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RESUME

Le probleme de I'optimisation d’un obstacle plongé dans un écoulement régi par les
équations d’Euler est étudié. On s’intéresse particulierement, dans une perspective
d’une méthode de gradient, ala différentiation de la solution de ’écoulement par rap-
port & la forme de ’obstacle. Dans le cas du probléeme continu, on définit formellement
ces dérivées (formule de Hadamard) . Dans le cas discret, on choisit une méthode dé-
centrée avec décomposition de flux différentiable et on montre la faisabilité du calcul
du gradient par une méthode de ’adjoint sur une famille de problémes. Le comporte-
ment des méthodes de gradient est décrit pour le cas d’un écoulement subsonique
dans une tuyere.

ABSTRACT

The optimization of an obstacle shape put into an Euler flow is adressed. In order
to apply a descent method, we consider the differentiation of the flow solution with
respect to the shape. In the continuous case, we formally construct the derivatives
(Hadamard variational formula). In the discrete case, we choose an upwind method
with flux splitting, and we prove that an exact gradient can be computed using adjoint
state. The behavior of a gradient method is studied for a family of nozzle flows.
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1 Introduction

Calculating optimal aerodynamical shape is one among the oldest dreams of ap-
plied mathematicians and physicists, and many well known of them have contributed
to the advancement of this question .

Many researchs were performed through ” Calculus of variations ” towards optimality
conditions (see [1]) but it is clear that now the main point is to handle rather com-
plicated flow models, that do not allow analytical derivations, but, instead, rather
complex computer applications.

Also, many experiments have been performed, with models with increasing complex-
ity, up to full potential flows (sce [5] , [9]). The main difficulty is related to the
important cost of one flow calculation; it’s generally thought that a convenient class
of model is the Reynolds-averaged Navier-Stokes equations, but in this case, a sin-
gle calculation around a complete aircraft is more or less out of reach with today’s
computers. Morcover this cost must be multiplied by the points of design (several
Mach regimes, ...) and the number of cost evaluations performed for optimization.
Conversely choosing a simpler model is a delicate task if we want to be sure that the
apparent improvement of the shape is not invalidated by the coarseness of the model.
We propose in this paper to consider the Euler equations, a medium-complexity model
that has not been much investigated.

We distinguish two approaches for optimization :

either (i) an exact gradient is computed or (ii) only the cost function is calculated
(an approximate gradient is obtained by divided finite differences).

Exact gradient methods are more difficult to construct, programming by hand is quite
complex, by they deliver n informations for one gradient { » : number of control
variables) while methods of type (ii) give one information for one cost calculation
(which, however, can be simplified by a perturbation approach). Another point is
that exact gradient methods might be in the future more easily constructed thanks
to automatical, Fortran writing, symbolic softwares.

In this paper we study an exact gradient approach; since the cost function is real
valued, the chain rule through the state equation is expressed with the help of an
adjoint state.

Some investigations of the adjoint state and Frechet derivatives with respect to shape
are presented first for the continuous system in Section 2.

Then, in Section 3, the method applied for the discrete problem is described.

In the 4** Section this is applied to a set of 2-I) inverse problems.



2 Continuous problem

2.1 Hadamard’s formula

Let ',y be a set of parametrization included in C2([0,2r], IR?) ; at any v in [oq ,
corresponds a regular subdomain €., of IR?, the boundary at which is also denoted

by v .

Figure 1:

We would find W = (W, Wz, Ws, W,) = (p,pu, pv, E) € C}(IR? IR*) such that
for all @ = (1,2, 3, 4) € (HI*(IR?))*

0
S Fo e+ 6wy - [ P | e =0 (1)

0

Where the boundary integral on v stands for a slip condition;
i = (ng,ny) is the unitary outward normal vector on v , P the boundary pressure,
F and G the Euler’s flux functions, given by :

For a perfect gas, P=(w-1)(F- %p(u2 + v?)) where w = z—” is
the ratio of specific heats, and : Y
pu pv
pu? + P pUY
W)= W) = .
F(W) ou G(W) po? 4 P ,
(E+ P)u (E+ P)v

where we use the following notations :
p is the density, u and v are the horizontal and vertical velocity components and
E is the total energy per unit volume.
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We assume the ezistence of a differentiable application W : Ty — C*(IRE, IRY)
such that: )
VyeTag W(y)la, =W solution of (1)

We refer to Annex 1 for a simplified model for which the above statement is rigorously
established.

