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Probabilistic models and stochastic methods to some extend have failed to apply to complex systems and
models such as cucountered in real-time applications. The reason is that the very basis of any technique
based on probability is the famous {§2, F, P} triple ({spacc of random experiments, associated g-algebra,
probability}). Unfortunately this object is almost inaccessible when complex applications such as queuing
networks with synchronization or real-time information processing systems are in consideration. Whence
the success of fuzzy reasoning techniques to support information processing applications: fuzzy reasoning
is accessible to the user via programming, which makes the construction of complex models feasible. This
paper is a first attempt to establish the foundations of a theory which allows us to construct and use random
processes via programming. This is why we call it constructive probability. The formalismn we propose for
this is based on the best tool we know to describé dynamical systems, namely SiGNaL. The name of this
extension is obviously SiGNalea. This formalism allows to specify equally well different objects such as
quening networks or fuzzy-like reasoning systems, this is achieved by extending to dynamical systems the
notion of Gibbs random ficlls on graphs. This paper presents the SiGNelca formalism with its associated
mathematical model. We show how to specily (partially) randomized dynamical systems with SiGNalea,
and how to simulate them.

Probabilités Constructives et le langage SiGNalca

Les modetles probabilistes et les méthodes stochastiques ont un succts mitigé dans le domaine des grosses
applications de traitement de 'information temps-réel. La raison en est sans doute que le fameux {Q, F, P}
({espace des épreuves, tribu, probabilité}) est, de par sa complexité combinatoire, inaccessible & la main
pour de telles applications. Ceci explique en partie le succes des techniques floues, qui, elles, proposcnt
une approche par regles, c’est-d-dire de type “programmation”. L’objectif de cet article est précisément
d'introduire un outil de programmation adapté aux processus stochastiques. Il s’agit d’une extension du
langage synchrone SIGNAL, que nous appelons évidemment SiGNalea. En fait, SiGNalca se présente comine
une extension aux systémes dynamiques de la notion de champ aléatoire. SiGNalca permet de déerire
et construire des objets aussi variés que des réscaux de files d’attentes, ou des systémes temps-réels de
traitement de Pinformation incertaine (par exemple pour les applications de diagnostic).
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Abstract

Probabilistic models and stochastic methods to some extend have failed to apply to
complex systems and models such as encountered in rcal-time applications. The reason
is that the very basis of any technique based on probability is the famous {2, F, P}
triple {{space of random experiments, associated o-algebra, probability}). Unfortu-
nately this object is almost inaccessible when complex applications such as queuing
networks with synchronization or real-time information processing systems are in con-
sideration. Whence the success of fuzzy reasoning techniques to support information
processing applications: fuzzy reasoning is accessible to the user via programming,
which makes the construction of complex models feasible. This paper is a first at-
tempt to establish the foundations of a theory which allows us to construct and use
random processes via programming. This is why we call it constructive probability. The
formalism we propose for this is based on the best tool we know to describe dynami-
cal systems, namely SIGNAL. The name of this extension is obviously SiGNalea. This
formalism allows to specify equally well different objects such as queuing networks or
fuzzy-like reasoning systems, this is achieved by extending to dynamical systems the
notion of Gibbs random fields on graphs!. This paper presents the SiGNalea formalism
with its associated mathematical model. We show how to specify (partially) randomized
dynamical systems with SiGNalea, and how to simulate them.

*IRISA-INRIA, Campus de Beaulieu, 35042 RENNES CEDEX, FRANCE, benveniste®@irisa.fr. Key-
words: semantics of programming languages, random or uncertain real-time systems.

!Gibbs random fields on graphs are often referred to as “cellular automata” or as “neural networks” in
the Al litterature, we prefer however to term them “Gibbs random fields on graphs” since this precise
mathematical name is free fromn ambiguity.
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1 Introduction and motivations

Development of large real-time systems is one of the most challenging tasks facing the en-
gineering community today. Typical instances of such systems are found in process control
industry, power industry, transportation systems, telecommunication systems, military sys-
tems, to mention just a few. In these applications, real-time processing of uncertain complex
information emerges as a key difficulty. Such a task occurs for instance in diagnostics and
monitoring of industrial plants (recall the Three Miles Island accident, where poor alarm
processing has been recognized as largely responsible), or in real-time pattern recognition
(speech recognition, military information processing systems). On the other hand, specify-
ing, developing, and simulating complex systems involving synchronization and uncertainty
in timing is another difficulty: it is for instance encountered in large communication net-
works.

The author of this paper, among others, investigated issues related to this challenge in
the framework of the joint IEEE-IFAC project “Facing the challenge of computer science
in the industrial applications of control”, see [1]. Meetings with industrialists revealed the
following interesting points:

e A large part (typically over 90%) of the application software is devoted to nonmathe-
matical processing which is heuristic in nature. The reason for this is that, while the
very heart of most of the above mentioned systems can be modelled and handled with
known mathematical methods, this is generally not the case for the whole system.

o This heuristic part of the processing is generally of large combinatorial complexity
(filtering and processing the thousands of alarms in nuclear power plants is a good

instance of such a situation, and so is the signalling of modern transportation systems
such as the french TGV [1]).

e From this situation results the popular nightmare of the engineer in developing such
systems, namely the “software error”: a software error is something wrong somewhere
between the specification of the problem and its final implementation. For processings
exhibiting a large combinatorial complexity, it is generally difficult to precisely locate
such errors: the design of the heuristics or their programming may be faulted.

e This situation explains why programming-in-the-large methodology is considered as
worth of a major effort in the above mentioned industries: it is expected that good
programming methodologies may help coping with the (accepted) situation of large
combinatorial complexity. One way of doing this is to rely on expert systems and
object oriented programming technologies.

e The best way to cope with the above mentioned issue, however, seems to transfer
new parts of the processing from heuristic to mathematical approach. For instance,
uncertain information processing systems are sometimes handled by fuzzy reasoning
techniques. Fuzzy reasoning is an attempt to mix the advantages of handling combi-
natorial complexity in a modular way, i.e., via programming using rules, with those




of dealing with uncertainty.

This paper is mainly concerned with real-time uncertain information processing systems. It
is our opinion that the venerable cultural background of probability, statistics, and stochas-
tic processes, form a natural framework for such an application area: deep mathematical
results are available, which provide us with a rigorous formalism, ways to approximate
with simple asymptotics the behaviour of large systems, rationales to infer unknowns from
measurements and models from data. Surprisingly enough, this framework failed to be dom-
inant in the engineering community dealing with real-time uncertain information processing
systems, as mentioned above. The reason is that the famous {Q,F,P} triple ({space of
random experiments, associated o-algebra, probability}) is the prerequisite for any proba-
bilistic processing, and it happens that the structure of such Q’s when models of complex
systems are considered is almost intractable with pen, paper, and human neurons.

As far as we know, little work has been performed with the objective of providing ac-
cess to probability tools via programming. An attempt in this direction may be found in
[11], where probabilities are introduced in the “branching time temporal logic” model of
Manna and Pnueli; but the resulting model seems hard to use in practice. The only practical
attempt to build stochastic processes in a modular way seems to be the stochastic (timed)
Petri net model [20]; this model, however, is more oriented toward labelling Petri nets with
probabilistic attributes rather than a way by itself to construct probability spaces. On the
other hand, recent work from the area of statistical mechanics [13] and AT oriented statis-
tics {21] have put emphazis on the interest of building complex stochastic processes from
“local characteristics”. Typical instances of such situations are (finite or infinite) systems
of randomly interacting particles, similar models have proven useful in the area of neural
networks, we shall refer to them as Gibbs random fields on graphs. This point of view is one
important component of the foundations of our theory of constructive probability. Basically,
what we show in this paper is the following:

e Gibbs random fields on graphs provide a clean framework to specify probabilities on
large combinatorial € spaces from local characteristics that are of low complexity.

¢ An elegant way to build complex probabilities is to define them starting from simpler
ones, by taking the conditional probability given some subset which in turn is specified
via a set of constraints. Such a method can be applied to derive complex dynamics
from sequences of independent random variables?,

¢ Dynamical systems can be conveniently specified using the real-time programming
language SIGNAL [15, 3], this is the way constraints on dynamics will be specified in
our approach.

o A new operator to combine given random processes will be introduced, the “shuffle

2this principle has some flavour of the Cameron-Martin formula which is used to derive the law of any
diffusion from that of the Brownian motion in the area of stochastic calculus.




product”, which will be the basis for a modular construction of complex random
processes from small primitives.

o All these principles can be used in practice thanks to the availability of some pro-
gramming language we call SiGNalea which implements them.

The paper is organized as follows. Section 2 is devoted to elementary facts from the theory
of random fields on graphs. In Section 3, the languages SIGNAL and its extension SiGNalca
will be presented, and some toy examples will be discussed. Section 4 is devoted to the
mathematical model of SiGNalea: we define formally which mathematical ob ject is associated
with a given SiGNalea program. This section is a very important one: the new concepts
of shuffle product, conditioning, and communication are introduced, technical notions are
rejected in appendix A, and proofs of mains theorems are found in appendix B. Then
the expressive power of SiGNalea is investigated in Section 5, it is shown in particular that
multiple clocked stochastic automata (i.e., automata with multiple time scales) can be built
with SiGNalea, as well as (stochastic, timed) Petri nets. In software engineering, compilation
consists of deriving from the source program (the “specification”) an equivalent executable
form; in our case, compilation consists of showing how the (random) system specified by a
given SiGNalea program can be simulated: this is the subject of Section 6.

2 Random fields and potentials: some recalls and remarks

What is a random field?

We review here some basic facts from elementary random field theory [13]3. We are given
some finite set 2. A probability P on € can be defined via some energy function —oo <
U < 400 by setting

P(w) = le’U(“’) y Z = Ze"v(“’) (1)
Z w

It is convenient to build U from “local” components in the following sense. We assume that
Q is of the following form:

e G = {V,E}is a nondirected graph with vertices V and edges E, elements of V are
written v and are usually referred to as sites. Two sites are said to be neighbours if
they are connected by an edge. A subset C of V is said to be a clique if every pair of
sites of C are ncighbours.

e Every site v is labelled by a symbol w, from some finite alphabet S,, we write w =
(wy)vev and assume that § is the set of such w’s. More generally, we write wg =
(wv)veB so that, in particular,

WBUC = (wB,wC) ifBNC =9 (2)

3we use here the notations of (2], chapter 2 of part [, exercise 2.7.15.



A potential is a family of functions Ug(w) where B ranges over the subsets of V, such that
Ug(w) actually depends only on wp. We usually associate energy functions with potentials

via the formula
Uw) =) Up(w)=) Up(ws) (3)
B B

Such an object {2, P} where P is built from U, is called a random field, and P is said to
be the Gibbs measure associated with the potential (Ug). The potential (Ug) is said to be
local if Ug = 0 when B is not clique. Giving a local potential is a convenient way to specify
a probability on Q (a large combinatorial object) via some “local interactions”: it is thus
a constructive way to build probability distributions on large spaces. Local potential are
known to give raise to Markov random fields, where Markovianity is defined based on the
neighbouring system associated with the graph G, we shall not neced to elaborate further
on this point.

A practical way to specify a random field according to the definition above is the follow-
ing. Assume we are given a collection (z,,---,z,) of variables representing, say, measure-
ments, indicators, or observations of some phenomenon that are sub ject to uncertainty. Fur-
thermore, assume that we have some prior knowledge about the possible linkings between

these variables, and we represent it via local interactions of the form U(zy,,, -, 2, )
where 7 is some index and k;; € {1,---,p}. The interpretation of this is that a tuple
(z1,--+,xp) is more likely if its total energyy

U(l‘],"’,zp) = Z Ul‘(xkl“l’.'.’xki,p")

is low. This defines a random field as follows. Take V = {zy,---,z,} as set of vertices.
Draw an edge between z, and z; if both indices k and [ occur in the arguments of the same
U; interation for some ¢. This yields the graph G. Then denote by S; the domain of z;, and
take 2 = §) X -+ X §,. Obviously the family (U;) defines a local potential on this graph
G. This method of building random fields on graphs will be widely used in the sequel.

Some advantages of defining probabilities via local interactions

A first advantage relates to issues of computational complezity. When 2 is large, computing
the normalizing constant factor Z in (1) is of excessive computational cost. In contrast, each
Up, depending only on wpg, typically involves a small amount of sites. Hence everything
that can be computed using the local interactions Upg only will be of low computational
cost.

