N

N

OPAC: a floating-point coprocessor dedicated to
compute-bound kernels

André Seznec, Karl Courtel

» To cite this version:

André Seznec, Karl Courtel. OPAC: a floating-point coprocessor dedicated to compute-bound kernels.
[Research Report] RR-1555, INRIA. 1991. inria-00075006

HAL Id: inria-00075006
https://inria.hal.science/inria-00075006
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075006
https://hal.archives-ouvertes.fr

TN

UNITE DE RECHERCHE
INRIA-RENNES

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de \Voluceau
Rocguencourt
BP105
- 78153 Le Chesnay Cedex
: France

Tel:(1)39635511

Rapports de Recherche

N° 1555

Programme 1
Architectures paralléles, Bases de données,
Réseaux et Systémes distribués

OPAC .
A FLOATING-POINT COPROCESSOR
DEDICATED TO COMPUTE-BOUND
KERNELS

André SEZNEC
Karl COURTEL

Novembre 1991

e

IRISA

INSTITUT DE RECHERCHE EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042 - RENNES CEDEX FRANCE
Tél. 1 99 84 71 00 - Telex : UNIRISA 950 473 F
Télécopie ; 99 38 38 32

OPAC: a floating-point coprocessor dedicated to
compute-bound kernels *

André Seznec, Karl Courtel!
IRISA, Campus de Beaulieu
35042 Rennes Cedex
FRANCE

e-mail : scznec@irisa.irisa.fr

October 7, 1991
Publication Interne n°613 - Octobre 1991 - 28 pages - Programme I

OPAC : UN COPROCESSEUR FLOTTANT DEDIE AU CALCUL MATRICIEL

Résumé

Dans d’importants domaines d’applications, les programmeurs ne sont pas des spe’cialistes en calcul
paralltle, mais ont tout de méme besoin de performances ¢levées qui ne peuvent ¢tre atteintes sans
utiliser de parallélisme matériel. Pourtant, dans de nombreuses applications, la majcure partie des
calculs peut étre réunic dans des appels & des primitives de calculs “compute-bound”.

Dans cet article, nous présentouns architecture du coprocesscur OPAC. OPAC est un prototype
d’accélérateur flottant développé fortement pipeliné a PIRISA entre 1988 et 1991. OPAC a été concu
comme la cellule de base d’un coprocesscur dédié a‘ 'exe’cution des noyaux “compute-bound”.

Des performances proches d’une multiplication-accumulation flottante par cycle et par cellule sur
des applications telles que résolution de systeme linéaire, FI'Ts, corrélations, .. peuvent étre atteintes
dans un environnement microprocesscur sur un coprocesseur dédié composé de plusicurs cellules de
type OPAC.

Abstract

In various application domains, programmers are not specialists of parallel programming, but
are demanding for performance that cannot be rcached without using parallelism . Never-
theless, in many applications, the main part of the computations may be encapsulated in

*This work was partially supported by the French ministry of defense under grant DRET-INRIA No
88.34.191.00.470.75.01 and the CNRS (PRC-ANM and GCIS)
tat present, BULL S.A., Les Clayes-sous-Bois

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE {URA 227} UNIVERSITE DE RENNEST INSA DE RUNNES
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET N AUTOMATIQUE (UNNE DE AECHERCHE DE RENNES)

compute-bounds kernels with exhibit high potential parallelism. Achieving high performance
on compute-bound primitives at a low hardware cost has became an important challenge.

In this paper, we present the architecture of the OPAC floating-point operator. OPAC has
been designed in order to be the basic cell in a multi-cell floating-point coprocessor dedicated
to the execution of the most useful compute-bound kernels.

The peak performance of one floating-point multiply-add per cycle per cell obtained on
the OPAC prototype may be approached in a microprocessor environment on a multi-cell OPAC
floating-point coprocessor on a large set of numerical applications.

Keywords

array processing, floating-point coprocessor, compute-bound kernels, OPAC architecture

1 Introduction

In application domains such as signal and image processing or numerical applications on dense
structure, demand for computing power is always increasing : this demand cannot be satisfied
without using hardware parallelism.

But application programmers in these domains are not always specialists of parallel pro-
gramming. Nevertheless, in many applications, the main part of the computations may be
encapsulated in calls to primitives working on arrays and even in compute-bounds kernels
where the number of operations largely cxceeds the number of data and where the potential
parallelism is high.

As a compromise, the architect may ask to the programmer to forget the parallel execution
of its applications, but to structure its applications in order to use calls for compute-bound
kernels primitives as for example those included in the de-facto standard BLAS level 3 [Do88].
The parallel execution of the programs may be then be hidden to the programmer.

When considering such an approach, achieving high performance on array processing at
low cost becomes an important challenge. It may be envisaged to associate a monoprocessor
host (e.g. a state-of-the-art microprocessor) with a special floating-point coprocessor dedicated
to array processsing. Such a floating-point coprocessor must be built with several floating-point
operators.

In this paper, we present the OPAC floating-point operator. OPAC may be used as a
basic cell in order to built a multi-cell horizontal floating-point coprocessor. A prototype of
OPAC has been built at IRISA during the years 1988-91.

In section 2, we list some of the most useful compute-bound kernels. In section 3, we
recall the principal types of architectures that have been envisaged to achieve performance on .
compute-bound kernels at low cost. In section 4, we isolate some minimum characteristics
that a floating-point coprocessor must respect in order to achieve nearly peak performance on
calls to library of compute-bound kernels : an addressable local memory, asynchronous and
independent sequencing ..

Then, in section 5, we present the architecture of the floating-point operator OPAC. OPAC
has been designed in order to be used as a basic cell in a floating-point coprocessor dedicated
to the execution of libraries of compute-bound kernels : parameters (i.e. size of arrays) for the
calls are unknown at compile time.

