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Abstract

Time and message complexities are the usual measures used to char-
aclerize distributed computations. lowever, these measures only address
quantitative aspects of the computation. Very little work has been devoted
to defining more qualitative measures, such as the parallelism and the con-
currency inherent in such computations.

This paper presents some qualitative mmeasures from a synchronization
point of view. These measures ave hased on the set of events that partici-
pate in the production of a given event (or of the whole computation). Such
an approach allows us 1o precisely characterize the synchronization con-
straints inherent within a distributed computation, without being bothered
by the perturbations cansed by a given implementation. First, we intro-
duce two abstractions, called cone and cylinder, associated with an event
and a whole distributed computation. respectively.  Then, the proposed
concurrency measnres are based on the analvsis of these two abstractions.

A simple way to compute the measares at run-time is proposed. This im-
plementation relies on two tvpes ol vector clocks that memorize the history
of the computation, including the events produced and the synchronization
delays. These measures can be very easily included in any system whose
aim is to analyze distributed exeentions.
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MESURES DE LA CONCURRENCE ET DE LA SYNCHRONISATION
POUR LES EXECUTIONS REPARTIES.

M. Raynal, M. Mizuno, M.L. Neilsen

Les complexites en temps et en nombre de messages sont les 2 mesures
habituellement utilisees pour caracteriser les executions reparties. L’ incon-
nient de ces mesures est de se limiter a des aspects purement quantitatifs,

Tres peu de travaux ont en effet aborde la definition de mesures plus qualita-
tives prenant en compte la concurrence ou le parallelisme inherent a une
execution repartie,

Cet article presente des mesures qualitatives du point de vue de la synchro-
nisation. Ces mesures sont basees sur 1’ ensemble des evenements qui participent
a la production d’ un evenement donne. Une telle approche permet de caracteriser
la synchronisation presente dans un calcul reparti, sans etre gene par les
perturbations possibles dues a 1’ implementation. Pour cela deux abstractions
sont introduites associees respectivement a un evenement et au calcul en entier;
le cone et le cylindre. Les mesures sont ensuite definies a 1 aide de ces
abstractions.

Une mise en oeuvre simple de ces mesures, a l'execution, est proposee. Celle-ci
s’appuie sur 2 types de vecteurs d’ horloges logiques qui memorisent 1’ histoire
du calcul et prennent en compte a la fois les evenements produits et les delais
dus a la synchronisation.



Keywords: Asynchronous model, cansality, concurrency, distributed com-
putations, distributed systems. logical clock, measures, synchronization de-
lay, vector clock.

1 Introduction

Time and space complexities are the quantitative measures generally used to char-
acterize the efficiency of sequential algorithms and programs. In the field of par-
allel applications, numerical computations in particular, the notion of “speed-up”
has been introduced to obtain some measures about performance gain obtained by
the parallelism with respect to the best possible sequential algorithm which solves
the same problem; such a measure takes into account the number of processors
running the parallel program [2].

In the field of distributed algorithins and programs (by distributed we mean
that there is no global memory and that all interactions between processes are by
message exchange), the maximal number of messages and the computation time
are the two measures usually encountered in the literature to characterize effi-
ciency. Although these measures are interesting, they are quantitative and do not
answer more qualitative questions such as whether the execution is well distributed
and whether the execution has many waiting delays due to synchronization con-
straints. The aim of this paper is to present concurrency measures which answer
these questions and are easily computed and well-suited for distributed compu-
tations. These measures, along with traditional quantitative measures such as
message complexities, provide a better characterization of a distributed computa-
tion.