One possible way of computing P using local interactions only is to interpret the decom-
position (3) as a Bayes rule. This is not always possible as we shall see later. But this is
for instance the case for Markov chains as explained next. Let n(z,y) denote the transition
matrix of some finite state Markov chain, and introduce U(z,y) = —log w(z,y). Then the
probability of a sample path (zg,---,z,) of the chain with initial condition zg is exactly

P(zo, -+, zn) = [[ 7(zic1,2) = exp = Y_ U(ziza,2:)
i=1 =1



without the need for a normalizing constant factor Z, so that the interpretation of (3) as a
Bayes rule is justified here.

Finally, there are statistical reasons for dealing with random fields and defining prob-
abilities via local interactions, as lengthly discussed in the nice book [21]. Assume it is
wished to infer P from observations, and available experiments only involve wpg’s for B any
clique, i.e., only local experiments are available. Then the random fields associated with the
graph G are the mazimum entropy distributions based on the available experiments, and
the maximum entropy principle is known as the proper rationale for fitting models from
data.

Computing conditional distributions and potentials

An interesting byproduct of specifying probabilities via potentials based on formulae (1,3)
is that, for W C Q such that P(W) > 0, the formula*

[Up|W](w) =qet Us(w) 1w(w) + 00 1yye(w) (4)

defines a potential which has the conditional probability P(.|W) as associated Gibbs mea-
sure. Let us now investigate more specifically on a simple case how such a facility can be
used in practice. Select three sites v, v1, v2 belonging to the same clique, and assume that
the subset W above is specified via the constraint

W =gef {w P Wy T f(wvnww)} (5)

for some function f: S x S~ S. Then formula (4) reduces in this case to a very appealing
form: recalling that w = (wy)yev, just

substitute f(w,,,wy,) for wy, in U(w), (6)

this yields a new function depending on wy,,} (i.e. those coordinates w, for v # vo) only.
This function is exactly the desired [Ug|W](w) energy function!

Let us investigate when the formula (3) can be interpreted as a Bayes rule. Assume that
U can be decomposed in the following way:

U=Uge+ Ucus (1)

where B, C are subsets of V with empty intersection, and, as before, the notation U4 where
A C V means that Us(w) depends only on wyq. Then it holds that, for wg. given and
recalling (2),

P(U)Ich) ~ e_UBC(“’BC) e—UCuB(WC.wB)

~ ¢ Ycunlvcws)

(where ~ means “proportional to”) since wpe is constant and only wpg is a variable. Hence,
if (7) holds, then the energy function Ugup(wc,wp) specifies the conditional probability

%14 denotes the functions taking the value 1 if its argument lies in the set A, and 0 otherwise, and A€
denotes the complement of the set A.



P(.|wp<). Note that in this case P(.Jwpc) is a function of wc only, a kind of Markov property.
However it is not true that Uge(wpg<) specifies the marginal of P on B¢ which is defined by

Ppe(wpe) = Y_ P(wpe,wp)

wB

In fact, it holds that

PBc(ch) = % e—UBC(WBC) Ze—UcUB(wC,wB)
wpg
1
A {UBG(WBC) - logg e‘UCuB(“’Cv“’B)}

(where Z denotes again the appropriate normalizing constant factor) so that a corrrective
term must be substracted from Uge to get the marginal. So, if it is wanted that the additive
decomposition (7) be interpreted as a Bayes rule, just make sure that

U(we) =qef log Ze‘UCUB(“’C""B) be indeed independent from w¢ (8)

wp

Finally, let us indicate how to solve the following problem: we are given Ug< and Ugyp
with B, C as above, and we want to build an energy function U such that Ugc and Ucyp re-
spectively define the marginal and conditional probabilities of the Gibbs measure associated
with this U. This is done as follows:

Ucuslc(we,wB) =def Ucub(we,wp) +log Y e~Vevslwews)
wpg

U(w) =get Usc<+ Ucusic (9)

Then the “compensated” potential Ucyp|c defines the same conditional distribution as
Ucup and satisfies (8), so that the decomposition (9) can now be interpreted as a Bayes
rule. This remark will be widely used in the sequel.

To summarize, conditioning is performed in a very elegant way within this framework.
Our aim in the sequel is to

1. generalize the notion of Gibbs random fields on graphs to (real-time) dynamical sys-
tems,

2. perform such a generalization for dynamical systems that are multiple clocked,

3. generalize this to systems that are “partially randomized” in a sense we shall define
later,

4, provide some effective syntax to perform such specification in practice.

This justifies the name of constructive probability for our theory.



3 SiGNalea

We first discuss the nature of time for the kind of dynamical system we have to consider.
Then we briefly describe the SIGNAL language and introduce and discuss in details its
SiGNalea extension.

3.1 What is time?

What is the nature of time for the kind of models of dynamical system we want to con-
sider? Complex applications such as the one mentioned in the introduction are inherently
distributed in nature. Every subsystem possesses its own time reference, namely the ordered
collection of all the communications or actions this subsystem performs: in sensory based
control systems, each sensor possesses its own digital processing with proper sampling rate,
actuators generally have a slower sampling rate than sensors, and moreover the software
devoted to monitoring only reacts to various kinds of alarms that are triggered internally or
externally. Hence the nature of time in the systems in consideration is by no means univer-
sal, but rather local to each subsystem, and consequently multiform. This very fundamental
remark justifies the kind of model SIGNAL relies on, we discuss it informally now.

Our model handles infinite sequences of data with a certain kind of restricted asynchro-
nism. Assume that each sequence, in addition to the normal values it takes in its range, can
also take a special value representing the absence of data at that instant. The symbol used
for absence is L. Therefore, an infinite time sequence of data (we shall refer to informally
as a signal in this discussion) may look like

1,-4,1,1,4,2,L,... (10)

which is interpreted as the signal being absent at the instants n = 3,4, 7, ... etc. Dynamical
systems specified via constraints on signals of the form (10) will be considered here. A typical
way of specifying such constraints will be to write equations relating different signals. The
following questions are immediate from this definition:

(1) If a single signal is observed, should we distinguish the following samples
from each other?

{1,-4,1,1,4,2,1,..}, {1,1,1,-4,1,4,1,2,1,..}, {1,-4,4,2,...}
Consider an “observer”® who monitors this single signal and does nothing else. Since he
is assumed to observe only present values, there is no reason to distinguish the samples
above. In fact, the symbol L is simply a tool to specify the relative presence or absence of
a signal, given an environment, i.e. other signals that are also observed. Jointly observed
signals taking the value 1 simultaneously for any environment will be said to possess the
same clock, and they will be said to possess different clocks otherwise. Hence clocks may
be considered as equivalence classes of signals that are present simultaneously.

®in the common sense, no mathematical definition is referred to here



(2) How to interconnect two systems? Consider the following two systems specified
via equations:
yn = if 2, > 0 then z,, clse L (11)

and the usual addition on sequences, namely
Zn = Yn t Un (12)

In combining these systems, it is certainly preferable to match the successive occurrences
Y1, Y2, ... in (12) with the corresponding present occurrences in (11) so that the usual meaning
of addition be met. But this is in contradiction with the bruteforce conjunction of equations
(11,12)

yp = if z, > 0 then 2, else L

2n = Yntup

which yields z, = L + u,, whenever z,, < 0. Motivated by the above discussion, we proceed
now on presenting SIGNAL.

3.2 Brief review of SIGNAL

We shall introduce only the primitives of the SIGNAL language®, and drop any reference to
typing, modular structure, and various declarations; the interested reader is referred to [15].
SIGNAL handles (possibly infinite) sequences of data with time implicit: such sequences will
be referred to as signals. At a given instant, signals may have the status absent (denoted
by 1) and present. If x is a signal, we denote by {z,}.>1 the sequence of its values when
it is present. Signals that are always present simultancously are said to have the same
clock, so that clocks are equivalence classes of simultaneously present signals. Instructions
of SIGNAL are intended to relate clocks as well as values of the various signals involved in
a given system. We term a system of such relations program; programs may be used as
modules and further combined as indicated later.

A basic principle in SIGNAL is that a single name is assigned to every signal, so that in
the sequel, identical names refer to identical signals. The kernel-language SIGNAL possesses
6 instructions, the first of them being a generic one.

(i) R(x1,...,xp)

(ii) y := x $1 init x0

(iii) y := x when b
(iv) y := u default v
(v) Pl Q

(vi) P {xi1,...,xp}

Their intuitive meaning is as follows (for a formal definition, see the section 2):

6SIGNAL is a joint TradeMark from INRIA and CNET; a graphical integrated development environment
called SILDEX is commercially available from TNI, Brest, France, which implements the SIGNAL language.
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(i) direct extension of instantaneous relations into relations acting on signals:
R(x1,...,xp) < Vn: R(x1,,...,xp,) holds

where R(...) denotes a relation and the index n enumerates the instants at which the signals
xi are present. Examples are functions such as z := x4y (Vn : 2, = x, +y,). A byproduct
of this instruction is that all referred signals must be present simultaneously, i.e. they must
have the same clock. This is a generic instruction, i.e. we assume a family of relations is
available. If R(...) is the universal relation, i.e., it contains all the p-tuples of the relevant
domains, the resulting SIGNAL instruction only constrains the involved signals to have the
same clock: the so obtained instruction will be written x "= y ~= ... and only forces the
listed signals to have the same clock.

(i1) shift register.
y:=x $1 init x0 <= Vn>1:y, = x,_1,¥1 = X0

Here the index n refers to the values of the signals when they are present. Again this
instruction forces the input and output signals to have the same clock.

(iii) condition (b is boolean): y equals x when the signal x and the boolean b are available
and b is true; otherwise, y is absent; the result is an event-based undersampling of signals.
Here follows a diagram summarizing this instruction:

x: 1 2 1 L 3 4 1L 1 5 69
b: t f t L f t f L 1 f t
y: 1 1 1L L 1 4 1L 1L 1L L9

(iv) y merges u and v, with priority to u when both signals are simultaneously present.
Here follows a diagram summarizing this instruction:

u: 1 2 1+ 1L 3 4 L 1 5 L 9
v: L 1 1L 3 410 L 8 9 2 1
y: 1 2 L 3 3 4 1L 8 5 2 9

Instructions (i-iv) specify the elementary programs.

(v) combination of already defined programs: signals with common names in P and Q are
considered as identical. For example

(ly :=2zy + a
| 2y :=y $1 init x0
1

11



denotes the system of recurrent equations:
Yn = 2ZYntan
2Yn = Yn-1, 2% = X0
On the other hand, the program

(| y := x when x>0
y+u

N
[}

if z,>0 then Yn = In
Zn = Yn + Un

else y,=u,=2,=1

where (z,) denotes the sequence of present values of x. Hence the communication | causes
1 to be inserted whenever needed in the second system z:=y+u. This is what we wanted
for the example (11,12).

(vi) restriction to the listed set of signals: other signals are local to the considered pro-
gram and therefore play no role in program communication.

Two different mathematical models of SIGNAL are provided in [4]. It is shown there that
SIGNAL is a convenient tool to effectively construct complex multiple-clocked dynamical
systems. It is a sort of a “RISC” programming language to specify complex real-time ap-
plications. SIGNAL is currently used as a real-time programming language and belongs to
the so-called family of “synchronous languages”, see |3, 8, 10, 15].