FIFO queues are used in the OPAC operator for storing intermediate results and reusable
operands : these FIFO queues are not used as interface buffers, but as memories which are
implicitly written and read with stride one.

The floating-point operator OPAC can achieve near one floating-point multiply-add per
cycle on a large set of numerical primitives including the whole library BLAS LEVEL 3, FFTs,
correlations with a very limited amount of data exchanges with the host.

In section 6, simulation results show that the peak performance of one floating-point
multiply-add per cycle per cell obtained on the OPAC prototype may be approached in a
microprocessor environment on a multi-cell OPAC floating-point coprocessor on a large set of

o

effective applications such as solving dense linear systems, dense eigenvalue or singular value
problems, correlations, convolutions...

2 A set of useful compete-bound primitives

Generally, application programmers are not specialist of parallel processing; then the perfor-
mance on numerical kernels working on dense structure must be accessible through standard
high level languages (Fortran or C) or through numerical libraries which ranges from low level
kernels (for instance BLAS LEVEL 3 [Do88]) to sophisticated algorithms (for instance LAPACK
[An90]).

Ideally, the programmer may see its application as a sequential program with calls to
routines. Low level primitives are used to shield the user from the hardware complexity of the
architecture.

Here we list some of the most useful compute-bound primitives.

2.1 Matrix multiplication and the BLAS LEVEL 3 library

As most numerical computers reach their best performance (in terms of Mflops/s) on matrix
multiplications, there has been a particular effort to express linear algebra algorithms in such
a way that most of the computations is carried in matrix multiplications [Ja86)]. In fact, most
of the linear algebra algorithms on dense matrices can be rewritten in block algorithms; here
we listed some of these applications :

e Direct methods for solving linear systems : Gauss method, Gauss-Jordan method, LU
decomposition, Cholesky decomposition, ..

e Orthogonalization algorithms : Gram-Schmidt method, Polar decomposition via an iter-
ative method [Ph87], ..

It is noteworthy that an efficient matrix decomposition may be useful also for operations on
banded matrices and even in a few methods for solving sparse linear systems [Ch87][O180].

The BLAS LEVEL 3 [Do88] library also contains other useful primitives such as multipli-
cation of a full matrix by a triangular matrix (or its opposite); some other matrix operations
can also be interesting such as operations on banded matrices. Most of the subroutines of LIN-
PACK [Do79] and EISPACK have already been rewritten in order to encapsulate the major
part of the computations in calls to routines of BLAS LEVEL 3 [An90].

The BLAS 3 library tends to become a de-facto standard for achieving high performance
on numerical applications.

2.2 Fast Fourier Transform

Fourier transform is one of the most popular methods in signal processing. It is very efficiently
implemented by the FFT algorithm [Co65], nevertheless the FFT algorithm remains compute-
bound : 2" complex data read and written, 2""! complex coefficients referenced and 5n * 2"
floating point operations executed. Morcover, in many cases, the Fourier transform has to be
applied to a set of vectors : coeflicients may be read one time, then the asymptotic average
number of floating point operations per memory access is 5n/4.

2.3 Correlations

As other useful primitives, one can also enumerate convolutions and derived algorithms (cor-
relations, filtering, ..). On all these algorithms the number of operations is large besides the
number of needed data.

3 Architectures for executing compute-bound kernels
at low cost

In order to achieve high performance on compute-bound kernels, parallel hardware must be
used. But the characteristics of these kernels push to try to limit hardware duplication and par-
ticularly to avoid the replication of the memory system : in a general purpose high-performance
systems , the memory system represents the major hardware cost.

3.1 Systolic arrays

At the beginning of eighties, the most popular approach in order to obtain performance at a
low hardware cost on compute-bound kernels was the systolic concept developed by H.T. Kung
at Carnegie-Mellon [Ku82|. It is based on massive and regular parallelism and pipelining : data
flow through the array, but are not stored in the cells.

The original systolic concept was based on the following axioms:

e Silicon will become cheaper and cheaper.
e Control is expensive on silicon

¢ Large number of slow processors with very simple control may be statically organized for
executing a specific compute-bound algorithm.

For examples of systolic arrays, see [Ku82].
Objectives reasons have lead to give up this approach for numerical applications at the
end of the eighties.

e A particular systolic array is adapted to a specific algorithm and a specific size of the
problem : in order to accelerate a whole application, several systolic arrays would be
needed.

e In most of the algorithms, floating-point arithmetic is needed : a large number of tran-
sistors is necessary for implementing floating-point operators. In terms of silicon cost,
adding some control functions and local storage supports is not prohibitive.

e The silicon has become cheaper and cheaper, but it has also become faster and faster :
the throughput of a floating-point operator may attained of one result per cycle with a
cycle similar to the host machine. Then the problem of I/0 management on a systolic
array has become critical :

for a 10* 10 two-dimensional systolic array designed for updating matrices, 40
words of data must enter or exit the array on each cycle. memory accesses are
needed per cycle.

3.2 Programmable “systolic” arrays

In the mid-eighties, H.T. Kung [An87] gave up the basic concept of systolic arrays and developed
a linear programmable “systolic” array : the Warp. Fig. 1 described the linear organization of
the Warp array.