Then we define :
VT x CPIRY, IRY) — ((HP(IR*))*Y
With :
V7 € l‘ad \I’(’Ya W(7)) =0
We obtain after differentiation :

W v+ o iy =0 2)
v v

If we write explicitly the different terms, we get :
oV dw 9F dW oG dW

—$ = ———07 ¢, dad —¢ dzd

Saw Y //;uavvlzv [ Iy+//n.,3Wd‘y T Py GE4Y

0

_op aw
W dy )
_oP W
VoW dy T

0

But it’s more delicate to differentiate with respect to integral limits, we must use
some ” Continuum Mechanics lemmas ” recalled in Annex 2, and introduce a vector
field describing the change of boundary :



Let V a regular vector field on IR? ; the boundary "y + 89" is obtained by
convention as the set of points M : M = {N + V(N).6y, N ev}.

P(N)

7+ 67

Figure 2: boundary parametrization

Let us write W¥(y,W(y) under the form : // C(v) dzdy ;
Q,

using Stokes formula we have:

Lanmdo—/ ( Pe2 ) "da—//n dw( ¥z )d:z:d —/ (-——-992+P—)d:z:dy

Where P is any extension of P on Q.

In the same way :
/ Pn, o3 do = / (-——(,93 + P )dxdy
Then :

av

d
=5 =4 F(W)gz + G(W)p, — dzdy 6
<a7 Y, > dy/n,[ (W)ez + G(W)e, ] dzdy 6~

T
Q  Ad
&K W o

o

\
H»K A o
e

\ o \ o )

And using ” Continuum Mechanics Lemma 1 ”, we obtain :
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oV _
<G bne > = /(1«‘(W) or + GW) @) <@,V > 6y do
Yy

0 0
arP Jyp2
3 Dz .
—/( ¢ — P ) < #,V > §ydo (4)
¥ orP w3
dy By
0 0

Finally, the variations of the flow variables when the shape is changed are described

by the following system :

1% W
I 5o e dedy + I3 S O v ¢y dady =

oW dy
0
P
3wl | aw -
/ Y by pdo — /(F(W) 0s + G(W) ) <,V >6ydo  (5)
¥ 3P dy v
W Ny
0
0 0
3P oy,
3z ¥ -
+/( o — P ) <7,V > évdo
P 3
T ow 7]
0 0
apP
Wi _ _ :
ith W = (w—1)(u? + 0%, —u,~v,1) ;
aF  aG

are diagonalisable and their cigenvalues are : (u, u, u+c, u—c).

oW’ oW



2.2 Gradient of a functional

We define two functionals  J : IggxC?(IR?*, IR*) — IR and j:Toq — IR such that

VyeTay j(v)=Jd(,W(7))

Let év an element of I'y; , we have :

dj aJ aJ dw
(—5(7) by = 3_7(7’ ) 67+ < o (1, W) ,77—(7) 5y >

Where <, > represents the duality between (C2(IR?,IR*)) and C2(IR?,IRY).
Using the dxﬂerentldtlon of W(y,W(v)) we get:

Gor=2awyen - < 2wy, (or,w) o, w) 1>
or :
Gmor=Liwyor- < (Gemw) ) g W), 22, w) 6 >
where the star holds for the adjoint operator; so in conclusion :
L) by = g Whsr- <TG, W) 87 > (6)
i (w2 8
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2.3 An example

Let us consider the following functional :

. 1
VyeTaa, j(v) =5l 2(7) - zallz2 (qy)

Where 2(7v) is a solution of (1) , and 24 ¢ L?(Qp), with €y equal to a fixed open
set such that Vy e Lgg Qo C Q4.

