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Programme 1
Abstract

Mecmory space and processor time arc basic resources when exc-
cuting a program. But beside this implementation aspect (this time
resourcc is necessary but does not belong to the program scmantics),
the concept of time presents a more fundamental facet in distributed
systems namely causality rclation between events. Put forward by
Lamport in 1978, the logical naturc of time is of primary importance
when designing or analyzing distributed systems. This paper revicws
three ways (lincar time, vector time and matrix time) which have
been proposed to capture causality between cvents of a distributed
computation and which consequently allow to define logical time.

Kcy words : distributed systems, causality, logical time, happened
before, linear time, vector time, matrix time.
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Horloges Logiques pour les Systémes Répartis

L'espace mémoire et le temps de calcul sont les ressources
de base nécessaires a l'exécution de tout programme. A cO-
té de cette composante liée a l'implémentation, le concept
de temps présente une caractéristique plus fondamentale
dans le domaine du réparti, a savoir la causalité qu'il
induit sur les événements. Ce rapport examine les trois
mécanismes quli ont, & ce jour, été proposés pour capter ces
relations de causalité et gui, en conséquence, autorisent
des définitions du temps logique ; celles-ci sont autant de
fagons, dotées de propriétés spécifiques, d'estampiller les
événements.
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1 Introduction

To be executed a program needs some memory space and some processor
time. But time cannot be restricted to this resource aspect. As put forward
by Lamport in a famous paper [9], time establishes causal dependencies on
the events produced by a program execution. So in a distributed system com-
posed of n sites connected by communication channels, first : events on each
site are totally ordered (events are sendings of messages, receipts of messages
or internal events i.e. events not involving messages) ; second : for each
message the sending event precedes the corresponding receiving event. The
transitive closure of these precedence relations (sometimes called happened
before”) defines a causal dependence relation : "—” on the set of events
produced by a distributed execution ; this relation is a partial order. In the
figure 1 (a point represents an event, and an arrow a message transfer) for
example we have @ — b. The set of all events z such that for a given event
b we have z — b is called the causality cone of b, in short cone(b). Finally
two events z and y, such that neither ¢ — y nor y — =z, are said to be
independent or concurrent, in short z || y (see figure 1).

In this paper we review timestamping mechanisms that allow to associate
dates to relevant events. More precisely these dates must rely on a logical
global time in order to be able to compare related events produced by distinct
sites and must be consistent that is to say obey the monotony property : if
a — b then the date associated to b must be, with respect to the logical
global time, after the date associated to a.

This review presents 3 timestamping mechanisms. The first one is the well
known linear time, proposed by Lamport, that uses ordinary integers to rep-
resent time ; the second one uses n-dimensionnal vectors of integers and the
third one uses n x n matrices. In order to ensure the monotony property all
the timestamping mechanisms, that build a representation of time, obey a
common pattern made of data structures and of a protocol (rules to manage
these data structures).

i) Data structures to represent logical time.
Each site is endowed with local variables that allow it :
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Figure 1: A distributed execution

e on the one hand to measure its own progress ; that is done with

the help of a logical local clock (updated by rule R1).

e on the other hand to have a good representation of the logical
global time ; this representation (updated by rule R2) allows it to
timestamp events ; that is a local view of the global time.

ii) A protocol ensuring that the logical local clock and the local view of the
global time of each site are managed consistently with the causality
relation ”—”. That is done by the two following rules.

e R : before producing an event (sending, receiving or internal) a
site has to increase its logical local clock (because it is progressing).

o R2: for the date (that is to say a timestamp with respect to
the logical global time) of a receiving event be after the date of
the corresponding sending event, every message m piggybacks the
value of the logical global time as perceived by the sender at send-
ing time ; this allows the receiver to update its view of the global
time. Then it execute R1 and can timestamp the receiving event.

For each of these timestamping systems we first show how the fundamen-
tal monotony property is ensured (i.e. implementation of rules R and R2),
and then some properties of the associated time representations are given.
(Actually properties attached to each of these timestamping mechanisms are
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immediate consequence of the monotony property on the way they represent
time with integer, vector or matrix).

As this paper is essentially a survey, we are faced to the problem to quote
original proposals. This is a very difficult task ; the references used are the
ones known by the author ; if they are not the right ones, please let him know.
However -as events in a distributed computation !- very similar proposals can
be indepedent.

2 The linear time

2.1 The timestamping mechanism

This time representation is the well-known one, proposed by Lamport in 1978
in his seminal paper [9]. Time domain is the set of integers. Each site S;
is associated an integer variable h; holding increasing values. The logical
local clock of S; and its local view of the global time are here mixed up and
represented by the only variable ;. Rules R and R2defining the consistency
protocol are the following ones :

e R1: before producing an event (sending, receiving, internal) :
h;y = h;+d (d>0)
(each time R1I is executed d can have a different value).

e R2: when it receives the timestamped message (m,h) the site S; exe-
cutes first the update :

h; .= maz(h;, h)

and then R1, before delivering the message m.