The organization of the paper is as follows: Section 2 provides an overview
of the model of distributed computation. called an asynchronous model. which
we use as the basis of our concurrency measures. Our concurrency measures
are presented in Section 3. These measures are based on very simple notions,
namely the causality cone associated with an event and the cylinder associated
with an entire computation. Section 4 shows how these measures are computed
by using logical clocks and vector clocks managed by processes and piggybacked
by messages. Other additional measures are described in Section 5; they allow
us to refine and to complete the preceding measures. Finally, Section 6 presents
some other measures which have been proposed by other authors to answer the
same types of questions.
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2 Distributed Computation

2.1 Model of computation

A distributed program consists of a set of N processes {Py, P,,---, Py} which
cooperate to achieve a common goal. There is no global physical clock; that is,
the system model is asynchronous. Processes must exchange messages to com-
municate and synchronize with each other. The underlying message passing sys-
tem provides asynchronous communication and is assumed to be reliable; that is,
there is no message loss or duplication, and no erroneous modification of messages.
Communication delays are finite, but unpredictable.

Each process performs a sequence of actions which are modeled as a sequence
of totally ordered events. The definition of an event is generally bound to the
granularity of the actions it models. Since we are not interested in defining such
granularity, we use a very broad definition of an event. Iivents are classified into
the following three types:

1. internal event: Such an event models the execution of an action or a sequence
of actions; these actions must not include send or receive operations.

o

send event: Such an event models a sequence of actions beginning or ending
with a send operation: these actions must not include a receive operation.
In other words, a send event is associated with the execution of each send
operatioll.

3. receive event: Such an event models a sequence of actions beginning or
ending with a receive operation, and not including a send operation. As
with a send event, a receive event is associated with the execution of each
receive operation.

As we can see, send and receive operations define “cutting points” that always
separate events. The definitions of internal events and the “size™ of the events in
terms of the number of operations executed are of no concern here; this definition
allows for more flexibility. At the lowest level. the execution of each operation can
be modeled by an event.

Lamport has shown that such distributed asynchronous executions can be
characterized by a partial order relation on the events produced; this relation
called the causality relation (or happened before relation) and denoted by <, is
defined in the following way [8]. Let E be a set of events produced by the execution
of a distributed program. For e¢.¢’ € E. ¢ < ¢’ holds if

1. e and ¢’ are events in the same process and e precedes €',

2. e is a send event and €’ is the corresponding receive event, or
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3. there exists ¢ such that e < ¢ and ¢ < ¢,

Two events ¢ and ¢’ are said to be causally velated if ¢ < € or ¢ < e holds.
If neither ¢ < ¢’ nor ¢ < e holds. these events are concurrent (or mutually
independent), denoted by e || ¢'; that is. =({e < ¢') V (¢! < €)). Let e;,eq,--+, €
be a sequence of events such that ¢; < ¢;4; for | <2 < k — 1. Such a sequence
is called a causal path from event e; to event e,. Since the details of each event
are unknown, we consider that all the events e such that e < e’ are necessary to
produce ¢’. A computation, C, is a sct of partially ordered events produced by N
cooperating processes.

A computation may be graphically displayed in a space-time diagram, such
as the one shown in Figure 1. In the figure, e;2, €14, €23,€36, and ez are send
events, and €39, €25, €35, €13, and €5 are the associated receive events, respec-
tively. Other events are internal events. There are many events which are con-
current. For example, events e, and e, are concurrent events. Events e,
and e; 4 are causally related, and the longest causal path from ez, to e,4 is

€22, €23,€35,€36,€1,3.€14.

€1.1 €1,2 €13 €14 €15
P, * ® « >
1 2 8 9 10
€21 €22 €23 €24 €25
P —o L <« N —-
1 2 3 4 10
€31 \€32€33 €34 €35 /€36 €3,7
P - ° S ° * < & —
1 3 4 5 6 7 8

Figure 1. Computation C)

2.2 Lamport’s logical clock

Lamport presented a function ¢, called a logical clock, which maps a set of events
E to a partially ordered set T [8]. Formally, ¢: £ — T such that e < ¢’ = ¢(e) <
c(€’). Assume that T is the set of natural numbers, which is a partially ordered
set. Then, the logical clock may be implemented by a set of counters, each of
which is maintained by a diflerent process in the system. Let ¢; denote a counter
maintained by process P;. Each process P, performs the following protocol:

1. When P; executes an internal event. the clock value ¢; is advanced by setting
ci:=c +d(d>0).
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2. When P; executes a send event, the clock value ¢; is advanced by setting
¢ = ¢i +d(d > 0). The message carries the updated c¢; value as the
timestamp.