In order to obtain the adjoint state for this particular functional, we shall develop the
equation (7) .
Let ¢ an element of C2(1122,112") , we have :

oV . oV
< (W(7’Z) L >=< H,W(%Z) 0>

I € ((H2(IR?))*Y”, which is isomorph to (H2(IR2))* ; to II corresponds an element
7 of (H?*(IR*))*.
Then the adjoint state equation can be written as :

< ov ) oe aJ (7,2)

w12 @, T >=<gun(r,2), 0 >
Where:
<9709 >—// (2(7) = 24) - o dzd
ow Y y P o= Q% v d) - ¥ Y

So, if we note the scalar product of IR* by <, > , we have for all
v e C*(IR?, IR) :

// << p—— s >> l << ' n >> d l -
T ]
a”ywﬁ 0 (p y z (y

w
0
nel o
// K 2(7)—z4, > drdy + < , ™ > do (8)
Q0 Ny n. OP
vow - ¥

Let ¢ such that ¢|sn, =0, we obtain :

oOF . G ..
//Q <<<p,(W) 7rx+(5-v7) Ty > dz dy —//(;0 Kz(y)—24, 9> dzdy=0

5

~1



Since this relation is verified by all test functions equals to zero on 9, , we have:

oF oG |, .
() ™=+ (G7) 1y = xao(2(7) = 2a)  in Oy

So if we return to the equation (8), only the term of the boundary integral appears,
that we can write as:

0 0 0 0

s aP1 ns aP2 ne aP3 ne adP.
/ <K Ap,m >do = 0 with A =

an aP P el P
7 yaw, Twaw, Tyaws Tvaw,

0 0 0 0

Using the adjoint of A:

I

aopP
el =0
/an < @, (ngme + ny1r3)3w > do

5

/ <, A't > do
aQ,,

OP ~ P
Therefore (n;m; + nwr;,)m = 0, and since W
4

dependent of P, we obtain finally on 92, the following slip condition :

= w — 1 1is constant, in-

ngTy + nym3 =0

In conclusion, for this problem we have the following adjoint system :

m(v) € H2(I*))*

oF ., G ., .
(577)= + (G)"my = X0, (2(1) = 24) in Q,

(‘M) .1=0 on 99,
\ 3

Where xgq, is the characteristic function of .

(9)




Under the differentiability assumptious of Section 2.1 , the Gateaux-derivative of
Jj at 7yo and in the @ direction is given by :

3'(70,6) = —/ (FW)r, + GW)7,) <@,V >8do

Yo

*

§13

s

0

(o))
g3

QO
<@ |3

) <@,V > 6do

(10)



3 Discrete problem

3.1 Geometrical data

We consider a nozzle having the following characteristics :

x varies between —2. and 4., it is convergent-divergent with symmetry with respect
to z=1.

The bottom shape is a straight segment .

Height is 0.5 for z in[—2.,0.] U [2., 4.], and on the part to optimize, i.e for
z in [ 0., 2.], height is a variable curve (see Figure 3).

0.5

1
1
[
i
!
1
1

[
!
[
1

-2 -1 0 1 2 3

Figure 3: sketch of the computational domain

We have a triangular mesh where the abscissae are fixed and the ordinates change
only for zin[0., 2.].

We use then a “concertina like” mesh, i.e :

Let m the number of points in ordinates; if we note y;(z) the ordinate of the ith
mesh node which has z for abscissa, we have the relation :

Forall iin{1, ..., m], y(z)= ;1(8))) Ym(2)

So the position of each node depends simply on { ym(z) /z€[0., 2.] }.
(We give in Figure 18 and 19 two examples of this type of mesh).

3.2 Numerical approximation for Euler’s equations

We use a triangular upwind finite volume formulation , for each vertex : we have:

UEuer (W) = Z @(W{;,I/V;},/ fido) + Boundary conditions
jen(d) 8Cy

Where k(2) is the set of neightboring nodes of ¢, JC;; the intersection between

cell’ s boundary of 7 and j, #i the outward normal vector on 8C;, ¥ a numerical

flux function . We choose for ¥ the Van Leer flux function which is differentiable.