2.2 Properties

In addition to the monotony property it is possible to use this timestamping
mechanism to build a total order "t-before” on the set of events, consistent
with the causality relation ”—”. The timestamp of an event is then composed
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of its occurrence date and of the identity of the site that produced it. So if
we consider two events z and y timestamped respectively by (h,i) and (k,5)
the total order is defined by :

z t-before b<= (h<kor (h=kandi<j))

This total order is due to Lamport [9] ; it is generally used to ensure liveness
properties in distributed algorithms.

If we consider that the increment value d is always 1, we have the following
very interesting property. Let e be an event timestamped h. Then h-I rep-
resents the minimum logical duration, counted in units of events, required
before producing the event e [5] ; we call it the height of the causality cone
associated to the event e, in short heighi(e). In other words h-1 events have
been produced sequentially before the event e regardless of the processes that
produced these events. (In figure 2, 6 events precedes b on the longest causal
path ending in ).

. 2 5 6 7

Site 1 — —0 & =
X

. 1 2 7

Slte 2 — >
b

, 1 3 4 5 6 7

Site 3 ->——o *~—>
a y

Figure 2: Lamport’s clocks progress

3 Vector time

3.1 Vector clocks

Here the logical global time is represented by an n-dimensionnal vector. Each
site S; is endowed with such a vector vt,[1..n}. The idea embedded in such a
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vector is the following one, on a site S; :

o vt;[i] describes the logical time progress of the site S;, considered alone ;
that is the logical local clock of S;. This variable holds increasing values
locally generated. (Such a local variable can only be increased by rule
RI).

e vi;[j] represents site S; knowledge of site S; local time progress. It is a
local image of the value of vt;[j] ; it is updated by rule R2.

e the whole vector vt; constitutes the S; local view of the logical global
time used to timestamp events.

The two rules R1 and R2 are the following ones for each site S; :

e RI: before producing an event :
vtli) = vtfi] + d (d>0)

e R2: each message m piggybacks the vector clock vh of the sending site
at sending time. When receiving such a message (m,vh), the site S;
first updates its knowledge of the local times progress :

1 <k <n o vt[k] ;= maz(vt[k], vh[k])
and then it executes R1.

The date associated to an event is now the value of the vector clock of the
producing site at the time the event is produced. Figure 3 shows an example
of vector clocks progress with the increment value d=1.

Such clocks have been introduced and used by several authors. Parker et
al. used in 1983 a very rudimentary vector clocks system to detect incon-
sistencies of duplicated data due to partitionning [13]. Liskov and Ladin
proposed a vector clock system to define highly available distributed services
[10]. But the theory associated to these vector clocks has been developped in
1988 independently by Fidge [5,24], Mattern [11] and Schmuck [20]. Similar
clocks systems have also been proposed and used by Strom and Yemini [21]
to implement an optimistic recovery mechanism, and by Raynal to prevent
drift between logical clocks [15].
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Figure 3: Vector clocks progress

3.2 Properties

These properties have been established in [5,11,20]. Moreover it has been
shown in [23] that dimension of vectors cannot be less than n.

An interesting isomorphism.
Let us define the following tests on vectors :

vh vk <= Vz:vhz]) < vk[z]
vh < vk < vh<vkand 3z:vhz] < vklz]
vh || vk <= not (vh < vk) and not (vk < vh)

If we consider the partially ordered by "—” set of events, that are produced
by a distributed execution and timestamped by the vector clock system we
have the following property. Let two events z and y timestamped respectively
by vh and vk, then :

T—y < vh<<vk
zlly < vhlvk

In others words there is an isomorphism between the set of partially ordered
events produced by a distributed computation and their timestamps. If we
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consider occurrence sites of events, the independence test can be simplified.
So if z and y are timestamped respectively by (vh,i) and (vk,j) we have :

Ty <= vh[) < vkli]
z|ly <= vh[i]> vk[] and vh[j] < vk[j]

These clocks have a wide variety of applications. The reader can consult the
following references. They are used to implement distributed debugging [5],
causal ordering communication [19], causal distributed shared memory [1)
and definition of global breakpoints [6]. Similar ideas have been used [8,21]
to define consistent checkpoints for optimistic recovery.

Event counting vector clock.
If in the rule R we considerer always d=1, then we have the following result :

vt;[7] counts the number of events produced by the site S;.

So if we consider an event e timestamped vh we have :

vh{j] = number of events produced by the site S; that causally
precede ¢
Svh[j] -1 = total number of events that causally precede e.