3.3 The SiGNalea extension

SiGNalea turns out to be a very little extension of SIGNAL. Its instruction set is:

(1) R(x1,...,xp)
(ip) potential U(xi,...,xp)
(i1) y := x $1 init x0

(iii) y := x wvhen b
(iv) y := u default v
(v) P1lQ

(vi) P {x1,...,xp}

Thus only the instruction (ip) has been introduced. The notation “U(x1,...,xp)" refers
to any real-valued function of the mentioned arguments. First, this instruction is of type
(1): it forces the signals (x1,...,xp) to have the same clock. Then, considered alone, this
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instruction causes the signals (x1,...,xp) to behave jointly according to the distribution”

N
(_;_C—U(xl,...,:c,,)) 2= Y U

4
(Il,...,l‘p)

where Z is the usual normalizing constant factor. Thus instruction (ip) is used to specify
independent identically distributed (i.i.d.) sequences of random variables via the negative
loglikelihood of their joint marginal distribution. On the other hand, the initial condition
x0 in instruction (ii) can be made random too. Then some SIGNAL program can be used
to specify a subset of “legal” behaviours, thus generalizing the simple example of equation
(5). Combining this SIGNAL program with previously mentioned “potential” statement
via the operator | amounts to specifying the given i.i.d. random process as conditioned to
live on the set of legal behaviours, thus generalizing formula (6). More generally, several
“potential” statements can be combined with a SIGNAL program.
The following macro will be useful to define conditional probabilities in a proper way:

(ipe) given x1,...,xp potential U(x1,...,xp,y1,...,yq)
This instruction is by definition equivalent to
potential U_x(x1,...,xp,y1,...,yq)

where U, and U are related as follows:

Ur(2,9) =aet U(z,y)+logy_ e7Ulv) (13)
Yy

where z and y denote the tuples (2, ..., z,) and (y1, ..., ¥q) respectively. Formula (13) is just
the translation of formula (9) with the present notations. The (ipc) instruction allows us
to specify some conditional distribution of y given x via U without having to write explicitly
the compensator in the righthand side of (13). Recall that the potential V(z) + U.(z,y)
can be interpreted as a Bayes rule where the first term specifies the marginal distribution
of z and the second one the conditional distribution of y given .

3.4 Some simple SiGNalea programs

A Markov chain. We claim that the following program specifies a Markov chain:

(] given y potential U(y,x)
| ¥y := x $1 init x0
1

Let us check this. Using notation (13), the first instruction specifies an i.i.d. sequence with

distribution N
®
(ie—uxw,z))
VA

"to simplify, we consider in this paper only finitely valued random variables.
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In particular the distribution of an observation up to instant n is given by
-—l—e_ S Us(yiizi)
Zn

Next, we take into account the constraint specified by the second instruction. According to
formula (6) this yields the conditional distribution

o= 2ovey Us(zio1,7i)

(with no need for a further normalizing constant factor). From this follows immediately
that (zn)n>0 is @ Markov chain with transition matrix m(u,v) given by

~U(u,v
€ (w.v) _ e—Uz(u,v)

Zv e—Uluw) =

m(u,v) =

and initial condition zo. Finally, if it is wished to have the initial condition x0 as being
random, just specify the corresponding distribution when declaring initial conditions. The
examples to follow are slightly more involved. Therefore we cannot expect to analyze them
easily without relying on the adequate mathematical tools we shall introduce later. Hence
we just comment them informally.

A simple stochastic automaton. We claim that the following program specifies some
kind of a stochastic automaton:

(I given z potential U(x,z)
| potential V(a)

| z := a default zz

| 2z := z $1

1)

This SiGNalea program consists of two “potential” instructions which specify the random
characteristics of the system, plus the following SIGNAL program:

(I z := a default zz
| zz := z $1

D)

which specifies the constraint. A behaviour of the latter program is depicted below, where
zo denotes some initial condition:

time: 1 2 3 4 5 6 7 8 9 10 11
a: + 1 a 1 ay @3 L L 1 L a4

Z: 2 2 a1 a a3 a3 az az az az a4
2Z:. 290 29 2 @@ a a2 a3 a3z a3z az asg

Hence, when a is received, it is fed into some memory and at the same time is delivered;
then this memory can be read an unspecified amount of times between two successive a’s;
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the resulting signal is z. On the other hand, the input signal a is i.i.d. with distribution
proportional to e"V{%) and each time z is produced, a random variable x is emitted ac-
cording to a conditional distribution proportional to ¢~V(#:*), Here the macro “given .
potential ...” is used in order to guarantee that U(z, z) does not modify the distribution
of a, cf. (8,9). We insist on the fact that the amount of successive x’s between two a’s is
unspecified and not random: the last two instructions just specify that z carries the last
received or current value of a and that it is more frequently delivered than a is received (cf.
the meaning of the default instruction). If it is wished to produce between successive a’s
an amount of x’s according to some specific distribution, just combine this program with
another one via a “~=" statement:

(1(] given z potential U(x,z)
| potential V(a)
| z := a default zz
| 2z :1= 2z $1
1)
[(} x "= N
D)
I (1 potential W(R) % R positive integer %
| N := R default (ZN-1)
| ZN := N $1 init 1
| R "= (true when (ZN=1)) "= a
1)
(D)

Recall that the “~=" instruction is an instruction of type (i) which only forces the listed
signals to have the same clock and does nothing else. The last module specifies a decreasing
counter with reset R. Due to the last instruction, reset must occur exactly when the counter
is empty, and simultaneously, a is read. Thus x and N have the same clock and a is read
when the counter gets empty. Due to the first instruction of the last block, R has some
desired distribution and is i.i.d., so that the third block of this program specifies a renewal
process.

If this renewal process was indeed a (discrete time) Poisson process, the following simpler
program can be used:

(ICl given z potential U(x,z)
| potential V(a)
| z := a default zz
| zz := z $1
D)
I(l x "= ¢
D)
I(l potential if c=true then 1 else p fi
| a "= (true when c¢)

D)
)
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where the boolean signal ¢ is the outcome of some coin tossing; the potential specified by
the expression “if c=true then 1 else p fi” is equal to

W(C) = 1{c=true} + pl{czjalae}

so that the bias of the coin is specified by the parameter p. In both programs above, the
resulting effect is to produce a random amount (with some specified distribution) of samples
of x between successive a’s.

Finally, if it is desired that a be a Markov chain instead of i.i.d. random variables, just
combine the first example with the previous one:

(1(l potential PI(b,a)
| b :=a $1
N
I(| given z potential U(x,z)
| z := a default zz
| zz := z $1
(D]
J{l x "= N
D)
| (I potential W(R) % R positive integer Y
| N := R default (ZN-1)
| ZN := N $1 init 1
| R "= (true when (ZN=1)) ~= a
(D)
D]

Modular, or even graphical® programming can be easily provided that explicitly exhibits
the modular structure shown here with the help of parentheses. Renewal processes and syn-
chronizations are useful basic tools for modelling complex queuing networks. Also stochastic
automata of the above kind are for instance typically encountered in Hidden Markov Models
(HMM) such as used in speech recognition systems [19}; in fact, building complex hierar-
chical HMM’s is often performed using computer assisted generation tools.

Programming with rules. Most popular expert systems rely on rules. Fuzzy rules are
provided in fuzzy programming systems. Here we provide a SiGNalea program that may be
interpreted as the following sentence: if events A and B happen to occur at the same time,
then it is likely (with truth value p) that C follows to happen. The SiGNalea program is:

(| AB := A when B
| potential p(C,AB)
D)

AB is the event which occurs when both A and B occur, and the second instruction quantifies
the interaction between the two events. Here we do not rely on the macro “given .

8in the style of the SIGNAL block-diagram interface, see [15] or the SILDEX system.
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potential ...” since we want C and AB to play a symmetric role: they are just related,
we do not care and maybe do not know which one is the cause and which one the effect.
Then if C is observed we can infer about A and B, and conversely, if A and B are observed,
we can infer about C. This is typical of probabilistic reasoning in the presence of uncertainty.

Justifying these examples is certainly beyond the capacity of such elementary arguments
we used to analyze the first Markov chain example. Some further mathematical machinery
has to be introduced to help for this. This is the purpose of the remainder of the paper.

4 The mathematical model of SiGNalea.

Stochastic models of random real-time systems gencrally involve a triple {2, (F,), P} called
probability space, where Q is the set of possible behaviours (or trajectories), (F,) is an
increasing family of o-algebras representing the flow of incoming information as time n
grows, and P is a probability. We shall now introduce 1/ elementary such probability
spaces, and 2/ some operators to combine given probability spaces to build another one.

4.1 The mathematical model

This subsection is organized following two levels of difficulty: simple notions are presented
in the core of the text, and more general and difficult notions are given in appendix A. For
a first reading, this appendix may be skipped.

4.1.1 Primitives
Consider a finite domain S of values, and introduce
2 = N~ S5, forwe Q2 we write ,(w) =g¢f w(n)
Frn = ofzm : m<n} (14)

where N — § denotes the set of all functions from N into the domain S. The notation

g{z,m : m < n} denotes the g-algebra generated by the coordinates z,, for m < n, i.e., for
ACQ,

AeF,
{ by definition (15)

w €A

Tm(w) = 2pm(w2) Ym < n } > wmed

that is to say, the statement “w € A” involves only initial segments of w of length at most n.
Similarly, a function F defined on  is said to be F,-measurable if F(w) actually depends

only on the initial segment of w of length at most =, i.e., if

Tm(w) = zpm(w2) Ym <n = Flwy) = F(uw)
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The pair {Q, (F)} models what can be observed while monitoring a S-valued signal as time
n increases when no prior constraint is set on the possible behaviours of this signal: this is
our first primitive object, we call it a primitive process. It models “all possible behaviours” of
an S-valued signal. A general and abstract definition of a process is provided in appendix A.

If we want this S-valued primitive process to be randomized, we proceed as follows. Given
some real-valued function U(z), we consider the probability v(z) = Le=V(*) where Z is a
proper normalizing constant factor, and we equip {€, Foo} With the probability P = v®N,
i.e., we define the sequence (z,) as being random, independent, and identically distributed
(i.1.d.) with marginal distribution v. The resulting primitive is written {Q,(F,), P}, we

call it a primitive random process.

4.1.2 Shuffle products

We first define how to compose primitive processes. Consider two primitive processes
{Q=,(FZ)} and {QV,(FY)} as above, with respective domains $* and SY. Introduce the
alphabets

S =8"u{L}, SY =SYu{L}

where L is some distinguished element to be interpreted as the absence of value. Then set
S = (ST x $¥) - {(L, 1))

The shuffle product is by definition the process

{97, (FD} {92, (F2)} =det {W,(Gn)} (16)
where
W = NmS§S
Gn = o{w(m) : weW,m<n} (17)

The trajectory w(n) at instant n has two components we denote by z,(w) and y,(w). Then
z, = L refers to the absence of r in the shuffle at the considered instant. Thanks to our
definition of S, it never happens that both components are absent simultancously. An ob-
server watching the component z only and ignoring the L’s will exactly observe the original
space {Q%,(FZ)}: this is the characterization of shuffle products (and communications we
shall introduce later) which [4] relied on. This definition is related to that of shuffle product
of languages in automata theory. The reader is referred to appendix A for a definition of
the shuffle product of general processes.

How to define shuffle product of random processes is explained next. Consider two ran-
dom processes {Q*,(FZ),P*} and {QV,(FY),P¥}. By constructing the shuffle product
{QF, (FE)} w{Q¥, (F¥)} we introduce some interleaving of the two components. This in-
terleaving is unknown to an observer monitoring the present occurrences of one of the
components, joint observation of the two components is required for this interleaving to
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be known: mathematically speaking, the interleaving is not FZ ® F¥ -measurable. Hence,
defining some probability on the space {W, G} would require to randomize in some way
the interleaving, something arbitrary we refuse to do. We rather proceed as follows:

{W,(G)} = {95, (F)ruw{e,(F2)}
Q=P P¥ is defined only on FL ® FY é Goo

Hence we end up with a partially random process, i.e., a compound process where each
component is random, but their interleaving is unknown but nonrandom. This is exactly
the kind of mathematical object we specified in the first simple stochastic automaton. In
general, partially random processes are tuples of the form {Q, (F,),(G,P)} where {Q, (F,)}
is a process, G C F,, and P is a probability on G. Partially random processes can be further
combined via shuflle, see appendix A for a more general machinery allowing this.