10



Therefore for solving the discrete system for the Euler steady equations, we use an
implicit linearized time advancing iteration :

(i LU W)W = B (11)

( We recall that when At is arbitrarily large, this is like a Newton method ).
Where ¥ (W") is computed without approximation.

3.3 Gradient’s computation

The parameters of optimization are the ordinates at some boundary nodes,

¥ = (11, s N)- We construct a “concertina like” mesh, in such a way that the mesh’s
deformation is an ordinate change and depends only on the control «.

Let 7: IR" — IR the cost functional, and J : IR' x IR"™ — IR , where ! is the
control parameters number and m the nodes number of the mesh. We have :

i(¥) = J(v,W(7)) Vye R

Computing a Frechet derivative with respect to the shape, as in the continuous ap-
proach , we obtain here :

aj aJ ov
Véy e IR <2 gy >=< 76fy>—<II —by >

oy’ T Oy
av aJ
With 1T, the adjoint state, defined by (W)'H = oW
;.  OJ aJ
Where < , > 1is a scalar product, % " 5y are vectors of IR' W M a

1\
vector of R'™ | % a matrix of My, ;(IR) and % a matrix of Mym 4m(IR) .

ov . .
— has been computed at the same time as the flux ¥, i.e. when we compute

dy
W(y) . We have now to look at the computation of the others terms.

Cost functional and its derivatives

To resolve an inverse problem we define j by : 7= / (P - Pd)2d0 where P? is
r

the desired pressure

T o) RUEYE LS o) MUy YT

Using trapezoidal formula we obtain :

1 B ) )
=52 IR 1 (Pir - PED + (P - PHY

11



Where 7; , the normal vector on I';, is the only variable which depends explicitly of
Y so:

1< 2 2.0 7 ||
o9 _ 2 _ pd 5 _ pdyH LT
a% 2; = Pha) 4 (B = P =5

1 i
If we notice that : G; = 5((1’,~+1 - P,~d+1)2 + (P - P )(J—ﬁl:'n‘—)
aJ "
we have finally =Gr_1 — Gi .
e

To differentiate with respect to geometry variables, we split J in the following way :

n+1

lenzllP P 4 < lem—ln(P Py

Let ag = any1 =0 and a; =|| 7 || for i =1,..,n, we can write then :

n+1

12((l,+a, (P — Py?

=1

And finally after derivation :

aJ n+1 4 OI);
W Z(ax'{"a; 1)(Pi - P )_8Wk

Adjoint state
To obtain the adjoint state, we have to solve a linear system :

aJ
Al = W with A, = (¥/(W™))*
Where A, , a matrix of Mym am(IR) , seems to be very costly.
But ¥/(W™) has been already computed in our Euler equations resolution , when
we use the unsteady implicit linearized time stepping (see in Section 3.2)
So A, can be deduced directly from equation 11 without any additional calculation.

Optimization chart

We present now a sketch of the gradient calculation and the optimization algorithm,
first for a simple gradient (Figure 4) and next for a conjugate gradient with an one-
dimensional minimization (Figure 5).

12



Initialisation

new concertina

mesh

V(7,W(r))=0
Fxplicit part :
ov
Y
Implicit part :

av
(57)

k]

Resolution of steady Euler
equations with an unsteady

implicit time stepping

J(v, W(7))

COST FUNCTION

aJ aJ
dy oW
Adjoint state :

oy aJ
Gw) = 3w

GRADIENT

n

¥ +1 =‘Y"—pg7‘(ld7j

Figure 4: Simple gradient
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Initialisation

new concertina

mesh

COST

Find :

W(y), J(.W(7))

ov ((’)‘I’)
oy ' oW

Resolution of steady Euler
equations with an unsteady

implicit time stepping

4

dy

ov
Y= —b0y— <II,—

aJ  aJ

oy ' oW
Adjoint state :

ov . _or

aw’ T ow

aJ
oy Iy

by >

GRADIENT

Conjugate

I

1-D Minimization

COST

n

Y =9" ~ pgrad, j

Figure 5: Conjugate gradient
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4 Numerical experiments

We present a set of academical experiments referred as”

inverse problem solutions ”.
In all these numerical experiments the flow is subsonic with a farfield mach num-
ber equal to .2 .