Figure 1: Organization of the Warp array

HOST |
o Sl 8l | 8o 8
Sesnnsan

The basic cell in the Warp array is a complete pipeline processor including :
o floating-point operators

¢ integer unit

multiport file register

local memory

e complete sequencing unit

The Warp array can execute all the compute-bound kernels. The natural way to map a
compute-bound kernel on a Warp array of P cells consists in dividing the set of the consecutive
operations contributing to a single rcsult in P consecutive subsets of operations :

each cell executes one of the subsets

Mapping compute-bound kernels such as the matrix multiply or a correlation on the
Warp is quite easy; but it is quite difficult to map a complete application on the array without
intermediate storage of the data in the host memory. The natural way to use the Warp array
seems to use it as a coprocessor dedicated to the execution of compute-bound kernels.

3.3 Horizontal coprocessor array versus linear coprocessor array

In most of the useful compute-bound primitives, there is an alternative to the pipeline decom-
position of the algorithm : the block decomposition.

This type of algorithm decomposition leads to a different structure of a multi-cell floating-
point coprocessor : each of the cells executes all the computations associated with a block and
directly communicates with the host (see fig.2).

We refer to this organization of the cells in a coprocessor as a horizontal coprocessor array
(versus linear coprocessor array for Warp-like organization).

The number of cells that may be associated with a single host in a horizontal coprocessor
array is limited to a few tens by electrical problems.

4 Achieving performance on compute-bound kernels

From now, we consider a floating-point coprocessor built with P basic cells; we also assume
that the basic cell is built around a pipelined floating-point operator which is able to deliver a
throughput of one floating-point multiply-add per cycle !.

In this section, we try to determine which hardware mechanisms are needed in the basic
cell of a multi-cell floating-point coprocessor in order to achieve near optimal performance on
calls to libraries of compute-bound kernels in a microprocessor environment.

4.1 Data memory throughput on a microprocessor

On first generation RISC microprocessor (e.g. SPARC version 7, MIPS R3000), it was difficult
to obtain an effective data memory throughput higher than one floating-point data per 3 or
4 cycles : one instruction may be issued on each cycle, but this includes loop management,
address computation and memory accesses, and the instruction issuing is stopped by cache

I'This corresponds to the current standard technology

Figure 2: Mapping a matrix multiply on a horizontal coprocessor array

. . .

. ’ .

. ’ .

. .

. H .

. .

. ’]

. ‘. ‘.

. . .

. . .

. . .

. . .

. ' .

. ’ .

. . .

’ . .

» ’ .

' . .

v . ‘.

.] +

. . .

. . .

. ‘ .

. . .

. . .

. 1] .

. H .

.] .

. ' ’

. . .

. v ’

. ’ :
. .
. .
. .
. .
v v

. . .

. . .

] . .

. . .

. . .

.] .

. . .

. .

. ’

-

.

H

.

.

.

.

.

.

.

v

.

v

.

.

.

s

.

.

.

cell 0 cell 1 cell 2 cell 3

.
.
.
.
-
.
-
-
-
.
-
.
.
-
.
.
-
i .
-
.
.
.

¥ ¥ * y
HOST

misses, TLB faults, exceptions, .. On the new generation RISC microprocessor (IBM RS6000
for example), the effective memory throughput may be quite close to one floating-point data per
cycle when all the data fit in the data cache [Ch90]: up to four instructions may be issued per
cycle, preincremented memory accesses have been added in the instruction set.. Nevertheless,
when the data do not fit in the cache, the effective memory throughput is quite inferior to the
peak throughput.

Let us call 7, the average number of cycles nceded by the host for accessing a floating-
point data in the global memory. From now, for simplicity, we assume that the behavior of the
host memory can be modelized by 7. We will consider the following values of 7 :

o 7 =4 for first generation RISC microprocessors

o 7 = 2 for current superscalar microprocessors

4.2 Need for local memory in the coprocessor

Let us now consider the matrix updating A(N, N) = A(N,N)+ B(N,N)*C(N, N).

If no intermediate result is stored back in the memory and if no reusable operand is read
more than one time, then the minimum number of memory accesses needed to execute this
matrix update is 4 N2,

The number of operations in the matrix updating is N3 : we consider that each cell
receives N3/ P multiply-adds to execute.

In order to be able to achieve a performance close to one floating-point multiply per cell
on the matrix updating, the time needed for executing the 4N? memory accesses must not be
critical i.e. it must not exceed N3/P cyclesi.e. N > 47 x P,

Now, we analyze the size of the local memory needed in each cell :

to avoid unnecessary data exchanges with the host, at least one of the three matrix
operands must be stored in the local memory.

Table 4.2a and 4.2b shows the minimum value of N and the minimum size LM (in words)
of the local memory in each cell for 7 = 4 (first generation RISC microprocessor) and for 7 = 2
respectively (current superscalar microprocessor).

Table 4.2a
[P [1] 2] 4] 8] 16]
N 16 | 32 64 128 | 256
LM | 256 | 512 | 1024 | 2048 | 4096
Table 4.2b

(P T 1] 2] 4] 8] 1]
N 8 16 321 64 128
LM 64| 128 | 256 | 512 | 1024

8

4.3

Need for dynamic addressing on local memory

Let us consider that the local memory in cach cell is only statically referenced i.e no address is

computed at execution time.

If a location in this memory is used in an application, then at least one instruction must

cxplicitly veference this word :

4.4

The code volume of a primitive is directly proportionnal to the size of the local memory
used by this primitive.

Parameters of calls for a primitive are strongly constrained : the different dimensions
of all the objects that are intermediately stored in the local memory must be statically
defined at code generation.

This can severely increase the complexity of writing efficient numerical kernels and/or
degrade the performance when dimensions are only known at execution time (e.g. calls
for library routines) : block decomposition of the algorithms in fixed size blocks induces
particular treatment for remaining “small” blocks when the parameters do not fit with
multiples of the “fixed” size.

Then some dynamic addressing is needed for accessing the local memory of the cell.