3. When P; execute a receive event, where a message contains timestamp ts,
the clock is advanced by setting ¢; := max (¢;, ts) + d(d > 0).

The value d represents the duration of the corresponding operation. In Figure 1,
the number attached to each event represents the associated logical clock value
c;, assuming d = 1.

Note that this logical clock mechanism implicitly assumes that there are no
delays when a message is transmitted. Logical time progresses as though message
passing takes place instantaneously. It is possible to modify the third rule in the
above protocol to account for logical communication delays (measured in logical
time units). Let d. be the communication delay. then the clock is advanced in
rule 3 by setting ¢; := maz (¢;,ts + d.) + d.

Let ¢, be the logical time value associated with any event e, and let d = 1.
Then, (c.—1) events precede ¢ on the longest causal path ending at e; this number
is called the height of event ¢, denoted height(¢). This means that no less than
(ce — 1) events have been executed sequentially before event e, regardless of the
processes that have produced these events. This notion of height will be used
in Section 4.3, when we discuss synchronization and concurrency measures. For
example, in Figure 1, since the logical clock value associated with event € 3 is 8,
there are no less than 7 events which have been executed sequentially before the
event.

3 Concurrency Measures

Any analysis technique should be independent of real time effects, such as system
load and processor speed. To be independent of any particular machine executing
the distributed program, we assume that message passing is instantaneous and
that each event consumes approximately the same amount of computing time,
called time unit. Since the definition of events is flexible, the later assumption
may be achieved by adjusting the granularity of events. Such an approach allows
us to precisely characterize the synchronization constraints inherent within a dis-
tributed computation, without being hothered by the perturbations caused by a
given implementation.

In this model, the execution time. based on time units, may be computed
using logical time described in Section 2.2 by assigning 1 to d. In the rest of the
paper, the “logical time” of event ¢ refers to the value c.. Furthermore, we draw
a space-time diagram by aligning all events which are given the same logical time



in the same column, as shown in [igure 2. Then, an event diagram for a given

computation C is uniquely drawn.
1 2 3 4 5 6 7 8 9 10

€11 €12 €13 €14 €15

P

€32 €34 €35 €36 €37

Figure 2. Computation C,

3.1 Synchronization delay

The purpose of our concurrency measures is to quantify the total amount of syn-
chronization delay within a computation. Consider computation C; shown in
Figure 2. Process P, executes an internal event at logical time 1 (e;,;) and then
a send event at logical time 2 (e;1). The next event that the process P, executes
is a receive event, €; 3. However, since the corresponding send event e3¢ does not
occur until logical time 7, ey 3 occurs at logical time 8. During the period between
logical time 3 and logical time 7. Process P; has no internal or send event to
perform and simply waits to receive the message from Process P;. Thus, we may
conclude that process P, has wasted 5 time units due to synchronization delay,
and that the degree of concurrency is decreased. In Figure 2, synchronization
delay is represented by circles, where events are not produced by processes.

If some of the internal events may be moved from other processes (Process
Ps, in particular, in this case) to process P, more concurrency may be achieved
and the total time to execute the same computation may be shortened. Thus, the
total amount of synchronization delay in a computation gives a good measure of
concurrency. Note that Process Ps finishes its last event, e3 7, at logical time 8 and
has nothing to do until computation C; completes at logical time 10. The time
units corresponding to this waiting period is also considered to be synchronization
delay.