4.1.3 Clocks, signals, specifying constraints, and performing conditioning

Consider a shuffie product {W,(G,)} = {27, (F3)} W {2, (F¥)}. We can define the clock
of z as the increasing sequence 0 = Hi(w) < Hf(w) < Hj(w) < --- of instants n where
zp(w) # L holds, i.e., the z component is present. HY is defined similarly. Clocks satisfy
some kind of a causality condition which is fundamentally studied and exploited in [4],
namely for instance:

{weW: Hf(w)=n}€G, (18)

i.e., to decide whether HT occurs at time n, it is enough to observe w up to time n. In
conjunction with the clock H?*, we consider the signal X(w) = (Xig(w))k>o which is the
sequence of values of the z component when it is present, so that Xi(w) is available at
time Hf(w). More generally, a sequence ( Hi(w))k>o of N-valued functions satisfying the
causality condition (18) will be called a clock. Thanks to (18), the following relation =y,

w =Ry, W2

by degnition Hi(wy) = n and
wy(m) = wy(m)Vm<n

is an equivalence relation: its equivalence classes are called initial segments of w of length
I, this generalizes the notion of initial segment to variable instants. A sequence X(w) =
(Xk(w))k>o of functions such that X (w) depends only on the initial segment of w of length
H(w) is termed a signal with clock H®. The present occurrences of the z component of
a shuffle is an example of a signal, and so is £ = (z,(w)) in (14). How signals and clocks
are lifted when their supporting processes are shuffled with other ones is discussed formally
in appendix A. Expressing constraints on clocks and/or signals is the basic way to specify
a subset of “legal” behaviours w: thus new processes can be specified from given ones by
expressing constraints on clocks and/or signals. This is the way the semantics of SIGNAL is
provided in [4], and SIGNAL itself can be used for such specifications.

®the reader who is familiar with probability theory may have recognized that clocks are chains of stopping
times, while signals are sequences of Gy, -measurable variables
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How constraints apply to partially random processes is a bit more involved. We are given
some partially random process {Q,(F,),(G,P)}, where G C Fo is some o-algebra and P
is a probability defined on G. Next consider some subset W C §2 of “legal” behaviours as
mentioned above. The way we interpret the restriction of P to W is in accordance with
the principle of conditioning in random fields: the resulting probability Q on W should be
the conditional probability P(.|W) given W. However, as in the Markov chain example, we
must be careful in defining this since in general P(W) = 0 will hold so that the elementary
Bayes rule does not apply to define conditional probability. This can be however easily
overcomed when {Q2,G,P} is the inductive limit of some sequence ({25,Gn,Pn})n>0 of
probability spaces, and there exists, for each n, W,, C Q,, such that P,(W,) > 0 holds and
{W, G} is the inductive limit of ({W,,Gn})n>0 (this was typically the case in the Markov
chain example, where the “.,,” objects are associated with the observations up to time n).
In this case, we can use the Bayes rule for each n and set

P.(A,NnW,)

W (4a) = =5 5w

Then {W,G,Q} is defined as the inductive limit of ({Wh,Gn, Qn})n>0- It is shown in
appendix B, proof of theorem 4.1, how conditioning is performed in general for partially
random processes specified via SiGNalea programs.

4.1.4 The algebra of clocks and timers

We are given a process {Q2,(F,)} and a clock H. Clocks provide the successive dates of a
sequence of events, we shall now introduce timers, which count how many such events occur
during some time interval. The timer associated with H, we denote by uf’, is defined by

for ACN, uff(w,4) = #{k : Hi(w) € A}

where #{---} denotes cardinal. The causality property of clocks is transferred to timers as

follows:
w > pfl(w, A) is F,-measurable if A C [0, ]

i.e., the timer needs to know only the initial segment of length n of w to provide any
information about subintervals of [0, n]. We define now the filtering of a clock by a boolean
signal. Consider a boolean signal B with clock H. The filtering of H by B, written H | B,
is the clock associated with the timer

p1B(w, A) =g4ep uf(w, AN {n: Hy(w) = n and Bi(w) = true}) (19)

hence H | B is selects those instants of H where the boolean signal B is true. The following
A and V operators are also useful:

P a) = w(w,{a}) . ¥ (w (a}) (20)
WK, {a}) = min {(s"(w,{a}) + ¥ (w,{a})),1}
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Thus A and V respectively denote the supremum (union of instants) and infimum (intersec-
tion of instants) of clocks. Formula (19) has the following converse:

KANH=K = K=H|DB (21)

for some boolean signal B of clock H. Together with the A and V of clocks, the | operator
provides the set of clocks defined on a given process with a nice structure which is extensively
studied in [4]. Clock equations written using these operators are used to specify constraints
on the set of legal behaviors of signals, SIGNAL programs can be used to perform this in
practice.

4.1.5 Communication

We are given some process Il = {Q,(F,)}. A port on Il is a triple [x, H, X] where H is
some clock, X is a signal with clock H, and x is a name. Ports can be used to establish
communication between processes in a fairly simple way. Given two processes Il and IT’
with ports {x, H, X] and [x’, H', X'] respectively, we define the communication

mm’ (22)
as being

1. the shuffle product IT LUIT’, if the names x and x’ are different,

2. the restriction of this shuffle product IT LWL’ to those behaviours w such that X (w) =
X'(w), H(w) = H'(w) holds, otherwise.

This definition generalizes to processes with several ports. Hence the principle of the com-
munication | is that ports with common names in the two components must carry identical
clock and signal. This is depicted in the diagram below:

Communication can be extended to partially random processes. The idea is to construct
the shuffle of the considered partially random processes, and then to consider that the
constraints set by the communication result in taking the “conditional probability given
these constraints”. This is a bit a delicate programme since the above mentioned constraints
generally define a set of zero probability, so that conditioning involves some technicalities
that are discussed in appendix A.
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4.1.6 Summary:

The tools we have at this point in our toolbox are recalled now:

primitive processes corresponding to all possible S-valued behaviours where S is some
domain,

primitive random processes corresponding to S-valued i.i.d. random sequences with
marginal distribution v,

shuffle products of such objects, which generally result in partially random processes,
and then (recursively) shuffle products of partially random processes,

clocks, signals, that can be used to specify via constraints a subset of “legal” be-
haviours of a given process, thus specifying by the way a new process; as far as
probabilities are concerned, constraints are to be interpreted as performing condition-

ing,

ports, and communication | of partially random processes, where ports with identical
name are forced to possess identical clocks and signals.

As this summary shows, we need to extend the key notion of shuffle product to (partially
random) processes that need not to be primitives. This requires a more abstract definition
of the shuffle which is presented in the appendix A.

4.2

The semantics of SiGNalea

In this section, we provide a precise mathematical meaning for the kind of SiGNalea program
we wrote. This will be done by giving a precise translation of the instructions (i)--(vi)
of SiGNalea in terms of the mathematical objects we introduced in subsection 4.1.

Notations

Our mathematical model is presented in the following form:

process
program:: | potential

constraints

where

program denotes some SIGNalea program,;

“::” indicates that the array on the right handside is the mathematical model associ-
ated with the program mentioned on the left handside;
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e “process” refers to some process II = {Q,(F,),1ist of ports} equipped with some
ports, we provide later adequate syntax to specify such processes;

e the field “potential” describes some (static) energy function, say U, with v = % e~U

as associated Gibbs measure; this specifies some probability P = v®N defined on the
space {Q,G}, where G C F,,. Again will appropriate syntax be provided to specify
them; note that the pair {process, potential} together build the “partially randomized
process” we introduced before;

e “constraints” refers to a list of constraints specifying the restriction of the above
mentioned partially randomized space to those trajectories which satisfy the required
constraints; applying such constraints results in specifying the conditional probability
law specified in the “potential” field, given the constraints; how these constraints
are specified will be introduced later.

We shall also write S(program) to refer to the model of the right handside.

Canonical process associated with a port. For a port name x with domain S, we set

I{x} =g {9, (Fn),[x,1d,z]}, where
R = NS5, wewrite I,(w) =gef W(n), T = (ZTn)neN

N
I

o{zm : m < n}

[x,Id,z] is  a port with name x, clock /d and signal =

Recall that Id denote the “identity” clock defined by Id,(w) = n. No confusion should
result from using the same label to refer to running points of the data types and to signals.
Thus IT1{x} is the set of all possible behaviours of S-valued sequences.

Canonical process associated with a set of ports.

I{x1, ..., Xp} =def M{x1} - LM {x,}

Canonical random space associated with a set of ports. We use the notation

U(x1, ..y Xp)
to refer to the probability
N
(_}_e—U(zl,...,zp))®
VA
defined on the space II{x,,...,x,} where the constraint H(x;) = --.= H(x,) is enforced.
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Specifying constraints. We have to specify constraints involving clocks and signals.
Constraints involving clocks are expressed with the operators “A, Vv, |” we introduced before.
It will be useful to write generically H(x) to refer to the clock of the port x or H(z) to refer
to the clock of the signal z. Then, given two ports [x, H,z] and [x’, H’,z’], we shall write

K : R(z,z') (23)

where K denotes a clock satisfying A C H A H' and R(.,.) is some relation, to mention

that
¥Y(m,n,p): Hp(w)= Hi(w) = K)(w) = R(zm(w),zn(w)) holds

This may be rephrazed: “R(z,z’) holds at clock K.

The semantics
Instruction (i)

[ {xy, ..., Xp} 7]
’ none
R(x1, ...y Xp) 2

H(zy)=..= H(zp)
Id : R(z1,...,zp)

Instruction (ip)
M{xy,...,xp}

potential U(xy,...,Xp) i U(x1y .0y Xp)
H(z,)=..= H(z,)
Instruction (ii)
[ {x,y} T
none

y:=x $1 init x0::

H(y) = H(z)
[ yn(w) = zn_1(w) , yo(w) = x0 |

Instruction (iii)
[ I{x,b, y} ]
y := x when b:: none

H(y) = H(z) A (H(b) | b)
I H(y) : y=2
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Instruction (iv)
[ I1{u, v, y}

none
y :=1u default v::
H(y)= H(u)V H(v)
H(u) : y=u
| Hv)© H(u) : y=v |

where H (v) © H(u) denotes the clock such that (H(v)© H(u))Vv (H(v)A H(u)) = H(v).
Instruction (v)
S(P|Q) = S(P)|S(Q)
in the sense of the section 4.1.
Instruction (vi)
P {x1,...,xp}:: remove all but x1,...,xp ports in S(P)

Due to the coding of instruction (v), this semantics is rather abstract and not useful to
develop the effective formal calculi which will be involved in the SiGNalea compiler. In the
next subsection, an alternative canonical form of the semantics of a SiGNalea program will
be presented which will be more concrete and useful.

4.3 A canonical form
We first investigate on the small SiGNalea programs how we would like this canonical form
to look like. Then we introduce the canonical form mathematically.

4.3.1 Guessing the semantics of some simple example

A simple stochastic automaton. It has been claimed that the following program spec-
ifies some kind of a stochastic automaton:

(] given z potential U(x,z)
| potential V(a)
| z := a default zz
| zz := z $1

D)

The second instruction specifies an i.i.d. sequence (a,) with marginal distribution

_;_e_u(a)
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Next, considering the last two instructions yields the (nonrandomized) process

( Il{a, z,zz} 1
none

H(z)= H(2z)= H(a)V H(z)
H(@):z2=a, H(z)0 H(a):z= 2z
H(z): 2z = 2p |

Then, combining the last two instructions with the second one yields the (partially random-
ized) process

II{a, z, zz}
U(a)
H(z)= H(22)= H(a)V H(2)

H():z=a, H(z)O H(a): z = 22
H(2): 22y = 2q_y

Finally, taking into account the first instruction yields

[ (i) II{a,z,zz,x} 1

(i) Ua)
() Us(x,2)
(24)
(iv) H(2)= H(zz) = H(a)V H(z)

(v) H(a):2=a, H(z)O H(a): z= 2z
(vi) H(z):zzq = 2p
L (vit) H(z)=H(z) )

Formula (2) specifies the process which the semantics of this program is based on. Formula
(1) specifies that aisi.i.d.: since no further constraint result on a from equations (iv)—(vi?),
this is the actual distribution of a as resulting from the global program. Next, formula (vi?)
asserts that x and z have the same clock. Then equation (iv) specifies that z has to be
available at least when a is, but can also be more frequently available in some unspecified
(but nonrandom) way. Finally, formulae (v,vi) express that the value of z is that of a
when the latter occurs, and is unchanged otherwise. Finally, formula (7i¢) can be thought
of as specifying how x behaves via its conditional distribution given z: the notation U,(x, z)
refers to the potential U compensated as in formula (13). This yields a simple stochastic
automaton, as claimed. The clocks H(z) and H(a) are related only via the constraint (iv)
(an “inequality” constraint), whence the clock of z is not entirely determined by that of the
input a: this is how nondeterminism is exhibited in the semantics.