Autonomous sequencing on the cells

At a first point, the sequencing of the whole coprocessor must be asynchronous with the host
processor :

As pointed out in 4.1, the sequencing of the host may be stopped by cache misses,
page faults, etc,. There is no absolute need for stopping the sequencing on the
coprocessor : the cells may work on data which already lie in their local memory.
Effects of cache misses may be hidden.

In order to achieve high global performance, the sequencing of the distinct cells in the

coprocessor may also be asynchronous. A SIMD control of the cells may be envisaged, but

o When the sequencing on the cells is synchronous, all the cells must be stopped when a

data is missing at the entry of only one cell.

e The algorithm parameters may not fit with multiple of the cells number : the distint cells

may have to execute slightly different sequences of operations.

e Two distinct hardware entities would have to be designed : the basic cell and the SIMD

control unit.

Which task granularity ?

Considering the granularity of the “tasks” that can execute the cells, several different types
of asynchronous sequencing may be envisaged : from a la “decoupled-access execute” [Sm82,
Sm87] to ¢ la MIMD.

Smith proposed the“Decoupled Access-Execute” architecture [Sm82, Sm87] : on Astro-
nautics ZS-1, a global splitter dispatches “simple” instructions to two decoupled units the
Access Processor and the Execute Processor (X-Processor) (more than one instruction may be
sent to the same “Processor” on a single clock period) . Instructions are queued at the entry
of the two “Processors”. The two “Processors” communicate with the memory and with each
other through FIFO queues. The execution of an instruction on one of the “Processors” may
be conditioned by the presence of data on an entry FIFO queue.

Using a similar model for sequencing a P cells floating-point coprocessor and its host is
quite unrealistic :

-One must at least dispatch P+1 instructions per cycle : one instruction for each
floating-point cell and one for the host.

-Generating efficient code would be a nightmare : as pointed out previously, the
instruction sequences in the distinct cells are sometimes different.

At the opposite, each cell may be a complete processor with sequencer, instruction memory
etc, as in the Warp.
And many intermediate solutions may be envisaged.

5 The architecture of OPAC

In this section, we present the architecture of the basic cell we propose for a horizontal floating-
point coprocessor array dedicated to the execution of the frequently used compute-bound ker-
nels : the OPAC operator.

OPAC has been designed in order to he directly interfaced with a host computer. Several
OPAC operators may be associated with a single host (fig.3).

The sequencing on each OPAC coprocessor and the host are completely asynchronous :
FIFO queues are used for buffering operands, results and calls for numerical kernels between
the host microprocessor and an OPAC operator.

5.1 Architecture of the computation block

The architecture of the computation block of the OPAC operator has been studied in order
to achieve one floating-point multiply-add per cycle on the most useful compute-bound kernels
(see section 2) assuming that the data throughput on connection host-OPAC may be quite
limited (one word per P * 7 cycles). Studying these primitives has lead us to the architecture
presented in fig.4.

10

Figure 3: Coprocessor OPAC in its environment

Cell 0 L CellP-1 i
e

data bus i

instruction bus

} 1 !

Instruction data '

cache cache microprocessor

>
... S G eereeeerveeereseeeemseeseasesseenesssessenessnsessaenned

g

global me
+ peripheri

11

Iigure 40 Avchitecture of the coprocessor OPAC

f

interface FIFO queues: tpx, tpy, tpo and tpi
local memory: FIFO queues sum, ret and reby
registers : multiport, regay.

operators: floating—point muitiplier and adder
12

gm.d.. ... ‘:.
- . | e
omputation <] 8
:]
block : 5
adder sum £
- g
: -1
o <-. 0.
multiplier rega _._
1
: c = :
ilgs 8 :
- 5| i
Q =] H
S o gl i
‘é f 73
o
FLLX TELLRLITT L [TIIXY TITLTXLLLLL b.:
ret |: tpx tpy |i | reby
Pussesussecsssenans T T 1 ---------------------- tpi

A prototype has been built with chips which were off-the-shelf in 1988. To approach
our performance objective, the computation block is heavily pipelined, each element in it is
supposed to be able to deliver one result per cycle.

Optimized data paths

In the set of compute-bound primitives which have been listed in section 2, in most cases, the
result of a multiply is then accumulated with a previously computed intermediate result. So we
have chosen to implement a direct path from the output of the multiplier to one of the input
of the adder?.

Let us point out that this simplifies the hardware and software management of the pipeline
and that is a key issue for achieving good performance on calls to libraries of compute-bound
routines [Se91].

Using FIFO queues as local memory

As pointed out in section 4.2, some local and reasonably large (about one Kwords) physical
support is needed to store intermediate results and reusable operands.

We have also shown that static addressing of this memorization support is not a com-
petitive approach, because it does not allow to implement efficient primitives with variable
parameters and it leads to very large code size.

FIFO queues ret, reby and sum are used as local memory in OPAC :

e For each of the primitives listed in section 2, we have been able to find an efficient
implementation where these FIFO queues are used as only local storage support and
where no extra external memory access is performed.

e FIFO queues are dynamically but implicitly addressed :

1. FIFO queues are used here as dual-port memory.
2. Code is compact : no extra instruction is needed for address initialization.

3. The width of the instruction word is reduced : for each FIFO queue, only the READ
and WRITE information has to be coded.

¢ In vector sections, the difference between a vector register and a FIFO queue is very tiny;
but sometimes the use of FIFO queues may be easier because it is possible to dissociate
consecutive elements of a FIFO queue (for example when solving a triangular system, at
each step of the outside loop, the size of the vector is decremented, and the computation
on the first element is different from the computations on the other elements).

2This approach has become very popular since the project was started (IBM RS6000, Intel i860, ..)