In the sequel the exact gradient is used inside a Polak-Ribiere conjugate gradient in
which an one-dimensional minimization is performed by dichotomy, completed by a
final parabolic interpolation; generally, a conjugate gradient iteration calls about 5
times the cost function.

(We present in Figure 17 a comparison between simple and conjugate gradient con-
vergence for the test case 3).

4.1 Experiment chart

In a so-called ”inverse problem solution”, an ideal geometry <4 is first choosen and
the discrete flow is computed to construct the cost functional so that for 44, the cost
is minimum and equal to zero.

Then an initial geometry (different from the ideal one) is choosen and optimization
is started from this initial geometry with the above cost function. The purpose is to
measure the ability of the minimization algorithm to find the ideal geometry.

4.2 Validation : comparison with divided differences

To validate the exact gradient computation, we compare it with an approximate gradi-
iy +6v) - i(v)

Il 67 |l
of j with respect to ¥ when the shape perturbation év is small enough .

Let e; be the k** canonical base vector of IR, and ¢ a real number, then eey
represents a perturbation of the k** control parameter .

ent; indeed the divided finite differences

approach the G-derivative

Py
So for each k ¢ [1,..,{] and for different values of ¢ we compute 6F = 8_] and

] ) Yk
sk — Iy +eex) = 3(v)
2 = . -

We consider the same configuration as in test case 1 (see Section 4.3) where the

direct and adjoint systems are always solved up to the machine double precision ac-

curacy. And also we achieve a complete convergence of the Euler equations and a

good resolution of the differents lincar systems (i.e. with a lot of iterations of Jacobi

)- The results are presented, for six different values of & (k = 1,3,6,9,12,16), in
k k

L_k—l) as a function of Log(e) :

Figure 6 in which is sketched Log( 5
1

15



65 — gk
Log( -2 1
9( 5t

)

Log(e)

Figure 6: Accuracy of divised difference for different components of the control variable

6 - &

&t
on ¢ ) except when ¢ is too small, because of round-off errors .
So we can deduce that to use correctly the divided differences we have to choose a
good value of ¢, neither too small nor too large .

We observe a good accordance between 65 and 65 ( depends linearly

4.3 Sensitivity to shape

We consider the two following shapes :

19 1 . 1
7 : y(z) = YTl 3'65”1(7'(1 + 5))

The corresponding flow for v; is presented (Mach contours) in Figure 7 for a mesh
of 423 nodes (31 control parameters)

1 9 1
For 0<z< 5 y(z) = 6 Ecos(?w:)

: 1 27 5
1y For —<z<1 y(x)=6x3——?x2+9x—‘-{

Por 1<2<2 ylz)=y(2-12)

The flow for v, is presented in Figure 8 (for also a 423-node mesh).

Test case 1 :

16



In a first experiment, the functional has shape v; as optimum and the initial shape
is choosen equal to v, _

Then a good convergence to the above optimum is observed in both cost magnitude
(reduced by 10 orders of magnitude after 260 conjugate gradient steps) and in gradient
norm (reduced by about 6 orders of magnitude at the same time); the corresponding
shapes are given in Figure 9 . ‘

Test case 2 :

If, conversely, 72 is the optimum and =, the initial shape, the convergence is slowen-
ing after about 40 iterations and the problem becomes very stiff, hardly moving from

a configuration (Figure 10) that is not a local minimum, as is observed from the

gradient norm behaviour.

But, if now we increase the accuracy for the resolution of direct and adjoint linear

system (in fact we do five times more Jacobi relaxations) we obtain a good conver-

gence represented in Figure 12. The corresponding shapes of both cases are given

respectively in Figure 11 and in Figure 13.