It is interesting to notice that we have carefully checked how the dependencies are
oriented. But actual dependencies vary with time (they depend on whether a is present or
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not), hence some kind of Conditional Dependency Graph must be considered, as in SIGNAL,
see [4]. We shall see later how to perform this. It is also interesting to note that we may
want to combine formulae (i, #77) into the single following one

where the expression u*U(a)+ U,(x,z) denotes an energy function which is the sum of two
local components: U,(x,z), and p®U(a). The latter one indicates that the local potential
U(a) has to be modulated by the timer u°, i.e. is taken into account only when a is present.
We shall formalize and generalize this procedure later on.

Discussion

The reader may have guessed that we somewhat cheated in presenting this semantics. We
properly used the models of instructions (i-iv), but we did not use the semantics of the
communication | as stated in the section 4.2. Instead we have combined the basic canon-
ical spaces via simple shuffle operators, then we have performed effective communication
by specifying systems of constraints, and finally we specified the random behaviour via
“potentials modulated by timers”. The next subsection is devoted to a formal study to
support this intuitive and effective approach. In particular it is needed to show that the
conditional distributions that are specified via the pair {modulated potentials, constraints}
are properly defined.

4.3.2 Getting the canonical form
The following results are proved in appendix B. Consider first the instruction

(| potential U(x) | potential V(y) |)

The associated process is the shuffle II{x, y} of the primitives II{x} and II{y} as defined in
paragraph 4.1.2. The formula

Q‘gn(w(l),...,w(n))
W(w(n)) = 1{xn(w)¢.L}U(xn(w))+1{yn(w);él}v(yn(w)) (26)

ZLH o= Tom, W(w(i)) (25)

equip T{x,y} with a probability Q making (w(n))neN to behave as an i.i.d. sequence with
distribution proportional to e=". Note that U(z,(w)) is well defined at those instants n
where z,(w) is present, so that (26) is meaningful. We shall use the notation

pU(x) + p¥V(y) (27)

to refer to the potential W as defined in (26), i.e., u* = 1 if z is present at the considered
instant, and 0 otherwise, so that u” is the timer counting the occurrences of z in the shuffle.
The following result holds:

Proposition 4.1 (representing shuffles ) .
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1. The following formula holds
I{x,y}
(Ipotential U(x)lpotential V(y)|) :: | u*U(x)+ p¥V(y)
none

2. Only the restriction of Q to the o-algebra FS ®@ FY, we shall denote by Q has to be
considered and it holds that

Q = P"Q@PY on the o-algebra F, ® F2, (28)
This proposition generalizes immediately to several such instructions.

Statement 2. expresses that the restriction of Q to FZ ®FY (i.e., ignoring the interleaving
of the two components) equals P* ® PY, hence Q is the desired distribution on the shuffle,
as defined in the paragraph 4.1.2. Hence only point 2. needs to be proved to get proposition
4.1, this is done in appendix B. The following result is essential in getting equivalences of
SiGNalea programs:

Proposition 4.2 (combining synchronized potentials) The following formula holds true:
{x,y}
(lpotential U(x)|potential V(y)|x~=y|) = potential U(x)+V(y) :: | U(x)+ V(y)
H(x) = H(y)

In particular, it expresses that, when considered alone, the statement “potential U(x)+V(y)”
does not cause any mutual dependence between x and y; this can also be verified by re-
calling that e~ (U(@)+V(¥) = ¢-U(=)e~V(¥) 50 that £ and y remain independent signals. This
will be taken into account when associating labelled graphs with SiGNalea programs in the
following section. The following result provides the desired canonical form:

Theorem 4.1 (canonical form using potentials) Every SiGNalea program P{xy, ..., Xp; ¥1,..-,¥q}
with inputs {x1,...,x,} and outputs {yi,...,yq} can be ezxpressed as follows:

I{x1, s Xp3 ¥1y o0y Yot
P{X1y oo Xp Y1y s Yo} 2 | U1,y Xp) = S0y P U(x], . x5,)
C(X1yeeey Xp; ¥y eeer ¥q)

where ' = 1 when the x‘i,...,x;',i s are present and = 0 otherwise, and C denotes some

constraint involving the listed signals and their clocks.
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In fact, p* is just the timer associated with the common clock of the signals x'i,...,x;',',, S0
that U(x1,...,Xp) is the sum of potentials modulated by timers. Thanks to this formula,
conditioning is performed using potentials in the very same way it was done in (5,6) for
elementary random fields, see appendix B for details. This canonical form can be built in
a mudular way, as stated in the following immediate corollary of the preceding theorem:

Corollary 4.1 (an explicit formula for the composition |) The following alternative
coding of the composition | holds:

II m MW’
if Pu| U , Q| U’ then P|Q: | pU+ .U’
c c’ cuc’

holds.

In these formulae, u" refers to the counter associated with the clock of the events in the
composition in which II is involved; p™.U denotes the energy U modulated by p"', which
means that U is considered only at those events II is involved in. Then C U C’ denotes the
conjunction of both constraints C and C’.

4.3.3 Back to the stochastic automaton example

Theorem 4.1 and its corollary justifies the semantics we provided to the stochastic automa-
ton example in section 4.3.1. In particular, the inequality (iv) in (24) expresses that H(z) is
not entirely determined by H(a). So if a alone is to be considered as the input (as probably
wished), the interleaving is unknown and not randomized.

Next consider again the program of the stochastic automaton with reading times dis-
tributed according to a Poisson process:

(1(l given z potential U(x,z)
| potential V(a)

| z := a default zz
| zz :=z $1
(D)
Il x "= ¢
D
(1 potential if c=true then 1 else p fi
| a "= (true when c)
D

1
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[ts semantics is derived in the same way:

( (1) I{a,c,z,2z,x} |
(48) w2U(a)+ W(c) + U.(x,2)

(itd) H(c)= H(z)= H(z22) = H(a) Vv H(2)
(tv) H(a)=H(c)lc

(v) H(a):z=a, H(z)6 H(a): 2= 22
(vi) H(z):zz, = 2n_y
| (vii) H(z)= H(2)

The constraints relating clocks are (i1, iv, vii), they can be equivalently written as

(i1d) H(2)= H(22)= H(z) = H(c)
(iv) H(a)=H(c)!lc

so that all clocks are determined knowing the two inputs a,c. Hence no unspecified in-
terleaving remains any more in this case, so that the potential (ii) as conditioned via the
constraints (7%, - - -, vii) exactly specifies the distribution of the automaton.

5 Expressive power of SiGNalea

It is difficult to characterize exactly this expressive power, we shall rather show examples
of wellknown formalisms that can be embedded in SiGNalea.

Theorem 5.1 Every stochastic Biichi automaton!® can be specified in SiGNalea.

Proof. A semi-Markov chain is a stochastic process (y,) defined as follows: there exists
some (hidden) Markov chain (z,) such that

E[ynlyn—l yYn—-2y"" 3 Tp~1,Tn-2,"" ] = E[ynlzn—ll
An homogeneous semi-Markov chain can be specified by the following SiGNalea program:

(I given z potential U(y,z)
| given z potential V(z,x)
| 2z := x $1 init x0

)

Here, x is the Markov chain, z its delayed value, and the potential U specifies the conditional
distribution of y given z. If it is wanted that (say) this latter conditional distribution be
time varying, just replace the first instruction by the following program:

1041, equivalently, every semi-Markov chain, or every Hidden Markov Model, depending on the area where

these objects are referred to.
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(| given z potential U(y,z,n)
In:=zn+1
| zn :=n $1 init O

)

By the first instruction, the signals y,z,n have the same clock, and n is an increasing
counter which thus counts the occurrences of y,z, so that it represents the time. Then U is
now a function of n.

Theorem 5.2 Every stochastic timed Petri net [20] can be specified in SiGNalea.
Proof: see appendix C.

Summary
SiGNalea allows us to specify

s stochastic automata, and their interconnection via down- and upsampling,

e Petri net-like asynchronous (random) systems such as widely used in manufacturing
systems or queuing networks,

e random fields on graphs (by the very definition of SiGNalea),

and the combination of such types of systems. The next section is devoted to simulation
and compilation.

6 Compilation and simulation

In this section we show how the canonical form of a SiGNalea program can be exploited to
perform simulation using local interactions only. From this analysis the notion of compila-
tion of a SiGNalea program will emerge.

6.1 Examples continued

The Markov chain. Recall this program:

(I given y potential U(y,x)
| y := x $1 init x0
D)

It specifies a Markov chain with distribution up to instant n proportional to e~ 2oin Uslmior i),
It is wellknown that this joint distribution can be factorized using Bayes rule, which is the
very basic reason for Markov chains being so useful. How could we have guessed this by
direct checking of the SiGNalea program? The first instruction, 1/ builds a graph with x
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and y as vertices, 2/ specifies a Gibbs random field on this graph, 3/ extends it to an i.i.d.
sequence. From this we remember that the first instruction created a graph

y—>x

We consider here a directed branch, although random fields are associated with nondirected
graphs: this is because we interpret the “given ...” statement as an intension of the pro-
grammer to specify a conditional distribution. The second instruction “y := x$1” causes
a dependency from x to y which is due to causality from past to future. Denote this as
follows:

X --->»y

Combining both graphs yields
X===>y —X

Unfolding this directed graph yields the way Bayes rule has to be implemented
Cm Xno1 =Y, > Xn = Yapy > o

and simulation is straightforward using only the transition probability of the Markov chain.

A simple stochastic automaton. Recall this program:

(| given z potential U(x,z)
| potential V(a)
| z := a default 2z
| 2z := z §$1

D)

We outline how the preceding argument can be generalized to the present more complex
case. The new point here is that two different clocks are involved, namely //(a) and H(z)
that are related via

H(z) = H(z)V H(a)

The graph coding of this program is the following (each line corresponds to an instruction):

H(z)=H(x) ; z—>x
0 ;0
H(z)= H(z)Vv H(a) ; a —> z HZIOHR)
H(zz)=H(z) ; z---»zz

where we recall that H(z) & H(a) denotes the clock such that (H(z) & H(a)) v (H(z) A
H(a)) = H(z). Since several clocks are involved, we must indicate precisely the meaning
of the branches, possibly labelled by clocks. By definition, each branch is effective at the
infimum of the label and the clocks of their extremities: for instance, branch a — z is
effective at clock H(z)A H(a) = H(a), while branch z HEZIOHQ) 45 is effective at clock
(fH(z)e H(a))v H(z) = H(z) & H(a). Unfolding the resulting global directed graph yields

32



the way Bayes rule has to be implemented. From this follows how simulation is implemented
using only “small” conditional distributions. In the present case, the branch z — x holds
effective when z is present, i.e., always, but the distribution of a is called for only when a is
present. Finally, we must recall that this SiGNalea program specifies a partially randomized
dynamical system.