Recall that the message passing system provides asynchronous communication.
Thus, a sending process is never blocked. For example, Process P, executes send
event ey 3 at logical time 3. Process P; does not executes the corresponding receive
event e, 3 until logical time 6. However. Process P, is not blocked.

We present two types of concurrency measures a.(e) and a(C). Concurrency
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measure a.(e) may be computed for each event ¢, and indicates how many time
units are waisted by synchronization delay to produce event e. Concurrency mea-
sure a(C) is computed for a whole computation C (from the beginning of the
execution until the completion of the last event). This measure indicates how
many time units are waisted due to synchronization delay during the entire com-
putation of C.

3.2 Cone and cylinder abstractions

In order to quantify synchronization delay, we first introduce two abstractions,
called CONE and CYLINDER. They represent the “shape” of a computation
in part (CONE) or in whole (CYLINDER) from the point of view of synchroniza-
tion delay. A CONE is associated with an event; the cone associated with an event
¢ represents the partially ordered set of all events that causally precede event e.
Thus, our CONE abstaction is the dual of the cone abstraction presented by Lam-
port [9]. For example, in Figure 2, CONE(¢y5) represents the partially ordered
set of events consisting of €11, €12, €1.3. €14, €2.1, €22, €23, €24, €3,1, €3,2, €3.3, €3 4, €3.5,
and e3s. A CYLINDER is associated with a whole execution C; it represents the
partially ordered set of events produced by this computation. Thus, in the en-
tire computation C; represented by Figure 2, CYLINDER(C,) consists of all the
events in the figure. With each of these abstractions, three values are associated:
volume, weight, and height.

The weight of CONE(e), denoted by weight(CONE(e)), is the exact number
of events which actually do causally precede ¢. The weight of CYLINDER(C'),
denoted by weight(CYLINDER(C)). is the number of events which are actually
produced in the execution of C'. In Figure 2, weight(CONE(ez5)) = 14, and
weight (CYLINDER (Cy)) = 17.

The volume of CONE(e), denoted volume (CONE(e)), represents the maxi-
mum number of events that could possibly causally precede e. Similarly, volume
(CYLINDER(C)) represents the maximum number of events that could be pro-
duced during the whole execution C. For example, in Figure 2, volume(CONE(e; 5))
= 25. This value is easily obtained in the figure by counting all the events and
synchronization delay (denoted by circles) in the area associated with CONE(e3 s).
Similarly, volume(CYLINDER(C)) = 30.

The height of CONE(e), denoted by height (CONE(e)), represents the the
total number of events which causally precede €, on the longest causal path ending
in e. The height of CYLINDER(C). denoted by height (CYLINDER(C)), repre-
sents the the largest logical time associated with an event in CYLINDER(C). In
Figure 2, height(CONE(e;s)) = 9. and height(CYLINDER(C,)) = 10.



3.3 Concurrency measures

The total number of time units waisted by synchronization delay will be the
difference between the volume and weight of the abstraction. This leads to the
following concurrency measures:

e volume(CONL(¢)) — weight(CONE(e))
(e):= volume(C:ONE(e)) — height(e)

!
€

o

volume(CYLINDER(C')) — weight(CYLINDER(C))

() = volume(CYLINDER(C)) — height(C)

In both of the above equations, the numerator denotes the total synchronization
delay which actually occurred. The denominator denotes the maximum synchro-
nization delay theoretically possible in the computation, and is used for normal-
ization. The above equations are not defined when the denominator is zero. This
situation occurs when only one process is involved in a computation; that is, the
measures are only defined for communicating programs.

Define a.(e) := 1 — al(e) and o((") := 1 — o'(C). The reason for subtracting
the fraction from 1 is to make the measures compatible with other concurrency
measures; that is, a = 1 stands for a maximally concurrent computation and
a = 0 stands for a totally sequential computation. In Figure 2, a.(ez5) = 0.31,
and o(C;) = 0.35. Note that a. values are not defined for events ey, €y, €2,
€2.2, €2,3, €2,4, and ez ;.