13

e Large FIFO queue RAMs were available in 1988 (at least 2048 words of 9 bits) with fast
access times (25 MHZ) and correct characteristics : a data written at ¢ may be available
on the output at ¢ + 80ns. An decrease of the period and an increase of the capacity has
been observed : 50 Mhz 8 Kwords FIFO queues are now available.

e In terms of hardware, using FIFO queues is a quite cheap solution versus classical lo-
cal memory and address computations (address generators, data paths for initializing
addresses, microcode RAMs for controlling these, etc.).

e In [Se91], we explain how the use of FIFO queues facilitates an hardware management
of the pipeline, and then facilitates code generation and decreases the code volume (in
number of instructions).

The locations of the three FIFO queues sum, ret and reby are justified by the study of
the algorithms listed in section 2. FIFO queues sum and ret have been introduced to store
intermediate results flowing out from the output of the adder to the second entry of the adder
and the entries of the multiplier respectively. The FIFO queue reby has been introduced to
store vectors (or matrices) of data which are used several times as an operand for a multiply
(see fig.5).

Task granularity

In 4.4, we have pointed out that the granularity of the tasks executed on the cell cannot be
single instruction, then some independent sequencing mechanism is needed in the cell.
We have envisaged three options :

1. Complete sequencing facilities : loop management, data memory for the sequencer,
stacks.. i.e a whole program may be sequenced as in the Warp cell.

- 2. Only vector instructions : Compute-bound primitives may generally be decomposed in
vector instructions

3. Special hardware mechanisms for sequencing compute-bound kernels

For OPAC, having complete sequencing facilities is not necessary : as OPAC is dedicated
to the execution of the compute-intensive kernels of complete applications, many sequencing
decisions will be taken by the host (convergence tests, ..) or replicated by the host (e.g. the
number of data read on an interface FIFO queue by the operator must be exactly the same as
the number of data written on it by the host).

On the other hand, being able to execute only vector instructions will lead to the sending
of many instructions and parameters by the host to the different cells in the floating-point
coprocessor and may saturate the host throughput. Moreover classical vector instructions may
not be sufficient (for instance for performing the perfect shuffle).

14

As a compromise, we have chosen the compute-bound kernel as the task granularity that
can be managed by the OPAC sequencer. The sequencer receives in FIFO tpl the address of
the primitive in the microcode and parameters (sizes of arrays generally); a complete primitive
may be managed by the sequencer : -Several loop levels may be managed
-Linear code and several loops may be chained consecutively
-Very limited manipulations on parameters are authorized : incrementation, decrementation
(for solving triangular systems), multiply or divide by 2 (for FFTs)

An example of the sequencing of a matrix updating on a single OPAC operator associated
with an host is illustrated in fig.5

5.2 Pipeline management : a critical issue for performance on
OPAC

Let us consider the matrix updating on OPAC. In order to limit the demand on data from and
to the host, intermediate results and reusable are stored in the internal FIFO queues in OPAC
as shown in the algorithm illustrated in fig.5.

In this implementation, the whole updated matrix A M*N is stored in the FIFO queue
sum in OPAC. If M*N exceeds the size of the FIFO queue sum then a block matrix updating
algorithm is used ; sizes of blocks are chosen such that a block of A fits in the FIFO queue
sum.

Analysis shows that using square blocks will limit data exchanges between the host and
OPAC. On the current OPAC prototype, the size of the FIFO queues is 2048 words : square
root = 45; in a VLSI implementation of OPAC, this size would be probably limited to 512
words (or less) : square root = 22.

For most of the compute-bound kernels we want to implement on the OPAC floating-point
coprocessor, the same situation arises : due to the finite size of the FIFO queue, we need to
implement block versions of the kernel and most of the computations will lie in the inner most
loops with quite limited iteration numbers (less than 50 for our prototype, on the order of 20
in a VLSI implementation).

Then in order to achieve effective performance close to one floating-point multiply-add
per cell on the OPAC coprocessor, we need to reach this order of performance on the basic cell
when sequencing loops with a very limited iteration numbers.

Special features for the control and the sequencing have been implemented in the OPAC
prototype; they allow to reach near asymptotic performance on loops with very limited iteration
numbers. These mechanisms are described in [Se91].

5.3 Synthesis

The structure of the computation block of the OPAC operator allows to execute the primitives
listed in section 2 with a performance close to one multiply-add per cycle without extra memory

15

Figure 5: Sequencing the matrix update A= A+B*C on oa single cell OPAC coprocessor and
its host
Sequencing on OPAC : Sequencing on the host:

0) sending the call for OPAC
and parameters M,N,K

1) Initialization : 1) Initialization:
Load of A in the FIFO queue sum Store matrix A in FIFO queue tpx
from FIFO queue tpx
2) Computing : 2) Computing:
For k=1to K do For k=1to K do
Load of vector B(. ,k) in FIFO queue reby
from FIFO queue tpy Store B(.,k) in FIFO queue tpy
For n=1to N do Store C(k,.) in FIFO queue tpx
For m=1 to M do
A(m,n)= A(m,n)+ B(m,k)*C(k,n) Endfor
Endfor
Endfor

% A(m,n) is read and written on FIFO queue sum

% B(m,k) is read and written on FIFO queue reby

% Constant C(k,n) is read on FIFO queue tpx
Reset of FIFO queue reby

Endfor

3) Sending results to the host 3) Store the result matrix

FIFO queue sum is emptied in FIFO queue out

16

access when the sizes of reusable operand arrays and intermediate results arrays allow to store
them in the internal FIFO queues.

We claim that the architecture of OPAC cell is a good approximation of the “minimum”
architecture that allows to reach this level of performance with a very limited demand on I/0O.