4.4 Sensitivity to mesh size

For this study, we choose a test case of medium stiffness, intermediate between test
case 1 and test case 2 :

Test case 3 : .
With the same 423-nodes mesh family, we consider the following optimum shape :

3 1 . 1
130 y(@)= o+ gsin(n(z + 2))

For this case the amplitude is 5 times larger than for 4, but now we start from the
following constant shape :
) 1

RCI y(z) = 5
We observe from the convergence curves of both cost (Figure 14) and gradient (Figure
15) some stiffness: in fact, between iteration 20 and 80, convergence is much slower;
then we get a new acceleration that, on our opinion, is provided by conjugaison of the
descent directions.
Finally, a convergence of 8 orders of magnitude for cost (4 for gradient) is obtained
after 260 conjugate-gradient iterations; we give in Figure 16 a set of five caracteristic
iterate shapes.

17



Test case 4 :

The only change from the previous test case is taking a finer mesh, with 994 nodes (47
control variables). The two mesh are given in Figure 18 and 19 . Here, like in the test
case 2, we are obliged to increase the accuracy of system resolution and, in spite of
that, the convergence is rather slow: we can sce on Figure21 a comparison between the
convergence history for the finer mesh and the precedent one (the computation is made
here with the same number of Jacobi relaxation). On the solution presented in Figure
20 a high frequence appear in the first iteration and then disappears with difficulty;
an explanation is that in our numerical scheme, the normal to boundary used for
moment pressure fluxes is computed as the geometrical average of the normals to the
two boundary edges of a boundary vertex; whether this problem would disappear if
a cell-centered finite-volume scheme were applied is an open question.

18



Figure 7: Shape 7, (Mach contour)

Desired ——
shape

Initial —-=-
shape

Shape after

n iterations :
20 ---

40

60 -

80 —--

Figure 9: Test case 1 : Shape 40 iterations by 40 iterations
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Log[ COST FUNCTION |

1 T T T T T T T T T

s 10 15 20 25 30 35 40 a5
ITERATIONS
Figure 10: Test case 2 (few Jacobi relaxations): convergence history
T T T T Ll T 0.65
Desired —
shape
0.6
Initial -—--—-
shape
0.55
Shape after
n iterations : 0.5
1 -
10 meeee 0.45
20 —--
0.4
0 ---
0.35
0.3
0.25
1 L 1 1 1 '\ 0.2

10 15 20 25 30 35 40

Figure 11: Test case 2 (few Jacobi relaxations): Successive shapes
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Log{ COST FUNCTION |

20 40 60 80 100 120 140 160

Figure 12: Test case 2 : convergence history

Desired —
shape

Initial —---
shape

Shgpe af?er

n iterations :
20 ~--

40 -e-ee

60 —--

80 —--

Figure 13: Test case 2 : Successive shapes
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Log{ COST FUNCTION |

1 T T T T T

0 150 200 250
>0 100 ITERATIONS

Figure 14: Test case 3 : convergence history

Log( GRADIENT ]

1.5 T T T T T

50 100 150 200 250
ITERATIONS

Figure 15: Test case 3 : Gradient
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Desired —

shape

Initial -—-—-

shape

Shape after

n iterations :

0 ---

10

Figure 16: Test case 3 : Shape 40 iterations by 40 iterations

Log{ COST FUNCTION |

GRADIENT :

CONJUGATE :

SIMPLE :

1

16

30

35

40

100

ITERATIONS

Figure 17: Test case 3: convergence history for simple and conjugate gradient
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Figure 18: Mesh : 423-nodes

.......