4 Computation of Concurrency Measures

4.1 Computation of weight

Vector time, independently introduced by Fidge and Mattern [6, 11], may be used
to compute the number of events which have actually preceded event e. The
system allocates a vector of N counters, 17, to each process. Let V;[j] denote the
jth counter maintained by process /. All values in V; are initialized to zero. Each
process P; follows the following protocol:

1. When P, executes an internal event. V; is advanced by setting V;[7] := Vi[i]] +
1.

W

When P, executes a send event. I is advanced by setting V[z] := V;[i] + 1.
The message carries the updated }; value.

3. When P, execute a receive event, where a message contains V;, V; is advanced
by setting V;[k] := max(V;[k]. V;[k]) for 1 £ k £ N, and then Vj[7] := Vj[i]+1.

3



Let V¢ denote values of vector ¥ at the time event ¢ occurs at process P,. Let V€
denote values of V; when the computation €' terminates. Then, V£[j] represents
the number of events which occur at process P; and causally precede event e.
The values of V; for the computation (') in Figure 2, are given below in Figure 3.
For example, V,2* = (4,5,6); that is. V,;*[1] = 4, V,;**[2] = 5, and V,?*(3] = 6.
Thus, value weight(CONE(e)), the exact number of event which causally affected
event e, is computed by

weight(CONE(c)) := (T, Ve[i]) - 1.

i=
The reason for subtracting 1 is to exclude event e from the count.

After the execution of C terminates, weight(CYLINDER(C)), the exact num-
ber of event which actually occurred in computation C, is computed by

weight(CYLINDER(C)) := £, VE[j].

4.2 Computation of volume

For an event e occuring at process . volume(CONE(e)) may be computed
by storing the logical clock value of the last event at every other process which
causally affected event e at process F;. Such values may be obtained by extending
the implementation of logical clocks presented in the previous section.

Instead of allocating a single counter ¢;, a vector of N counters W; is allocated
to each process P;. Counter W;[i] maintains the ¢; value, and W;[j],7 # 7, stores
the ¢; value of the last send event at process P; which logically precedes the event
that occurred at process P; at logical time W;[¢]. All values in W; are initialized
to zero. Each process P; follows the following protocol:

1. When P, executes an internal event, ¥, is advanced by setting W;[¢] :=

I/Vi [Z] + 1.

o

When P; executes a send event. W is advanced by setting W,[:] := W;[z] + 1.
The message carries the updated W; value.

3. When P; execute a receive event, where a message contains W; (W,[j] is
the logical time of the corresponding send event at process P;), then W; is
advanced as follows:

(a) Wi[k] := max(W;[k]. W, [k]) for 1 <k < N.

(b) Wi[z] := max(W;[), W,[j]) + 1.
Let W¢E denote values of vector W, at the time event e occurs. The values of W;
for the events in the computation C in Figure 2, are given below in Figure 3. For
example, W,;** = [9,10,7].

Then, value volume(CONE(¢)). the maximum number of events which could
possibly precede event e, is computed by

9



volume(CONFE(e)) 1= (T1cjen Wil - 1.

Let WiC denote values of W; when the computation C terminates. The maxi-

mum number of events which could possibly occur during the entire computation
of C, volume(CYLINDER(C)), is computed after the computation by

volume(CYLINDER(C)) = N * height(CYLINDER(C)).

4.3 Computation of height

The logical clock value associated with event e at process P;, denoted WE[d],
represents the total number of events which precede event e, including event e in
the computation. In other words, the clock value represents the number of events
on the longest causal path from any event to event e. Thus, height(CONE(e)) is
computed by

height(CONE(e)) = W¢[i] — 1.
The height of CYLINDER(C') is computed by
height(CYLINDER(C)) = maxi¢,;<y WE[j].