For larger parameters, the whole set of data cannot be intermediately stored in an internal
FIFO queue of a single OPAC operator.

Block algorithms have to be implemented, and the primitives have to be split into calls
to basic kernels working on smaller sets of data; the computations on the different blocks are
dispatched among the P cells.

6 Performance

A single OPAC operator prototype has been implemented to prove the feasibility of the differ-
ent proposed hardware mechanisms, particularly the controlling and sequencing mechanisms
described in [Se91].

A functional simulator of a P cells OPAC coprocessor has been implemented. This simu-
lator respects all the timings of the prototype.

We analyze here the implementation of two compute-bound kernels :

1. The matrix updating C(N,M) = C(N,M) + A(N,K)*B(K,M)
2. the two-dimensional 5*5 convolution on a 1024*1024 matrix

and a more complex application : the LU factorization.
We try to determine the influence on performance of different parameters :

1. The number P of cells in the coprocessor
2. The host memory throughput : modelized by 7 the inter-access delay

3. The size T f of the internal FIFO queues in OPAC :
-the prototype has been realized with 2048 words FIFO queues
-the integration of a complete OPAC operator on a single chip seems feasible; using
512 words of 32 bits FIFO queues, the complexity of a single OPAC operator has been
evaluated to a million of transistors

6.1 The matrix updating

The implementation of the matrix updating that have been tested has been previously described
by fig.2 (for the block decomposition among the cells) and fig.5.

When the whole result matrix is too large for being intermediately stored in the FIFO
queues sum of the OPAC cells, a new level of block decomposition must be added.

17

We only report here results for one square block of maximum size : i.e. given Tf the size
of the internal FIFO queues in an OPAC operator, P the number of cells in the coprocessor,
we consider the operation A(N,N)=A(N,N)+B(N,K)*C(K,N) with N being the greatest integer
verifying : N? is a multipleof P and N? < T'f.

Results from simulation are given for P=1,4 and 16, Tf=512 and 2048 words and K= 40,
100, 300 and 1000 in table 6.1 : the computing time that has been considered here is the time
spent on the host between the sending of the first element to the coprocessor and the receipt
of the last result.

The results have been normalized in multiply-adds per cycle.

18

Table 6.1

Ii(“ 407 100] 300| 1000]AsymptoticJ
| Ti= 512, T = 2 |
P=1,N=22 [0.879 [0.930 [0.955 | 0.964 0.968
P=4, N=44 [/ 2.779 | 3.345 | 3.679 | 3.812 3.872
P=16, N=88 [5.849 [9.047 | 11.95 | 13.46 15.49
| Ti=512, 7 = 4 |
P=1, N=22 [0.806 | 0.896 | 0.942 | 0.960 0.968
P=4, N=44 [2.168 [2.946 | 3.504 | 3.754 3.872
P=16, N=88 [/ 3.427 [5.839 [8.497 [10.10 11.00
| T{=2048, 7 = 2 l
P=1, N=44 [0.901 [0.953 | 0.978 | 0.987 0.992
P=4, N=88 | 2.834 [3.420 [3.766 | 3.904 3.971
P=16, N=176 || 6.121 [9.694 | 13.09 | 14.91 15.87
Tf= 2048, r = 4
P=1, N=44 [0.825]0.917 [0.965 | 0.983 0.992
P=4, N=88 || 2.205 | 3.006 [3.585 | 3.844 3.971
P=16, N=176 || 3.792 | 6.979 | 11.13 | 14.07 15.87

Let us notice that, except for the case 7 = 4,7 f = 512 and P = 16, the asymptotic performance
is very close to one floating-point multiply-add per cycle per cell.

For r =4, Tf = 512 and P = 16, the performance is limited by the data bandwidth of
the host : 704 = 4*(88+88) cycles are needed to send a column of B and a row of C to the
coprocessor when it generates only (88*88)/16 = 484 multiply-adds on each cell.

6.2 The two-dimensional 5*¥5 convolution

Given a matrix A(N,M), one has to compute the matrix B defined by:
B(n,m) = y_=0r-1 $77=0a-1 w(z,j) * A(n —i,m — 3)

We are able to implement this algorithm on a single OPAC cell without requiring any
extra global memory access from the host memory -i.e. no reusable operand is read more than
one time, no intermediate result is stored back- at the condition that p rows of B + q words
may be stored in the FIFO queue sum.

When it is not the case, we may use block decomposition of the matrix illustrated in
figure 6. Blocks are sequentially computed, frontier rows of A must be emitted twice and some
redundant computations are executed 3.

The same decomposition may be used to execute the algorithm on a multi-cell coprocessor.

3When working on a row of N elements, N-+(p-1) operations are executed for only N useful

19

Figure 6: Block decomposition of the two-dimensional convolution

Block 0 Block 1 Block 2 Block 3

20

The 5*5 two-dimensional convolution requires 1 read and 1 write on the host memory per
25 multiply-adds.

In table 6.2, we give the performance measured by simulations for floating-point co-
processors consisting in 1, 4 and 16 OPAC operators, performance is normalized in useful
multiply-adds per cycle.

Tf 512 512 | 2048 | 2048
T 2 4 2 4
Table 6.2 P=1 0.925 | 0.925 | 0.980 | 0.980
P=4 3.700 | 2.941 | 3.919 | 3.07
P=16 || 5.882 | 2.941 | 5.882 | 2.941

Performance for the 16-cell coprocessor is clearly limited by the memory throughput :
for the two considered sizes of FIFO queue, each block consists in 72 columns (the frontiers
consists in 4 columns on each side) which must be emitted to two different cells : computing a
row on matrix B generates 16*¥72 reads plus 1024 writes on the host memory (i.e. 2176 memory
accesses) and only 64*25 =1600 useful multiply-adds per cell.