The Hopfield model in neural networks. This model is also known as Ising or spin-
glass model in statistical mechanics [13]. Let us discuss a simple version of it. We are given
asquare grid V = {1,---, P} x {1,---, P}, the grid itself defines the considered graph (thus
we have an “image”). Each site (or pixel) is labelled by some spin, i.e., some t1-valued
variable we denote by z[7,j]. A family w = {z[7,j]}i jeq1....p} is called a configuration (we
may as well interpret it as a black-and-white image). Then a local quadratic energy function
is associated with a given configuration via the following formula:

Uw)= - Y. afi,flali’, 51 — AD_ zli, jlzoli, 4] (29)

fi—d'l+1i-4'|=1 iJ

where A is some nonnegative constant parameter. In the righthand side of (29), the first term
penalizes chaotic configurations, while the second one penalizes the discrepancy between the
actual configuration w and some desired ideal reference w,. Such a model may be specified
with SiGNalea as follows:

array i to P-1 of
array j to P-1 of
(| potential - x[i,j] xr[i,j] - x[i,j] xd[i,j] - lambda x[i,j] xol[i,j]
| xrfi,j] := x[i,j+1]
| xd[i,j] := x[i+1,j]
(D)
end
end

This program specifies an i.i.d. sequence of variables distributed according to the energy
(29). The graph associated with this program coincides with the original 2-dimensional
grid. A possible consistent orientation of this graph consists of drawing the grid with right-
and downgoing arrows. However, since “potential” instruction have been used rather than
“given ... potential” ones, no Bayes rule with local conditional probabilities emerges,
cf. the discussion in section 2. In fact, any attempt to implement a Bayes rule according to
the above mentioned orientation of the graph would result in computing normalizing factors
that are of order 2F° complexity, so that no real advantage would result as compared to
a global simulation! Such a situation is easily recognized by checking for the size of the
strongly connected nondirected components of the graph associated with the considered
program: in the present case, this size was P2,

For the above discussed reasons it is in general preferred to perform the simulation of
Hopfield models using Gibbs sampling, also known as “stochastic relaxation” or Hopfield
dynamics, it is beyond the scope of the present paper to justify this method, we refer the
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reader to [13, 2]. A SiGNalea program performing Gibbs sampling with periodic flipping of
the spins is the following:

(1C1¢1 i := (1 when (zi=P-1)) default zi+1
| zi :=1i $1 init ©
)
Il j := (1 when (zj=P-1)) default zj+1
1 zj := j $1 init O

D)
(B
| (| potential if Z>0 then Z else infinity % Z a real variable
D)
fCl zx[i,j] := x[i,j] $1 init 1
| 2U[i,3j] := - =zx[i,j] 2zx[i,j+1] - zx[i,j] zx[i+1,j]
- zx[i,j] 2zx[i,j-11 - =x[i,j] =zx[i-1,j]
- lambda zx[i,j] xof[i,j]
| nU(i,j] := - 2ULi,]j]
| dufi,j] := nU[i,j] - zU[i,j]
1

bl x[1,3]) := (- zx[i,3j] when (dU[i,j] < Z)) default zx[i,j]
N
(D)

This program consists of four blocks. The first block specifies how the spin to be flipped (pair
[i,j])is selected: this is done here in a periodic way (a uniformly distributed random choice
could be used as well). The second block specifies ani.i.d. sequence of random variables with
exponential distribution proportional to e*1,50}. The third block computes 1/ the local
interaction zU[i,j] at [i,j] before a tentative flipping, 2/ the result nU[i, j] of flipping
only spin [i,j], 3/ the difference dU[i,j] in the energy that would result if flipping of
the considered spin was performed. Then the fourth block accepts or refuses the flipping
by comparing the tentative energy difference to the (random) threshold Z. It is shown in
[13, 21, 2] that the invariant probability of the Markov chain on the grid which is specified
by this “Gibbs sampler” program has precisely U given in (29) as energy function. To draw
some conclusions from this example,

1. SiGNalea is able to detect if simulation can be performed via Bayes rule using local
characteristics only (we have seen that is was not the case here),

2. SiGNalea can then be used to specify the Gibbs sampler which involves local compu-
tations only.

Such Gibbs samplers are the basis for Monte-Carlo simulation in statistical mechanics.
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lislcNAL equation T clock calculus l graph J
x "=y H(z)= H(y) none
y := f(u,v) H(u)= H(v)= H(y) u—>y ¢«—v
y :=x $1 H(y) = H(2) X--=»y

y :=xwhenb |H(y)=H)AHGB)|b)]| x5y b

y := u default v H(y)= H(u)V H(v) u—>y < Hv)eHm) .

PIQ clock(P) U clock(Q) graph(P) U graph(Q)

Table 1: Encoding SIGNAL programs

6.2 Compilation: formal results
Encoding SIGNAL programs

We present briefly how SIGNAL programs may be encoded using “clock calculi” and “con-
ditional graphs”, i.e., graphs that are labelled by clocks. For this we rely here on the
formalism developed in the present papers (our clock algebra). An alternative formalism
using dynamical systems over Galois fields is presented in [15, 5, 14] which is more powerful
in analyzing or synthesizing synchronization mechanisms. This coding is shown in table 1,
the notations used there were already introduced in the preceding subsection. In this table
and in the subsequent ones, the notation

is to be interpreted as “y depends on x at those instants of the clock H(x)A H(y)A H”.

Encoding SiGNalea programs

This coding is shown in table 2. We consider that “given x potential U(x,y)” state-
ments express the intension of the programmer of referring to y as distributed condition-
nally to x, this explains why a directed arrow is used in this case. On the other hand, when

35




L SiGNalea equation | clock calculus l graph

potential U(x,y) H(xz)= H(y) X —y
given x potential U(x,y) H(z)= H(y) x—>y
PIQ clock(P) U clock(Q) | graph(P) U graph(Q)

Table 2: Encoding SiGNalea programs

building the nondirected branches of the graph, we first replace each additively decomposed
potential (say, potential U(x)+V(y)) by the communication of its components (namely
(| potential U(x) | potential V(y) | x~=y [)),cf. the remark following proposition
4.2. Tt will be important for the sequel not to take the transitive closure of the so obtained
graph.

Some useful notions
Throughout this paragraph we are considering a given SiGNalea program P with associated

clock calculus “clock(P)” and graph “graph(P)” according to the rules of tables 1 and 2.

The clock of a path: for a path
[zo,Zk) = 2o My TN Ty Ty LI EEN Tk

we define its clock as follows

k k
H([zo,zk]) =det H(z0) A (/\ H(xi)) A (/\ Hi) (30)

i=1

This is the clock of the instants where all branches are simultaneously present.

Clusters: select in graph(P) those branches that are nondirected, this amounts to selecting
the random components of P. The resulting graph is then partitioned into strongly connected
components we call clusters: thanks to table 2, all vertices of a given cluster have the
same clock. Bayes rule cannot be used to simulate clusters with local characteristics as we
discussed above!!, so we handle them globally. This is achieved by taking the transitive

" 4his can be however achieved by relying on Gibbs sampling as we have scen in the Hopfield model example;
but it is our opinion that Gibbs sampling or stochastic relaxation should not be applied automatically as
a part of the compilation process, since there are many different ways to implement them and expertise
of the user should be called for in this case.
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closure of clusters within graph(P).

Directed graph associated with a program: given the graph “graph(P)” associated
with P, we will call a directed graph associated with P any graph DG(P) obtained by assigning
some direction to those branches that are nondirected in graph(P) in such a way that the
following condition be satisfied:

Xo 5%, — x; € graph(P)

4 (31)
xo -5 x; —> x5 € DG(P)

This condition ensures that no multiple definition arises from assigning a wrong direction
to some nondirected path due to a “potential” statement.

Some results

The following result holds, which is the key result of the present paper:

Theorem 6.1 (fundamental result about compilation) Denote by DG(P) some directed
graph associated with P.

1. We say that DG(P) is a compiled form of P if the clock of every circuit in DG(P) is
zero.

2. Furthermore, if all clocks are uniquely determined from input clocks, then no uncon-
strained nonrandom behaviour occurs (the associated process ts -totally- random).

3. In this case, DG(P) provides a possible way to perform computations and simulate P
based on local interactions only.

The proof of this theorem is identical to that of the fundamental theorem in [6].

6.3 Back to the examples

In this subsection we apply the rules of compilation and simulation to rederive how the
stochastic automaton example can be simulated using local characteristics only. Recall this
program:

(| given z potential U(x,z)
| potential V(a)
| z := a default zz
| zz := 2z $1

1

Its encoding is shown ih table 3. This coding yields
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| SiGNalea instruction ] clock calculus | graph

given z potential U(x,z) H(z) = H(2) z—>x

potential V(a) none none

z := a default zz H(z)=H(a)VH(zz) |a—> 2 JHEZ)oH@) 5,

zz := z $1 H(zz) = H(z) zZ---» 2z

Table 3: Encoding the simple stochastic automaton

1. a clock calculus which can be put in the form

H(z)=H(z)= H(zz), H(z)= H(a) Vv H(z) (32)

2. a graph DG. Add to this graph the branches of the form
H (signal) —> signal

for any signal, this yields the Conditional Dependency Graph introduced in (5, 6, 15],
denote it by CDG: it consists of the branches:

Hx)—z—x , z---»22 (33)

H(zZ)oH(a)

H(a) —m a—2z ¢ zz «— H(x)

The simulation will be based on the double coding (32,33). First, (32) shows that a alone
cannot be considered as the only input, since the clock H(z) is not a function of H(a).
Hence, to perform the simulation, we consider H(z) as an additional input, this input is
subject to the inequality constraint specified in the second relation of (32). Thus H(z)
will be the fastest clock of the program, and we may assume H(z) = Id, where Id denotes
the identity clock Id, = n; then H(a) will be an arbitrary clock extracted from H(z).
By doing this, the pair (32,33) satisfies the conditions of theorem 6.1, so that simulation
can be performed with local characteristics only. In fact, the simulation scheme follows
immediately by peeling the graph CDG given in (33): at the beginning of each instant, the
source nodes of this graph are known, and those vertices with the source nodes as only
predecessors can be evaluated (this requires either some computation or the simulation of
some distribution or conditional distribution), and so on. We show in tables 4 and 5 the
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[ step [ clock calculus r graph action _]

1 |H(z)=t,H(a)=1L |2z ‘>z ~t>x, z---» 2z | assignment 2 := 2z

2 | H(z)=t,H(a)= 1 z-t>x, z---»2z given z, simulate z

3 |H(z)=t,H(a)=1 z ---» 2z assignment zz := z

Table 4: Instant n of the run

example of such a run, where a is supposed absent at instant n and present at n + 1. In
these tables, branches labelled with “t” are known to be present at the considered instant,
and branches that are known to be absent or have been evaluated are removed.

7 Conclusion

We have provided an account of constructive probability theory and its associated SiGNalea
formalism. There are several new contributions in this paper:

it has been shown that independent identically distributed (i.i.d.) random sequences
are sufficient primitives to construct fairly general random processes, including mul-
tiple clocked stochastic Biichi automata and (stochastic timed) Petri nets, provided
that proper composition operators be introduced,

shuffle products, communication of random processes, and conditioning via constraints
specification have been defined, that are the above mentioned composition operators;
the clock algebra with its operators is a basic tool to express constraints,

the SiGNalea formalism has been proposed which provides adequate syntax for han-
dling the above mentioned primitives and operators,

constructive probability generalizes Gibbs random fields on graphs to multiple-clocked
dynamical systems,

various services can be provided (simulation,...) by only handling local characteristics
of random processes,

we claim that SiGNalea is a convenient tool for various applications such as queuing
networks with complex synchronization, or real-time uncertain information processing
systems (industrial plant monitoring, real-time decision making,...), since it allows us
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[ step | clock calculus | graph action

=

0 |H(z)=t,H(a)=t|at>z t>x,z--->zz simulate a

1 |H(z)=t,Ha)=t|a—-t>2z L3 x, z---»2z | assignment z:=a

2 |H(z)=t,H(a)=1 ztox, z--->zz given z, simulate =

3 |H(z)=t,H(a)=t Z ---» 22 assignment zz := 2z

Table 5: Instant n + 1 of the run

to handle within a single framework different features that are usually handled via
different models, namely

— real-time programming and verification,

— quantitative aspects of real-time in random systems,

— uncertain real-time information processing systems.
Much has to be done, however, to include other essential services such as Maximum Likeli-
hood or Maximum A Posteriori estimation, inference from data. A very interesting related

work in the area of Al as applied to (non real-time) diagnostics is found in [21]. Finally the
current SIGNAL compiler has to be extended to handle SiGNalea.
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Appendices

A More on the mathematical model

The reader will easily recognize that the notions we introduced in subsection 4.1 are just
particular instances of the present ones.
Processes

A process is a pair {Q,(F,)} where Q is a set , and (F,) is a filtration, i.e., an increasing
family of o-algebras. Elements of Q are denoted by w and are called behaviours. To
simplify, the reader who is not familiar with the foundations of probability theory may
consider equivalently that a family of equivalence relations written

!
W Ry, W
is available on elements of 2 such that
wxpwandm<n =2 wr,W

which means that =, distinguishes more behaviours as n increases. Then, similarly as in
(15), we define F,, as the collection of subsets of Q such that

QDA€ F,

{ by definition (34)

w; €A
w2 Xy Wy

} = wy €A

This definition is indeed mathematically correct if considered measurable spaces are Black-
well spaces [9].