4.4 Computation of concurrency measures
Concurrency measures a, and « are computed by using the vectors W and VV as

follows: N N .
oy W] = 25 Vel
Yoo, Welsl - Wel)

aee):=1-—

N * maxi¢j<n W'jc[j] — Zf{__l V]C[]]

a(C):=1- - .
() (N = 1) * maxi<j<n H/J.C[]]

Note that a.(e) may be computed for each event e by process P; at run time by
using only local data structures maintained by the process. However, evaluation
of a(C) requires information stored in all of the processes involved in the compu-
tation C. Thus, the value may be obtained after the computation, by collecting
information from all V processes.

4.5 Examples

This subsection presents some examples of concurrency measures. Figure 3 shows
vector values V; and W;, at each process P, for 1 < 1 < 3, associated with
each event in the computation represented by Figure 2. The values of V; and
W, are represented by (---) and |- -]. respectively. Since V;** = (4,5,6) and

10
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(@+1047) - (44546) _ ) 3105, Similarly, o(C,) =

W, 20 =19,10,7), are(egs) = 1 — OFT0F7)-10
| — 20B404T) .35,
(1,0,0) (2,0,0) (3.3,6) (4,3,6) (5,3,7)
[1,0,0] [2,0,0] [8,3,7] [9,3,7] [10,3,8]
P €11 €12 €13 €14 €5
1 4 ¢ >
(0,1,0) (0,3,0) (0.4,0)
[0,1,0] [0,3,0] [(),4,0]
€21 €23 €. 2,5

P .
(0,2,0) eq (2,3,5) (4,5,6)
0,2,0] (2,3,6] [9,10,7]

Pg 3,5 -

€36 €37
2.3,6)(2,3,7)
2,3,7) [2,3.8]

€31 €32 €33 €3,
(0,0.1)  (2,0,2) (2.0.3)(2,0.4)(
0,0,1]  [2,03] [2,0.4] [2.0.5] |
Figure 3. Computation C,

Figure 4 shows a totally sequential computation. The a. values at e, ;, e; 4,

€23, €31, €3,2, and ez 3 are all 0. The a(C;) value is also 0. Note that the a, values

at €1, and ey 7 are not defined.

(1,0,0) (2,0.0)
(1,0.0] [2,0,0]

P, im €12 .
(2,1.0) (2.3.0)
(2.3,0] [2.5.0]
P, 8'2,1 . iz.a .
€22
(2,2.0)
9 4
P [HA.O] >r——o— >
€31 €32 €33
2.3.1) (2,3,2)(2,3,3)
23.6] [‘2.5,7] [2,5,8]

Figure 4. Computation C;

Figure 5 shows a complete concurrent execution. The «, values at events e, 3,
€14, €2,2, €23, and eg 4 are all 1. The a(C3) value is also 1.



(1,0,0) (2,0,0) (3,0,2) (1,0,2)
[1 ,0,0] [2,0,0] [3.(),‘2] [4,0,2]
€11 €2 €13 €4
Py < * * - >

(1,2,0)  /(1,3.0)
(1,2,0] [1.3.0]

€22 €23
Py ° »>
2.4
(1,4,3)
1,4,3
P3 & <& [ & ] >
€31 €32 €33 €34

(0,0,1) (0,0,2) (0,0,3) (0,0,4)
[0,0,1] [0,0,2] [0,0,3] [0,0,4]

Figure 5. Computation C;

5 Additional Measures

By using logical clock vectors W and V. several other useful measures may be
computed.
o Oi(e,i,7) = WE[F} — Ve[j] : This value is the amount of synchronization
delay at process P;, when working to produce event e at process P,.

o Oi(e,1,)) = m%m This value is the percentage of logical time lost due

to synchronization delay at process P, to produce event e at process P;.

o Oy(e,2,)) = T‘{% : This value is the percentage of the events produced by

process P; which causally precede event e at process P relative to the logical
time taken to produce event e.

e O3(e,1,7) vl - : This value is the percentage of actual computa-
1<k<N ‘l {k

tion done by process Pj, relative to the total computation done by all the

processes, to produce event ¢ at process P;.