For 7 = 4, (resp. 2), it limits the global performance to 2.95 (resp. 5.9) multiply-adds
per cycle. These limits are approximatively reached.

For the 4-cell coprocessor, for 7 = 4, the performance is also limited by the memory
throughput, but when FIFO queue size is 2048 words less memory bandwidth is lost for emitting
frontiers.

In the other cases, performance is limited by the throughput of the floating-point operators
and by the redundant computations which are executed, but the size of the internal FIFO queues
in the OPAC cell is not quite a limiting factor.

6.3 LU factorization

The LU factorization algorithm on an arbitrary size of matrix illustrates the way OPAC may
be used on large matrix algorithms.

The LU factorization of a matrix N*N can be performed on a single OPAC operator
without any extra memory access when the whole matrix can be stored in an internal FIFO
queue of the coprocessor i.e N? < 2048 or N < 45 for our prototype or N2 < 512 for a VLSI
implementation of OPAC. Nevertheless larger LU factorization can be implemented using a
block algorithm. Figure 7 illustrates one of the possible algorithm.

The different steps are :

1. LU factorization of the N/2 *N/2 submatrix A0,0.

2. update of the (N — N/2) * N/2 submatrix A1,0 (resolving (N-N/2) triangular systems
Tz = y with the same matrix T).

21

Figure 7: Recursive LU factorization algorithm

N/2

X

i
9
7
77
77/

%

\ \“\Q\\\\\ \\\ %
MBI

//z

.
%

N2 | | AOO

Al1

N

22

3. update of the N/2x (N — N/2) submatrix A0,1 (multiplication of a triangular matrix by
a full matrix)

4. update of the (N — N/2) x (N — N/2) submatrix Al,1 by Al,1 = Al,1— Al1,0x* A0,1
5. LU factorization of the submatrix Al,1

If A0,0 and A1,1 are still too large to be processed by a single operator, steps 1 and 5 may be
also decomposed in the same way.

Steps 2, 3 and 4 are direct calls to primitives of BLAS level 3 [Do88].

In table 6.3, simulation results are given for matrices N*N for N=44 to N= 704. All
results are normalized in multiply-adds per cycle. The implementation has not been specifically
optimized.

[N] 44] 88] 176] 352] 704]
[Tf= 512, 7 =2]
P=1 [[0.48[0.66 | 0.85]0.95 | 0.96
P=4 [0.89 | 1.67|2.623.37 | 3.60
P=16 [[1.03 [2.31 | 4.41 | 7.27 | 8.89
| Tf= 512, 7 = 4 |
P=1 [0.44[0.62]0.81[0.93 | 0.94
P=4 [0.74 [1.33 | 2.20 | 3.14 | 3.40
Table 6.3 | P=16 || 0.74 | 1.38 | 2.50 | 3.89 | 4.63
| T{=2048, 7 = 2 |
P=1 [0.57]0.65]0.81 [0.94 [0.94
P=4 [0.57[1.33[232[321]345
P=16 |[0.57 | 1.68 | 3.96 | 7.44 | 9.71
Tf= 2048, T = 4
P=1 |/ 0.53 [0.62 | 0.77 | 0.91 | 0.91
P=4 |/ 0.53[1.18 |2.03]2.87|3.19
P=16 || 0.53 | 1.27 [2.59 { 4.72 [6.10

6.4 Synthesis

The results of simulations given in this section indicates that a 4-cell OPAC coprocessor as-
sociated with a standard microprocessor will reach near asymptotic performance on many
algorithms and for medium size of the parameter calls : more than 3 multiply-adds per cycle on
the N*N LU factorization for N=352 or for the 44*100 by 100*44 matrix updating. Influence
of increasing FIFO queue size is quite marginal.

For a 16-cell OPAC coprocessor, performance per cell is worse : large size of the parameters
are needed to approach the asymptotic performance, this is due to higher demand on data

23

and a very important start-up time. The influence of the internal FIFO queue size becomes
important : host memory data throughput becomes the bottleneck for performance when the
Tf=2512and 7 = 4.

Let us notice that the results presented in this section are also valid with little change for
a floating-point coprocessor built with a different basic cell.

7 Conclusion

Current state-of-the-art microprocessors can approach performance of one floating-point mul-
tiply add per cycle on compute-bound primitives. Demand for computing power in array
processing in many application domains are higher.

Asking to the application programmer -which may not be an expert in parallel program-
ming, but in its application domain- to encapsulate the computations in calls to standard
library of low level routines seems realistic. Then compute-bound kernels may be executed in
parallel by a specialized floating-point coprocessor consisting in several floating-point cells : the
programmer does not have to worry about this parallel execution.

The OPAC operator has been designed as the basic cell of such a specialized floating-point
COProcessor.

When defining the OPAC operator, we have tried to design the “minimum” -in terms of
integration complexity- architecture which is able to achieve one floating multiply-add per cycle
and per cell on calls to the most useful compute-bound kernels in a microprocessor environment
with the following constraints :

1. Data exchange bandwidth with the host is very limited

2. Compute-bound kernels are library routines : parameters (and particularly array sizes)
are unknown at compile time

We have pointed out that some dynamically addressable multiport local memory is needed (see
section 4.2). In the OPAC architecture, FIFO queues as dynamically but implicitly addressable
local memory :

e The most useful compute-bound kernels may be mapped on the cell without needing any
non-intrinsic exchange of data with the host.

e No complex address generators are needed : no data path for initializing them, no wide
instruction parcels for control, etc ..

Due to special features in the control of the pipeline and in the sequencing which are
described in [Se91], performance on the OPAC cell is very close to one floating-point multiply-
add per cycle.