We define this number to be the weight of the causality
cone of the event e.

In the example of figure 3, the timestamp (4,3,8) associated to the event &
indicate that 4 events located on S; precede b and that the weight of the
cone associated to b is 9. The weight of cone(e) is the minimum number of
events that must have occured before e.

3.3 Towards a concurrency measure for distributed
computations

A simple and easily computable concurrency measure can be defined in the
following way. Let e be an event. We define the concurrency measure associ-
ated to e as (the denominator is only used to obtain a value ranging between
0and1):

_ n+ height(e) — weight of cone(e)
em(e) = (n — 1) height(e)
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This measure claims that the computation needed to produce an event e is
maximally concurrent (balanced and parallel) if cm(e)=0 ; on the opposite
if em(e)=1 the computation is entirely sequential (of course to measure the
concurrency of a complete execution of a distributed program we can add a
fictitious event that follows causally the last events produced by each site).

Such a measure is easily computed if we equip the underlying system with a
Lamport’s linear clock and a vector clock mechanisms. The height associated
to an event is obtained from its Lamport’s timestamp and the weight of the
associated causality cone from its vector timestamp. Others measures based
on vectors can be found in [25].

4 Matrix time

4.1 Matrix clock

In this case the logical global time is represented by an n X n matrix. So
each site S; is endowed with a matrix mt;{1..n,1..n] whose entries have the
following meaning.

e mt;[z,1] is the logical local clock of S;, increasing as the computation
of the site S; progresses.

e mi,[k,{} represents the view (or knowledge) the site S; has about the
knowledge by Si about the logical local clock of S;. The whole matrix

mt; constitutes the S; local view of the logical global time.

In fact the row mt,[i,.] is nothing else than the vector clock vt;[.] ; so this
row inherits the properties of the vector clock system.

Rules R! and R2 are similar to the preceding ones for each site S; :
e R1: before producing an event :

mt (i, 1] ;= mi[e,i] + d (d>0)



e R2: each message m piggybacks a matrix time mt. When it receives
such a message (m,mt) from a site S, the site S; executes (before R1) :

1 £ k < n:mtfi, k] := maz(mtfi, k], mt[j, k])
1 < kI < n:mtlk, 1) := maz(mt[k, 1], mt[k,])

Such a clock system has been proposed in 1984 by Wuu and Bernstein [22] ;
joined to a log system it allows to discard obsolete information (see the
properties). A similar mechanism has also been used by Lynch and Sarin in
1987 for a similar purpose [18].

4.2 Properties

In addition to the properties of the vector clocks (when considering mt,i, .})
we have the following one :

mkin(mt;[k, i]) 2t = site S; knows that every other site

knows its progress till its local time ¢

It is this property that can allow a site to no longer send an information with
a local time < ¢ or to discard obsolete information ; to exploit this property,
as said previously, the matrix time mechanism has to be used jointly with a
log mechanism.

5 Other logical times

In (2] Awerbuch presents the synchronizer concept ; such a device allow
to run a synchronous distributed algorithm on an asynchronous distributed
system. In other words a synchronizer is an interpreter for synchronous dis-
tributed programs. Synchronous means here that the distributed program
progresses logically step by step (for sites and channels) ; this progress re-
lies on a global time assumption. From the point of view of synchronous
distributed programs such a global time pre-exists and participates in their
semantics. Developments about synchronizers can be found in [14, chapter

3]).



In distributed discrete event simulation a virtual time (the so-called sim-
ulation or model time) does exist and the semantics of a simulation program
relies on such a time : its progress ensure that the simulation program has
the liveness property. Designing a distributed simulation run-time consists in
ensuring that the virtual time progresses (liveness) in such a way that causal-
ity relations of the simulation program are never violated (safety). Several
implementations are possible for such run-times [7,12,17]. The logical time
built by a synchronizer or by a distributed simulation run-time drives the
underlying program (a synchronous or a simulation program). It has not
to be confused with logical times presented previously. With the previous
representations of logical time (linear, vector or matrix time) the aim is to
be able to timestamp consistently events in order to ensure some properties
such as liveness, consistency, fairness, etc ; so in this case logical time is only
one means among others to ensure some properties. For example Lamport’s
logical clocks are used in the Ricart-Agrawala’s mutual exclusion algorithm
[16] to ensure liveness ; this time does not belong to the mutual exclusion
semantics. In fact other means can exist to ensure properties such as live-
ness ; for example instead of a logical time the Chandy and Misra’s mutual
exclusion algorithm manages a directed acyclic graph to ensure liveness [4].
On the other hand the time provided by a synchronizer or a distributed simu-
lation run-time does belong to the underlying program semantics ; this latter
logical time is nothing else than the logical counterpart of the physical time
offered by the environment and used in real-time applications (3].
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