The above measures are associated with an event ¢. The same measures may be
applied to the whole computation €' as follows:
o 04(C,j) = (maxicken WEK]) = VE[j] © This value is the amount of syn-
chronization delay at process P, in computation C.

(maxy <kcn WETKD - V'A[J']

max,<k<,\ ”’C[l\]

o 0,(C,y) =
lost due to synchronization delay at process P; relative to the logical time
taken to complete computation (.

: This value is the percentage of logical time
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. VEel(j
o 05(C,7) = —JLL-— This value is the percentage of the events pro-

maxy<kgN Wk
duced by process P; relative to the logical time taken to complete compu-
tation C'.
N V)
° 06(07]) = A . ;
done by process P; relative to the whole computation of necessary to com-
plete C. This value shows the distribution halance of load among processes.

: This value is the percentage of actual computation

Consider computation Cy and event ey 5 in Figure 3. Since W;** = [9,10,7], V;** =
(4,5,6), the above measures for event ey 5 give the following values:

91(82'5,2,1):5 0 (6’25 2 2)25 0(625,2 3):-1
02(625,... 1)_‘04 02((‘2 ),2 2)'—‘05 02(625,...,3)—06
03((‘,25,.’,])—‘097 0. (62 5.2,2) =0.33 0 (62,5,2,3)=0.4

Similarly, the ahove measures for computation € give the following values:

0,(C1,1) =5 0,(Ch,2) =5 04(Cy,3) =3
05(01, 1) = 0.5 05((/'12) =0.5 05(01,3) =0.7
0s(Ch,1) = 0.29 0s(C1.2) =0.29 06(C1,3) = 0.41

These additional measures can he used to obtain a better understanding of a
given distributed computation. Combined with the other concurrency measures,
they allow us to more precisely characterize the profile of a computation. Other
additional measures using vectors 1" and W may be envisaged.

6 Comparison of Concurrency Measures

This section briefly review two existing concurrency measures: Charron-Bost’s
and Fidge’s concurrency measures. Then. we compare them with a.

6.1 Charron-Bost’s measure

Charron-Bost’s concurrency measure is based on the principle that how often the
stopping of one process would block other processes; that is, blocking less often
implies that the computation is more concurrent [4]. This measure is closely
related to the number of possible consistent cuts in a given computation. A
consistent cut CT of a distributed computation C, consisting of a partially ordered
set of events E, is a finite subset CT C F suchthate € CT and e’ <e= ¢ € CT
(3, 7]

The reasoning behind this concurrency measure is that the tolerance of a
computation regarding the stopping of one process has a strong relation with its
ability to be cut in a consistent way. Thus. the more consistent cuts a computation
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has, the more concurrent the computation is. The concurrency measure m of a
distributed computation C is defined by:

s
m((') = ——/’;_ a
pe -y

where g is the number of consistent cuts in computation C, and u*, u¢ are
the number of consistent cuts in the sequential computation and in the entirely
concurrent computation consisting of the same number of processes, each of which
consists of the same number of events, respectively.

Concurrency measure m characterizes the degree of concurrency of a given
computation C well. However, the computation of y is not feasible. This is the
major drawback. Furthermore, m is defined only for the entire computation of C,
not for each event within C.

6.2 Fidge’s measure

Fidge proposed another concurrency measure, called 3, which is easy to compute
and measures either event e or the entire computation C {5]. Concurrency measure
3 is defined by

=L

B p—1
where p and 7 denote, respectively, the minimum number of events that must oc-
cur before the current point in the computation, and the minimum logical time, in
units of events, required to reach a particular point in the computation. The nu-
merator denotes the amount of logical time “saved” by the use of concurrency, and
the denominator denotes the time that could potentially be saved given unlimited
computing resources.