Timers, clocks, and time changes
A timer is a map p(w, A), A € N such that

A — p(w, A) is an integer valued positive measure, i.e., is additive in A,
w > p(w, A) is F,, — measurable if A C [0, n] (35)

An interesting particular case arises when u(.,{a}) < 1 holds for any @ € N. Then the
formula

H¥(w) = min {a € N : p(w,[0,a]) > n} (36)

defines a clock, i.e. an increasing sequence of N-valued variables satisfying the causality
condition
{w: H(w)<n} e F, (37)
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Conversely, a timer st/ can be associated with a clock H via the formula
pH(w, A) = #{n: H(w) € A}

and ¥ satisfies (35) provided that H satisfies (37). Then, given a process {§2,(F»)} and a
clock H on it, we may consider the new process {Q,(Fpy,)} defined as follows: the relation

wag,w & m=H(w)and w xp

is an equivalence relation, and, using (34) with =y, instead of x,, we define a o-algebra we
denote by Fpy,. Clocks can be built using the following filtering operator [4]: let B = (B,)
is a sequence of boolean variables such that B, is Fy, -measurable, the filtering of a clock H
by B, written H | B, is defined via formula (19). The A and V operators are also defined as
in (20). The notion of clock can be generalized to allow us to handle dense time index sets
(16, 12], i.e., time index sets where additional instants can be inserted whenever needed,
this is presented in the next subsection.

Generalizing clocks

Here we summarize some of the results of [4, 7] concerning the possibility to define clocks
that correspond to upsampling of the I'd basic clock. This relies on the technique of stacks
due to Ornstein [17] for isomorphism theorems in ergodic theory. 7" will denote any denu-
merable, totally ordered set containing N such that the natural injection from N into 7
be order preserving. We assume that the minimal (resp. maximal) element of 7 is O (resp.
o0). Elements of 7 will be denoted generically by s,t,u, v while integers will be denoted by
m.n,p. We will use the embedding of N into 7 and write expressions such as s < n.
A timeris a map p(w,A), A € T such that

A — p(w, A) is an integer valued positive measure (38)
w+ p(w, A) is F, — measurable if A C[0,n + 1) (39)

An interesting particular case arises when p(.,{a}) < 1 holds for any @ € 7. Then the
formula
H¥(w) = min{a € T : p(w,[0,a)) > n)

defines a clock, i.e. an increasing sequence of 7 -valued stopping times. We will also write
uf to refer to the timer associated with a clock H. Then, given a process {Q,(F,)} and a
clock H on it, we may consider the new process {Q,(Fp,)} defined as follows: the relation

wry, w © m< Hy(w)<m+1and wxy, o

is an equivalence relation, and thus defines a o-algebra we denote by Fpy, . It is shown in
[4] that clocks can be built using the following two operators:

1. The filtering written H | B, where B = (B, ) is a sequence of boolean variables such
that B, is Fy, -measurable: H | B is the clock associated with the timer

quB(w7 A) = “H(w’ A l{BA(w)=true})
This formula reduces to (19) when 7 = N.
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2. The multiplezing written H T C, where C = (C,,) is a sequence of nonnegative integer
variables such that Cy, is Fg,-mcasurable: H T C is TH .valued where 7" = T x N
endowed with the lexicographic order!?, and is the clock associated with the timer
defined as follows: for a rectangle A = B x N

W10, 4) = [ (14 Colw) du (o, (Hn())
B

then, if max B 2 b —1is finite and H,(w)=1b
WH1C (w, AU ({b} X [0, 7)) = w710 (w, 4) + min{Cpn(w), n}

This suffices to define the timer uH1C on segments of 79, which is enough. See [4]
for a picture of this.

Together with the A and V of clocks!?, the | and | operators provide the set of clocks
defined on a given filtered space with a nice structure. It is shown in [4] that SIGNAL allows
to “simulate” in some sense all the above introduced operators.

Construction of shuffle products in the general case

Here we generalize the notion of shuffle product to arbitrary processes. For general processes
{9, (Fn)} and {&¥,(F))}, their shuffle product is defined as the process {W,(G,)} built as
follows:

1. Consider a sequence of integers ¥ € I' = {N — N U {0}} and set QF = Q x T; y(n)
is to be interpreted as the number of silent instants inserted between n and n 4- 1. A
filtration (FF) on QU is defined as follows:

k k+1
(w1,7) =n (w2,72) holds iff, for & : Z(l +m@E))<n-1< 2(1 + 71(7))
1=0 1=0
it holds that
W) Rp Wy (40)
() = () forilk
k k+1
D+7) € n-1 < Y (1+7(3)
1=0 1=0

2. Then take
W=0'x QT G, = x FF

Elements of W are obtained by shuffling two arbitrary trajectories w and w’ of © and
Q' respectively. It is not useful to keep those trajectories w for which it occurs that

2,a) < (W,n)if {t<V}or {t=1and n < n'}
3be careful that the V of clocks is not always defined, see [4]
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both w and w’ be absent simultaneously at least once: we remove them. Such events
where nothing happens are called silent events. This is done formally as follows: for
w = (w,v;w',7), define

k k+1
p(w,[0,n]) = k such that S (+m@E)<n-1<d (1+m()) (41)
1=0 1=0

It is easily verified that this defines a timer on {W,(G,)} which counts the occurrence
of the first component w in the considered shuffle. The timer u®' is defined similarly.
Finally we set

w {w eW : uw,{n})+ p (w, {n}) > 0 ‘v’n}
gn = an[w

where x4 denotes the restriction of * to A.

This defines the shuffle product {Q,(F,)} wi{Q',(F.)}. It is left to the rcader to verify
that this abstract definition reduces to that of the section 4.1 for processes of the particular
form (14).

Liftings

Consider a o-algebra H C F, our aim is to lift in a natural way events of H into the
previously constructed shuffle product. The resulting o-algebra will be still denoted by H
when no confusion is likely to occur. Lifting H is performed by defining some equivalence
relation on W as follows:

(Wi, 15W5, 711) B (w2, Y25w5,72) € w1 Ry wa (42)

This formula allows in particular to lift the original filtration (F3,) into W, we denote it
again by (Fp).

Lifting clocks and timers is performed as follows. Using formula (21), we can write every
clock H of the space {Q,(F,)} in the form H = Id | B for some boolean signal B. Denote
by H® the clock associated with the timer introduced in (41): this clock selects the events
at which the component w is present. Then lifting H to the shuffle {Q,(F,)} LL{®¥,(F})}
yields by definition the clock

H=H"|B (43)

(we denote it again by H) where B is lifted in an obvious way by taking
Bu(w,7:0,7") £ Ba(w) (44)

This in turn allows us to lift the filtration (Fgy, ) to the shuffle, using (42,43,44). From this
follows that variables that are (Fpg, )-measurable on {Q,(F,)} can be lifted to the shuffle
as well, this is the way signals can be lifted to shuffle products.
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Probabilities on shuffle products and partially randomized spaces

The reader is referred to the abstract construction of the shuffle we have given before. The
key step is the insertion of “silent” events using the T’ space. There are two possible ways
to perform this: either we consider that we insert a random amount of silent events, or we
consider that the amount of inserted silent events is unknown but nonrandom. This yields
two different approaches.

Randomizing inserted events. Here we want to equip {2, (FT)} with some probabil-
ity PT which is “naturally” associated with P. For this we equip I' with a “universal” law
A for which the y(n) variables are i.i.d with discrete exponential distribution. Equivalently,
considering that {I', A} defines a point process, we choose A for its probability of presence
to be 1/2 (so that we get a Bernoulli shift). Then we equip {2, FL'} with the product

Pl=PeA
and we consider the direct product of probability spaces
{W,(G.), P} = {0, 7, Py @ (T, 7, PT)

Then we would have to consider the restriction of P to W. Unfortunately P(W) = 0 so that
we should perform this with some care. But recall that W is defired in terms of the product
space A®? of the two copies of the Bernoulli shift A, and that P = (P ® A) @ (P’ ® A).
Hence what we have to define is the “conditional law of (v,~) given W”: this involves only
A®2, The desired law is then immediate: it is equal to

g, where §(0,1) = A(1,0) = A(1,1) =
Finally, we equip {W, (G.)} with the law
Q=PgP @

The relative presence/absence of one component versus the other in the shuffle is random.
It is an immediate property of the Bernoulli shifts that, for an observer observing the system
only when the first component is present, the presence of the second component is still a
Bernoulli process with parameter 1/2. It should be clear that the particular choice for g
we have done is quite arbitrary, thus the alternative approach, although nonstandard, will
be preferred.

Not randomizing inserted events. Here it is not possible any more to have a prob-
ability on the space {QF, FL} since the component 7 is not random any more (but just a
variable). But we still can do something. We can lift the filtration (F,) into Q' and call it
again (F,)!*. Hence we can just consider the probability space

{aF, (%), P}

Mit is in fact the filtration (.7-';0) where (H®) is the clock of the presence of the component w in the shuffle;

note that (H?) is not a clock w.r.t. the filtration (F,) of the information available to an observer of this
firts component only, it is needed to observe jointly both components to have access to it.
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i.e. on the same filtration as before, only the underlying space of random elements has becen
enlarged. Finally, we may consider the probability space

(9F, Fuo, P} ® {QT, 7., P}

Notice that the o-algebra Fo, ® FL, is strictly smaller than G,: the information on the
interleaving of the two components w and w’ is lost. As it stands, it makes little sense to
equip this probability space with a filtration, say (F, ® F) since the latter one consists in
matching the nth instant of w with the nth instant of w’, which is irrelevant. To conclude,
what we end up with is a “partially randomized” process. It turns out that this is the
convenient approach to follow, and this is the one we used in the core of the paper. If the
two components of the shuffle were indeed partially randomized processes, with probabilities
defined only on the o-algebras FZ and f£ respectively, just equip FI ® f;g with P @ P'.

Defining communications

Process communications are defined by restricting the shuffle product of the two processes
to those trajectories for which the clocks and signals with identical names match together.
Again we must consider conditional distribution w.r.t. sets of zero probability. We prove
in theorem 4.1 that such conditional distributions do exist when mathematical models of
SiGNalea are considered.

Referring to (22), it is interesting to notice the following. It may occur that, on the set
H = H', X = X/, the two o-algebras G, and F,, ® F., coincide: this is typically the
case when successive communications have completely removed uncertainty in the synchro-
nization of the two processes Il and II’.!®> Then the result of process communication does
not depend on the way we decided to consider silent events (random, or unknown but non-
random). An example of such a situation was encountered while discussing the “stochastic
automaton”.

B Proofs of the fundamental results

The communication operator is a combination of the following two ingredients, namely
shuffling, and then restricting the behaviours via specified constraints. In our theoretical
analysis, we shall consider both aspects successively.

Proof of proposition 4.1

As indicated while stating proposition 4.1, it is enough to prove point 2. For this we use the
notations of paragraphs 4.1.2 and 4.1.3. In particular we denote by X;(w), Xo(w), - - the
sequence of the present occurrences of the component z in the shuffle, and similarly for the
second component y. The o-algebra FZ ® F¥ is spaned by the variables of the product form
F(Xi(w), Xo(w), -+, Xon(w))g(Yi(w), Yo(w), - - -, Yn(w)) where m, n range over the integers
and f, g range over positive real valued functions with proper domains. Hence to prove point

15we may say that the communication is deterministicin this case
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2. of the proposition it is enough to prove that the following formula holds true, where E
and E® denotes expectation with respect to the probabilities Q and PZ respectively:

E[f(XlaXZa"’vxm)g(Yla ,2)"‘7Yn)]
= E7[f(X1,X2, Xm)] EY [g(V1,Y2,- -+, Y0)] (45)

Denote by H* and HY the clocks of the present occurrences of the components = and y
respectively. We have, by the monotone convergence theorem,

E[f(X1, X2, -+, Xn)g(V1, Yo, -+, Yy)]

= kli/n;oﬁ [f(Xl,XZ,'"me)g(Yl’y2v""yn) 1{1/,1,,51:,;1351:}]

) 1
khm A Z [f(XlaX2s"'7Xm)g(yl’y27"'ayn) l{ll’i(k‘H;'{(k}
JSoo Ly, s <
(w(1),-w(k))

e T u’({i})U<x.)+uv({f})V<y.)]

= |z z f(zl,zz,---,zm>e-z::-vm’]
[ ™ (z1,+7m)
1 .
VA Z vy, y2,- -+ 59n) € 2,:1 (y,)}
L " (y]‘...'y")

= E* [f(XlsX%""Xm)] EY [g(Yl’Y%"'vYn)]

where Zy, Z7,, ZY denote the various normalizing constant factors. This proves (45) and the
proposition.
On the other hand, the proof of proposition 4.2 is immediate.