Validity of our approach has been checked in section 6 : reaching effective performance
of 10 or even more floating multiply-add per cycle is possible in a microprocessor environment
when using a multi-cell OPAC coprocessor.

24

A prototype of the OPAC operator has been realized with off-the-shelf chips.

Integration of a complete OPAC-like operator on a single chip is envisaged with an indus-
trial partner : it would require approximatively one million transistor when considering FIFO
queues of 512 32 bits words.

References

[An90] E.Anderson & al “LAPACK : A portable linear algebra library for high-performance
computer” Proceedings of Supercomputing '90, New-York, Nov. 1990

[An87] M. Annaratone & al “The Warp Computer: Architecture, Implementation, and Perfor-
mance”, IEEE Transactions On Computers, Dec. 1987

[Ch90] D.Chen “Hierarchical blocking and data flow analysis for numerical linear algebra”
Proceedings of Supercomputing 90, New-York, Nov. 1990

[Ch87] A.T.Chronopoulos, C.W.Gear ”Implementation of s-step methods on parallel vector
machines” Illinois University, 1987

[Co65] J.W. Cooley, J.W.Tukey " An algorithm for the Machine Calculation of Complex Fourier
Series” Mathematics of Computation, April 1965

[Co91] K.Courtel, “Etude et développement d’un coprocesseur de calcul matriciel:OPAC”
Ph.D. Thesis, Université de Rennes I, Jan. 1991

[Do79] J.Dongarra, J.Bunch, C.Moler, G.W.Stewart LINPACK Users’ Guide, SIAM, 1979.

[Do84] J.Dongarra, FG. Gustavson, A.Karp ”Implementing linear algebra algorithms for dense
matrices on a vector pipeline machine” SIAM Review 26.1 (1984) pp. 91-112.

[Do88] J.Dongara, J.DuCroz, I.Duff, S.Hammarling "A set of level 3 Basic Linear Algebra
Subprograms” Argonne Technical Report May 1988.

Ja86] W.Jalby, U.Meier, "Optimizing matrix operations on a parallel multiprocessor with a
p g
memory hierarchy” Proceedings ICPP 1986

[Ku82] H.T. Kung “Why systolic architecture ?” IEEE Computer, Dec. 1982

[0180] D.P.Oleary, "The block conjugate gradient algorithm and related methods” Linear al-
gebra and its application, 29, pp293-322, 1980

[Ph87] B.Philippe ”"An algorithm to improve nearly orthonormal set of vectors on a vector
processor”, SIAM Journal on Algebraic and Discrete Methods, Vol.8, No.3, 1987

[Se91] A.Seznec, K.Courtel “Controlling and sequencing on an heavily pipelined floating-point
operator” INRIA report, Sept. 1991

[Sm82] J. E. Smith, “Decoupled Access/Execute Computer Architectures”, Proceedings of 9th
Annual International Symposium on Computer Architecture, pp 112-119, April 1982

[Sm87] J. E. Smith, “The ZS-1 Central Processor”, Proceedings of 2nd Int’l Conf. on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS-II), Oct
1987. pp 199-204

26

Pl

PI

Pl

Pl

Pl

PI

Pl

Pl

Pl

Pl

Pl

604

605

606

607

608

609

610

611

612

613

614

A GENERAL METHQOD TO DEFINE QUORUMS
Mitchell L. NEILSEN, Masaaki MIZUNO, Michel RAYNAL
Septembre 1991, 20 pages.

OBTENTION DES EQUATIONS DYNAMIQUES D'UN SYSTEME PHYSIQUE
A PARTIR DE SON MODELE BOND GRAPH

Bénédicte EDIBE

Septembre 1991, 26 pages.

CONSTRUCTIVE PROBABILITY AND THE SiGNalea LANGUAGE : BUIL-
DING AND HANDLING RANDOM PROCESSLES VIA PROGRAMMING

Albert BENVENISTE

Septembre 1991, 60 pages.

ABOUT LOGICAL CLOCKS FOR DISTRIBUTED SYSTEMS
Michel RAYNAL
Octobre 1991, 16 pages.

UNE NOUVELLE APPROCHE REALISTE DE SIMULATION D'LECLAIRAGE
DANS UN ENVIRONNEMENT DIFFUS

Eric LANGUENOU, Kadi BOUATOUCH, Picrre TELLIER

Octobre 1991, 70 pages.

INTEGRATION D'UN CORRECTEUR ORTHOGRAPHIQUE DANS L'EDITEUR
STRUCTURE GRIF

Patrice FRISON, Eric PICHERAL, Héléne RICHY

Octobre 1991, 22 pages.

SYNCHRONIZATION AND CONCURRENCY MEASURES FOR DISTRIBUTED
COMPUTATIONS

Michel RAYNAL

Octobre 1991, 20 pages.

MALI v06 - TUTORIAL AND REFERENCE MANUAL
Olivier RIDOUX
Octobre 1991, 86 pages.

SENSITIVITY COMPUTATION IN NETWORK RELIABILITY ANALYSIS
Gerardo RUBINO
Octobre 1991, 38 pages.

OPAC : A FLOATING-POINT COPROCESSOR DEDICATED TO COMPUTE-
BOUND KERNELS

André SEZNEC

Karl COURTEL

Octobre 1991, 28 pages.

CONTROLLING AND SEQUENCING AN HEAVILY PIPELINED FLOATING-
POINT OPERATOR

André SEZNEC

Karl COURTEL

Octobre 1991, 28 pages.

27

Imprimé en France
ar
«I"Institut National de Recherche en Informatique et en Automatique

ISSN 0249 - 6399