The measures. 8(e) and F(C). may be represented by using the abstractions

CONE(e) and CYLINDIEER(C') as follows:

weight(CONE(e)) — height(CONE(e))
weight(CONE(e)) — 1

Ble) =

B(C) = weight (CYLINDER(C)) — height(CYLINDER(C))
B weight(CYLINDER(C)) — 1 .
In fact, the numerator of B(C’) is the same as that of o(C); the difference is in

the denominators. However, 3(e) is significantly different from a.(e). Consider
examples shown in Figures 6 and 7.
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Figure 6. Computation C,
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Figure 7. Computation Cs

The weight and height of the cone associated with event e; 3 in computation
C, and event ey 7 in computation Cs are the same. However, a. and 8 values for
these events are different as follows:

ac(ez3) = 0.3 acez7) =1
B(ez3) = 0.33 Bleyz) = 0.33

Fidge’s measure. 3, gives the same value for both events e; 3 in Cy and ey 7 in Cs.
This is because in both computations, there are exactly three events which causally
precede the events, besides the events on the longest causal path. However, a,
gives different values for these events. In computation Cs, c.(es7) = 1 since
there is no synchronization delay in CONE(ez 7). On the other hand, the value,
ae(e2,3) = 0.3, indicates that there is not much concurrency used to produce event
e2,3. In fact, the volume of CONE(e;3) is much larger than that of CONE(e, 7).
This suggests that much less total computation time is spent to produce event
€27 than to produce e, 3 since in computation C4. much time is waisted for syn-
chronization delay, whereas in computation Cs, no computation time is waisted
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for synchronization delay. Thus, more computations could potentially be done
in Cs than in C4. For example, in computation Cs, eleven more events may be
potentially produced by Processes P and P, outside of CONE(e, 7). However, in
computation Cy, only four more events may be produced outside of CONE(e; 3).

The idea behind our measure is that if ¢, is maximized for each event, then
the concurrency of a whole computation will be maximized. The only case in
which this rule does not apply is when distribution of computational load is un-
balanced; that is, some processes finish their jobs earlier than others and wait for
the completion of the whole computation. This balance is measured by 6¢(C, 7)
described in Section 5. Furthermore. if a, is computed for each event, these values
are useful to “tune up” the computation since they give information about what
parts of the computation have much synchronization delay. This feature is partic-
ularly important if the measure is used in certain applications, such as interactive
monitoring or debugging.

7 Conclusion

Time and message complexities are the usual measures used to characterize dis-
tributed computations. However. these measures only address quantitative as-
pects of the computation. Very little work has been devoted to defining more
qualitative measures, such as the parallelism and the concurrency inherent in
such computations. Currently, research on optimizing parallelism in distributed
svstems is an active area of research (1. 10].

This paper has presented some qualitative measures from a synchronization
point of view. These measures are based on the set of events that participate in
the production of a given event (or of the whole computation). Such an approach
allows us to precisely characterize the synchronization constraints inherent within
a distributed computation. without being bothered by the perturbations caused by
a given implementation. Thus, these measures are independent of the underlying
system running the computation, and consequently they characterize exactly the
synchronization (through the measures of the delays it involves) inherent in a
distributed computation. The definition of these measures has been based on two
well defined abstractions, namely cone and cylinder, to which simple measures can
be associated: volume, weight, and height. The proposed concurrency measures
come from the analysis of these two abstractions.

A simple way to compute the measures at run-time has been proposed. This
implementation relies on two types of vector clocks that memorize the history of
the computation, including the events produced and synchronization delay.

These two measures (with the additional measures) can be very easily included
in a any system whose aim is to analyze distributed executions {distributed de-
bugging, monitoring, etc). Such measures can allow the system to improve the
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sharing of computational power when time consuming applications, such as image
and signal processing, are implemented on distributed memory parallel machines.
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