;
tel ;

Fig.8. Uniformization of initialization signals

3.6 Embedding and change of basis

The last transformation of the program is known in the literature as space-time reindez-
ing. It corresponds to finding a time axis and a processor axis in the index space, in such
a way that the resulting system of equations represent the operation of a synchronous
architecture. Techniques to do this are well-known (see {Mol82], among many others). In
the present case, the time component, i.e, the time at which calculation (7, n) is done,
is #(i,n) = 2n — 1, and the space component, i.e. the number of the processor calculat-
ing (i,n) is simply 7. In term of ALPHA program transformation, space-time reindexing
amounts to operate a change of basis, as described in Subsect. 2.3. However, a careful
analysis of the dependencies reveals that the period of the cells of the desired architec-
ture is 2, i.e., each cell operates only every other tick of the clock. As a consequence,
one cannot use directly a unimodular change of basis. To circumvent this problem, one
uses the following trick : first, local variables are embedded in a three-dimensional space,
simply by adding a new index (k for example), arbitrarily set to 0. The effect of this em-
bedding is illustrated in Fig. 9 for variable A2. Then, one performs a unimodular change

system palindrome (a: {i]i > 0;7 > 1} of integer)
returns (pal : {rn}n > 1} of integer);

var

A2 {i,n,k|i >0;8 >n;n > 2i+1;k =0} of integer;

let

A2 = case
{i,n,kji=0,8>n;n>1;k=0}:a (i,n,k— —i+n—1);
{t,n, k|82 n;i> 1;n 221+ 1;k =0} : A2.(i,n,k — i —1,n —1,0);
esac;

tel ;

Fig.9. After embedding

of basis, chosen in such a way that its projection on the first two indexes correspond to
the desired, non unimodular, space-time transformation. In our example, the change of
basis we are looking for is (f,p,k) = (2n — i + k,i,n + k). The same change of basis is
performed on all variables, except inill and init2 which are additionally translated by
(t,p, k) = (—3,-1,0) in such a way that the initialization signal enter cell number 0 of
the array. The result is shown in Fig. 10. It can readily be interpreted as the systolic
architecture depicted in Fig. 11. The array has period 2, and uses n/2 cells. Notice that
the initialization of the cells is fully systolic, as the operation of the array makes no
assumption on the initial state of the registers of the cells: all data and control signals
enter the array in cell 0, and results are obtained in real-time in cell 0 as well.

10

system palindrome (a: {s}i > 0;7 > i} of integer)

returns (pal : {n|n > 1} of integer);

var

init2 : {t,p, k|8 > k;2p + 2 = k; k > 2;2t 4+ 6 = 3k} of boolean;

initl : {1,p, k{19 > 2;3p + 2 = t;t > 2,2t + 5 = 3k} of boolean;

A2 :{t,p, k|8 > k;2t > 3k + 1,2k =t + p; 2k > t} of integer;

Al :{t,p,kip>0;t>3p+4;16 > 1+ p; 2k =t + p} of integer;

p {t,p,kl2k>t+ 1,2t >3k2k=t+p;3k+12>2t;8 >k},
{t,p,klp>0;t > 3p+4;16 > t+ p; 2k =t + p} of boolean ;

let

pal ={i|8 > ;i > 2} :p.(s — 2i,0,1);

p = case
{t,p, k|25 > 24;t =3p + 2;t > 5;2t = 3k + 1} : initl.(¢, p,k -t = 3,p ~- 1,k);
{t,p, k|t > 3;3p=1t;12 > t;3k = 2t} : init2.(t, p, k — t —3,p— 1, k),
{t,p,klp>0;t>3p+4;16 > t+p; 2k =t +p} :

pt,p,k—t—1,p+1,k) A Al = A2;

esac;

Al = case
{t,p, k13> 4;3p+4 =812 4,2t =3k + 2} : A2(t,pk—t—-2,p,t +p—k —1);
{t,p, klp>20;t>3p+6;16 >t 4 p;2k =t +p}: Al.(t,pk—1t-2,p,k—1);
esac;

A2 = case

{t,p,k[t>2p=0;16 > t;2k =t} s a.(t,p bk = t — k — 1);
{t,p, klp>21;t>3p+ 2,16 > t+p;t+p =2k} : A2 (t,p, k-t —1,p—-1,k—1);
esac;

initl = case
{t,p, k|3 =k;p=0;2 =1} : true.(,p, k —);
{t,p, k[t > 53p+2=119 2 2t;3k =2t + 5} :

initl.(4,p,k =t =3, p—1,t+p—k +2)

esac;

init2 = case
{t,p,klt=0,p=0;2 =k} : true.(t,p, k =);
{t,p,kK|9> t;t =3p;1 > 3;2t + 6 =3k} : init2. (4, p,k =1 -3, p—1,t+p—k+2),
esac;

tel ;

Fig.10. The final ALPHA program

4 Conclusion

We have described the ALPHA language, and illustrated its use for the derivation of
a palindrome real-time recognizer. The ALPHA DU CENTAUR environment includes a
translator to the input language of a standard cell VisI generator, which accepts as
input a subset of ALPHA very similar to the final version of the palindrome. Its use for
the automatic synthesis of a systolic correlator is reported in [DGL*91]. Our experience
with ALPHA has shown us that it is a very concise means of describing regular algorithms,
and of deriving correct parallel arrays for these algorithms. In particular, the possibility
of expressing all steps of the algorithm transformations using a unique language is very
convenient.