Figure 19: Mesh : 994-nodes
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Desired — A
shape /

Initial -—--—-
shape

Shape after
n iteratlions :

15 20 25 30 35 40 45 50 S5 60

Figure 20: Test case 4 : Successives shapes

Log[ COST FUNCTION )]

1 T T T T L4

MESH 994-nodes :

50 100 150 200 250

ITERATIONS

Figure 21: Test case 4 : convergence history



4.5 Some statistics

During all these calculations, the flow (direct system) was solved up to 4 decades in
about 11 implicit time-iterations, cach time-iteration involving about 20 linear Jacobi
relaxations for test cases 1 and 3 and about 100 linear Jacobi relaxations for test
cases 2 and 4. The adjoint system was solved by applying about the same accuracy as
direct system. The rest of the optimization process, including computation of deriva-
tives took less that 5 percent of the overall CPU cost, also when we use not many
Jacobi relaxations.

On the finer mesh (for test case 4), one flow was computed in 70 seconds and one con-
jugate gradient iteration, involving about 4 cost evaluations took about 300 seconds
on a SUN 4/40, without a complete vector optimization.

5 Concluding remarks

The smooth dependence of a mathematical flow model on the obstacle shape has been
more or less intuitively recognized for many decades. We have exhibited formally its
first variation with respect to the shape. We have also demonstrated that a numerical
Euler model could be exactly differentiated with respect to the shape. In particular,
with an upwind formulation, the adjoint state system is observed to be well-posed
and easily solved by Jacobi relaxation,

We have presented several experiments for which the conjugate gradient method is a
fully convergent (near double precision zero) optimization algorithm.

We have also described several cases for which the convergence is more difficult. It is
then necessary to ensure that iterative solvers are enough converged, it is also clear
that these problems are related to the rather non-smooth behaviour of the Euler
system (singularity in solutions, non uniqueness when separation occurs). This non-
smoothiness can be further excited by the lower sensitivity of the numerical scheme
chosen to high frequencies in the shape representation.

For less academical optimizations, it is necessary to update the present formulation to
second-order spatial accuracy ; we think it is possible if a MUSCL formulation with
smooth limiters is applicd (see [8]); but doing this without an automated differentiator
can be rather tedious.

Another critical point is the extension to non-structured mesh for handling complex
geometries; it is in fact essentially done in our experimental computer program since
most calculation are done element by clement; only the mesh parametrization relies
on the ¢ — j structure. We turn finally to the two main questions.

Firstly the present optimization process fails for many cases so that it can be used
(without improvement) only for optimization with small variations of the shape; now
it can be already useful in this restricted context.

Secondly, even when it works, convergence is still too expensive, since tens or hundreds
flows are computed during the process. For both questions, we think that important
improvements could be brought by the use of a set of adequate parametrizations of
the shape, a topic that we are now investigating (see [11]) .
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A Annex 1 : existence of a differentiable prolongation

We consider the parametrization (v, 'qq) introduced in Section 2.1.
Lemma :

Let us assume that Toq is a subset of C3(IR?,IRY) and let z, be the solution of the
Dirichlet problem :

Az, =1 on

(12)
2, =0 on 99,

then there czists a differentiable application z : Thq — C*(IR?,IR) such that
Vv € Taa, 2(7)la, = 2y solution of (12)

Sketch of proof (a detailed proof is given in [6]) :

In a first step, we introduce a mapping M, from ., onto a fixed regular domain
Q of R? ; then system (12) can be mapped onto  and its solution 2(y) = 2, 0 M!
is a differentiable application from I'gy to Cm(lRQ, ) .

Then % is extended to IR* by using a linear extension operator P (extension by
reflections, cf for example [2]) ; then PZ is again a differentiable application from
I,y to C™(IR%,IR) .

Finaly we consider :

()= (Pzy oM7) o M,y;
Then z fulfils (12)
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B Annex 2 : continuum mechanics lemmas

We express here classical and less classical derivative lemmas in Continuum Mechan-
ics. The proofs are given in [4].

Let © a regular domain such that forall @, Q, C © ¢ R*
and C a diffcrentiable application : © x CY99) — C*©) with [ > 1.

Lemma 1:

d

ac
2 ¢ d-.é:/—— 6vd /c <nV>éyd
d‘r[n, (7) dz] . &y A 07(7) 'rvc+1 (r)<n v do

5

Where n is the unitary outward normal vector on v and
V a regular vector field (see Section 2.1, Figure 1).

Lemma 2:

d ac

————[/ C(v) do] . &v :/— .67da+/< grad;C,n> + H C <n,V > éydo
d’)’ Qy Y 87 ¥

Where H represents the curvature of v

Using Lemma 1 and Green formula :

Lemma 3:

Yo e C'(0)

d aC(v) _/ Jg oc
d'y[/y(p o do]. by = .,('9071[07 .6y do

+ /[ < grad, C,grad, o > + o A C] < n,V > bydo
-
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C Annex 3 : a pseudo second order accuracy

Updating our first-order spatial accurate approximation to a second order formula-
tion might be a rather tedious task; we can consider, first, an other alternative; i.c.
use a mixed formulation, doing a sccond-order computation for the solution of Euler
equations and a first-order calculation for the different derivatives and the adjoint
state.

For the test case 3, we have compared at the first iteration, the first order gradient
(obtained by differences divided and by adjoint method), the second order divided
differences gradient and the gradient obtained with the precedent method. For the
divided finite differcnces, we have choose the optimum value found in the Section 4.2
(e = 1078), we can sce on the following figure the differents gradients in function of
the abscissa.

First-order :

divided finite
differences

Adioint method

Second-order :

divided finite
differences

Adjoint method

1 1 1 1 1 1 L 1 1 -2

Figure 22: Comparison between the different gradients

We can notice first that we cannot distinguish the two first-order gradient but the
pseudo second-order gradient is quite different from the second-order divided differ-
ences and not better than the first-order one; it might be even more clever to use the
fully first-order gradient for a second-order optimization.

29



Acknowledgements

This programme was supported by Brite Euram 1082 Contract (Optimum Design
in Aerodynamics) . We thank our colleagues L. Fezoui and H. Steve for yielding their
implicit Euler finite-element code .

References

(1]

(2)

3]

[4]

(8]

(6]

(7]

(8]

&)

(10]

[11]

J. HADAMARD “Mémoires sur le probléme d’analyse relatif a I’équilibre des plaques élastiques
encastrées (1908) ”, ceuvre de Jacqu:s Hadamard, C.N.R.S., Paris, 1968

J.L. LIONS “Problémes aux limites dans les équations aur dérivées partielles”, Les Presses de
I’Université de Montréal (1962)

B. PALMERIO, A. DERVIEUX “Une formule de Hadamard dans des problémes d’identification
de domaines”,C.R Acad. Sci. Paris Série A |, 1975

F. MURAT, J. SIMON “ Sur le contréle par un domaine géométrigue”, Laboratoire d’Analyse
Numérique, Université Paris VI, 1976

M.O. BRISTEAU “ Application of a Finite Element Method to Transonic Flow Problems using
an Optimal Control Approach ”, Von K{arman Institute for Fluid Dynamics Rhodes-Saint-Genése
(Belgium), Lecture Series 1978 - 4

A. DERVIEUX “Perturbation des équations d’équilibre d’un plasma confiné : comportement de
la frontiére libre, étude des branches de solutions”, Rapport de Recherche INRIA No 18 , Mai
1980

J. CEA “ Numerical Methods of Shape Optimal Design”, Optimization of Distributed Parameter
Structures (Eds E.J. Haug and J. Cea) Sijthoff & Noordhoff, Alphen aan den Rijn, Netherlands,
1981

L. FEZOUI, B. STOUFFLET “A class of implicit upwind schemes for Euler simulations with
unstructured meshes”, INRIA Research Report No 517 , April 1986

A. JAMESON “ Aerodynamic design via control theory. ”, Report 1824 MAE, Princeton Uni-
versity (USA), May 1988

O. PIRONNEAU A. VOSSINIS “Comparison of some optimization algorithms for optimum
shape design in aerodynamics ”, INRIA Research Report No 1392 , February 1991

F. BEUX A. DERVIEUX “Hicrarchical shape optimization”, In preparation

Imprimé en France
ar

I'Institut National de Recherche en Informatique et en Automatique.



ISSN 0249 - 6399