11

as - a2
- -y

! [A2 [
! U]
! i
[1
[} |
! Al |
! !
' '
1 1
| |
§ |
' p] 1
' L I
! D D D init1 !
i]
1 i
! init2 !
i '| 'I > } i
e, J
- - ap —
) ItJ:ue - p-3 : Po b P2 Ps
- - true ——mf

Fig.11. Cell structure and architecture

References

[BCD*87]
[Col69]

[DGL*91]

[dSS89)

[DVQS91]

[KAGRS2)

[KMW67]

P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. CENTAUR : the System. Technical Report 777, INRIA, 1987.

S.N. Cole. Real-time computation by n-dimensional iterative arrays of finite-state
machines. IEEE Tr. on Computer, 18(4):349-365, 1969.

C. Dezan, E. Gautrin, H. Leverge, P. Quinton, and Y. Saouter. Synthesis of sys-
tolic arrays by equation transformations. In ASAP’91, IEEE, Barcelona, Spain,
September 1991.

J.L.A. Van de Snepscheut and J.B. Swenker. On the design of some systolic algo-
rithms. JACM, 36:826-840, 1989.

C. Dezan, H. Le Verge, P. Quinton, and Y. Saouter. The ALPHA DU CENTAUR envi-
ronment. In P. Quinton and Y. Robert, editors, International Workshop Algorithms
and Parallel VLSI Architectures II, North-Holland, Bonas, France, June 1991.

S.Y. Kung, K.S. Arun, R.J. Gal-Ezer, and D.V.B. Rao. Wavefront array pro-
cessor: language, architecture, and applications. JEEE Trans. on Computers, C-
31(11):1054-1066, Nov 1982.

R.M. Karp, R.E. Miller, and S. Winograd. The organization of computations for
uniform recurrence equations. Journal of the Association for Computing Machinery,
14(3):563-590, July 1967.

12

[Kun82] H. T. Kung. Why systolic architectures? JEEE Computer, 15(1):37-46 multiproces-
sors, parallel processing, systolic arrays, VLSI,, January 1982.

[Levol] H. Leverge. Reduction operators in ALPHA. Research Report, IRISA, adressirisa,
November 1991. to appear. ’

{LMQ90] H. Leverge, C. Mauras, and P. Quinton. A language-oriented approach to the de-
sign of systolic chips. In International Workshop on Algorithms and Parallel VLSI
Architectures, Pont-a-Mousson, June 1990. To appear in the Journal of VLSI Signal
Processing, 1991.

[LMQ91] H. Leverge, C. Mauras, and P. Quinton. The ALPHA language and its use for the
design of systolic arrays. Journal of VLSI Signal Processing, 3:173-182, 1991.

[LS81] C.E. Leiserson and J.B. Saxe. Optimizing synchronous systems. In 22th Annual
Symp. on Foundations of Computer Science, pages 23-36, IEEE Press, Oct 1981.

[Mol82] D.I. Moldovan. On the analysis and synthesis of VLSI algorithms. JEEE Transac-
tions on Computers, C-31(11), November 1982.

[QD89] P. Quinton and V. Van Dongen. The mapping of linear recurrence equations on
regular arrays. The Journal of VLSI Signal Processing, 1:95-113, 1989. Quinton89c.

(Rao85] S.K. Rao. Regular Iterative Algorithms and their Implementations on Processor
Arrays. PhD thesis, Standford University, U.S.A., October 1985.

[Sch86) A. Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience series
in Discrete Mathematics, John Wiley and Sons, 1986.

This article was processed using the IATEX macro package with LMAMULT style

13

Pl

Pl

Pl

Pl

PI

Pl

PI

PI

PI

Pl

609

610

611

612

613

614

615

616

617

618

LISTE DES DERNIERES PUBLICATIONS INTERNES IRISA

INTEGRATION D'UN CORRECTEUR ORTHOGRAPHIQUE DANS L'EDITEUR
STRUCTURE GRIF

Patrice FRISON, Eric PICHERAL, Héléne RICHY

Octobre 1991, 22 pages.

SYNCHRONIZATION AND CONCURRENCY MEASURES FOR DISTRIBUTED
COMPUTATIONS

Michel RAYNAL

Octobre 1991, 20 pages.

MALI v06 - TUTORIAL AND REFERENCE MANUAL
Olivier RIDOUX
Octobre 1991, 86 pages.

SENSITIVITY COMPUTATION IN NETWORK RELIABILITY ANALYSIS
Gerardo RUBINO
Octobre 1991, 38 pages.

OPAC : A FLOATING-POINT COPROCESSOR DEDICATED TO COMPUTE-
BOUND KERNELS

André SEZNEC, Karl COURTEL

Octobre 1991, 28 pages.

CONTROLLING AND SEQUENCING AN HEAVILY PIPELINED FLOATING-
POINT OPERATOR

André SEZNEC, Karl COURTEL

Octobre 1991, 28 pages.

ON FAULT-TOLERANT SYMBOLIC COMPUTATIONS
Bernard DELYON, Oded MALER
Novembre 1991, 18 pages.

USING COHERENCE TO ACCELERATE RADIOSITY
Pierre TELLIER, Eric MAISEL, Kadi BOUATOUCH, Eric LANGUENOU
Novembre 1991, 16 pages.

INTERVAL APPROXIMATIONS OF MESSAGE CAUSALITY IN DISTRIBUTED
EXECUTION

Claire DIEHL, Claude JARD

Novembre 1991, 44 pages.

RETOUR SUR LE RESEAU SYSTOLIQUE DU PALINDROME

Hervé LE VERGE, Patrice QUINTON
Novembre 1991, 14 pages.

14

ISSN 0249 - 6399