Proof of theorem 4.1

Consider the program P{xy,...,X,; ¥1,...,¥¢}. Extract from it the subset of instructions of
the form “potential ...” or “given ... potential ...”,such instruction can involve
only inputs. This yields another program we denote by Q{xi,...,x,}. By proposition 4.1,
its semantics is

M{x1,...,Xp}
Q{x1, .0y Xp} i | pFLU(x1) + -+ - 4 p®PU(xp) (46)
none

Next partition the signals {xy,...,x,} according to the equality of clocks as specified by the
original program P, and apply proposition 4.2. This allows us to replace the second field of
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formula (46) by the potential

I
U(x1y.00sXp) = '}: U}, 0 X3 (47)

1=1

where the sets of ports denoted by x'i, ...,x;i have common clock and g* is the counter asso-
ciated with the clock of these signals. Now, it remains to take into account the constraints
corresponding to the last field of the specification. The constraint

C(X1y ey Xp3 Y1y ooy Yq)

specifies a subset of the trajectories of the filtered space I{xy,...,xp; ¥1,...,¥q}, denote it
by W. Also denote by W, the projection of W onto the initial segments of length n. And
apply formula (4) for conditioning. This yields the potential

n I
Un = (Z Zu‘({m})v,»((x'om,...,(x;‘,,)m)) 1w, + 00 Iye (48)

m=1i=1

Denote by F, the o-algebra generated by the components x; for (i,!) ranging over the
proper domains. This sequence (48) of potentials yields a consistent family of probability
spaces {W,, F,,P,} where P,(w) = 1/Z, exp(-U,(w)) from which the existence of a
unique probability P follows on {W, F.}. Again only the restriction of P to the o-algebra
Goo 1s meantingful, where, as before, G, = ®f=1f;° and (F!) is the filtration generated via
the observations xf : {=1,...,p; up to instant n. This proves the theorem.

C Proof that every stochastic timed Petri net can be spec-
ified in SiGNalea.

Petri Nets

We borrow from [18] our presentation of Petri Nets. Recall that a Petri Net is first specified
by a bipartite graph, i.e., a four-tuple PN = {P, T, I,0}, where

1. P ={p1,---,pn,} is 2 finite set of places which represent system conditions;

2. T = {ty,---,ts,} is a finite set of transitions such that PN T = 0, they represent
system actions;

3. I(.,.): Px T~ N, where I(p;,t;) equals the number of directed paths from place p;
to transition ¢; and is called the input function;

4. O(.,.): T x P+ N, where O(t;, p;) equals the number of directed paths from transi-
tion t; to place p; and is called the output function;

A token (o) residing in a place indicates that the condition, represented by the place, is met.
The dynamic behaviour of the system is modeled by the movement of tokens through the
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net via the “firing” of transitions. A transition fires if a certain pre-condition is met. The
pre-conditions are met if enough tokens reside in each place incident on the transition (input
place). Upon firing, an appropriate number of tokens is deleted from the input places and
deposited onto each excident place (output place). Mathematically, a marking p indicates
the distribution of tokens throughout the Petri Net. Let u(p;) equal the number of tokens
contained in place p;. Then the marking u is a vector T = [u(p1),- -+, #(pn, )], where each
u(pi) is nonnegative. With these notations, it is possible to define the notions of enabled
transition and firing:

Enabling of a transition: t; is enabled if
w(pi) 2 I(pi,t;) Vpi € P (49)
Firing of an enabled transition results in a new marking:
#(pi) = u(pi) + Otj, pi) = I(pis 1) (50)

It is customary to observe the rule that no two transitions fire simultaneously. The SIGNAL
program encoding such a Petri Net is given next. First we encode the life of transition j:

TRANSITION
(integer j,P,T; [P,T] integer I, [T,P] integer Q)
{ ? event SELECTED, [P] integer old_mu
! logical ENABLED; ([P] integer mu } =

(1} PRE_TOKEN := [ {i to P} : (old_mu[i] >= I[i,j]) ]
| ENABLED := apply and to PRE_TOKEN
1

I(§ mu := ([ {i to P} : old.mu[i] + 0[j,i] - I[i,j] ]) when SELECTED
1)

(D]

where
[P] integer PRE_TOKEN

This program deserves somme comments, since several additional features of the SIGNAL
language are used. Firstly,

NAME ( parameters ) { ? inputs ! outputs } =

describes the interface of this program, the body of which follows the symbol “=”. Using
an instance of NAME with particular parameters within another program is performed by
writing

| NAME ( p,q,... ) |

Then “[P] integer mu” declares a vector integer signal of dimension P, and “[P,T] in-
teger I” is a matrix whose (i,j) entry is written I[i,j]. The instruction
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PRE_TOKEN := [ {i to P} : (old_mu[i] >= I[i,j]) ]

yields a P-vector whose i-th component is the outcome of the condition p(p;) > I(pi,t;)
(the 1 marking is called old.mu here, and we use mu to refer to the next marking u’).
The expression, “apply and to B” where B is a logical N-vector yields “B[1] and ... and
B[N]”. Finally, local signals are declared in the “where” part. This program consists of
two blocks which implement formulae (49,50) respectively. Note that the firing is actually
performed if the transition is enabled and if it is selected (event SELECTED). To summarize,
the TRANSITION module performs locally the following:

1. it receives the current status old_mu of the marking, a global information,

2. it checks for enabling condition (49), and emit the outcome of this boolean for global
use,

3. it reccives the information of whether it has been selected for a firing, a global infor-
mation,

4. it proceeds on firing accordingly.

Then the program specifying the Petri Net is the following:

PETRI
(integer P,T; [P,T] integer I, [T,P] integer 0)
{ ! [P] integer mu } =

(I array j to T of
(1Cl TRANSITION (j,P,T,I,0)
? SELECTED: SELECTED[j], old_mu: old_mu[j]
! ENABLED: ENABLED[j], mu: mu[j]
| S[j] := S[j-1] default (when ENABLED[j])
| SELECTED[j] ~= (S[j]l ~- s[j-1D)
| global_mu(j] := global_mu[j-1] default mul[j]
D)
end
| s(0] "= global_mu[0] "= absent
| mu := global_mulT]
| old_mu := mu $1
D
where
% declarations of local signals ...

Two new features of SIGNAL have been used there. The

array j to T of
PROGRAM[j]
end
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is equivalent to
PROGRAM[1] | ... | PROGRAM[j] | ... | PROGRAM(T]
Next, the instruction

TRANSITION (j,P,T,I,0)
? SELECTED: SELECTED[j], old_mu: old_mu(j]
¢ ENABLED: ENABLED[j], mu: mulj]

instanciates TRANSITION with actual values of the parameters (j,P,T,I,0) and performs
renaming of the input signals SELECTED, old.mu by SELECTED{j], oldmu(j] and output
signals ENABLED , mu by ENABLED(j], mu[j] respectively. In the instructions

| S[j] := S[j-1] default (when ENABLED[j])
| SELECTED[j] "= (S[§] "- S[j-11)

the event (when ENABLED[j]) is present when transition j is enabled, and is absent other-
wise. Since S[0] ~= absent, the always absent event, this instruction yields S[1] = true
if the first transition was enabled, and S[1] absent otherwise. More generally, the first
instruction yields S[j] absent until the first j=jo such that the corresponding transition is
enabled, and then remains present until S[T]. The notations “~+, ~*, =-” (only the latter
one is used here) respectively denote the supremum, infimum, and complement of clocks.
Hence the second instruction yields exactly SELECTED[j] present for j=jo and absent oth-
erwise, this information is then broadcast to each transition for local use. Similarly, the
instruction

global_mu[j] := global_mu([j-1] default (mulj] when ENABLED[j])

yields, as resulting new marking mu, the one proposed by the first enabled transition ac-
cording to the indexing by j. To summarize, the global program performs

1. receiving from each transition its current status (enabled or disabled),

2. selecting some transition among those which are enabled, broadcasting this informa-
tion to the transitions,

3. receiving from the selected transition the increment of the marking,
4. updating the marking and broadcasting the updated marking for next firing.

This shows that SIGNAL can be used to describe a Petri Net. It is interesting to note
about this program that the interdependencies between locally and globally performed
tasks are quite involved, and depends upon the particular instant in consideration: this is
why Conditional Dependency Graphs are essential in handling SIGNAL programs.
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Timed Petri Nets

Next, we show how to introduce timing constraints in Petri nets. First we introduce the
following timer with reset:

TIMER { ? event TICK, RESET_GO; integer DELAY ! logical GO } =
(|l N := DELAY default (ZN-1)
| ZN := N $1 init O
| N "= TICK “= GO
| GO := (false when RESET_GO0) default
(wvhen (ZN=1)) default
(GO $1 init false)
1)

The first two instructions specify a decreasing counter with reset signal DELAY. The third
instruction (N "= TICK) specifies that the clock of this counter is given by some TICK. The
logical GO also has the same clock. When RESET_GO is reccived GO gets false, it gets true
when the elapsed time since the last reset of the counter equals the current value of DELAY;
otherwise, GO remains unchanged. Thus when a reset of the counter occurs, the timer waits
a DELAY amount of TICK’s until GO switches to true; then GO has its own RESET_GO event
which makes it switching back to false. Note that this programs constrains TICK to be its
fastest clock.

Next we have to combine this TIMER with the TRANSITION program. However the latter
program has to be slightly modified for this combination to be performed, since the former
version of TRANSITION does not keep track of how many times the considered transition
has been enabled before firing. This modification is performed now and yields the following
program we still call TRANSITION:

TRANSITION
(integer j,P,T; [P,T] integer I, [T,P] integer 0)
{ ? event SELECTED, [P] integer old_mu
! event READY; [P] integer mu } =

(1 (] PRE_TOKEN := [ {i to P} : (old_mu[i] >= I[i,j]) ]
| ENOUGH_TOKEN := apply and to PRE_TOKEN
] READY := when (ENOUGH_TOKEN and not (ENOUGH_TOKEN $1))
)
(] mu := ([ {i to P} : old_mufi] + 0[j,i] - I[i,j] 1) when SELECTED
1
(D)
where
[P] integer PRE_TOKEN

The instruction computing ENABLED has been replaced by the following two instructions
| ENOUGH_TOKEN := apply and to PRE_TOKEN
| READY := when (ENOUGH_TOKEN and not (ENOUGH_TOKEN $1))
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which emit the event READY the first time the enabling condition has been met by the
considered transition. The combination can now be performed:

TIMED_TRANSITION
(integer j,P,T; [P,T] integer I, [T,P] integer 0)
{ ? event TICK, SELECTED; integer DELAY; [P] integer old_mu
! logical ENABLED; [P] integer mu } =

(1 TRANSITION (j,P,T,I,0)
| TIMER ? RESET_GO: SELECTED ' GO: ENABLED
| DELAY ~= READY
D

The expression “(event mu)” denotes the event which has the same clock as mu, i.e., it
represents the clock of mu. This program combines TRANSITION and TIMER as follows: the
third instruction asserts that evaluating the holding time within the transition starts exactly
when READY occurs, i.e., the first time inequality (49) is satisfied. Then GO indicates enabling
of the considered transition, while GO is reset to false when this transition is selected. The
program for the Timed Petri Net is finally given:

TIMED_PETRI
(integer P,T; [P,T] integer I, [T,P] integer 0)
{ ? event TICK; [P] integer DELAY ! [P] integer mu } =

(|l array j to T of
(1l TIMED_TRANSITION (j,P,T,I,0)
? DELAY: DELAY[j], SELECTED: SELECTED(j], old_mu: old_mu[j]
! ENABLED: ENABLED[j], mu: mu[j]
| SCj] := S[j-1] default (when ENABLED[j])
| SELECTED[j] ~= (s[j] ~- s[j-11)
| global_mulj] := global_mu([j-1] default mu(j]
1
end
| s[0] "= absent
| global_mu([0] ~= absent
| mu := global_mu([T]
| old_mu := mu $1
1
where
% declarations of local signals ...

Stochastic Timed Petri net

We investigate here the case of a random holding time, the other cases are handled similarly.
We first make a transition random:
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STOCHASTIC_TIMED_TRANSITION
(integer j,P,T; [P,T] integer I, [T,P] integer 0)
{ ? event TICK, SELECTED, [P] integer old_mu
! event ENABLED; [P] integer mu } =

(! TIMED_TRANSITION (j,P,T,I,0)
| potential U(DELAY)
)

and finally get the stochastic timed Petri net:

STOCHASTIC_TIMED_PETRI
(integer P,T; [P,T] integer I, [T,P] integer 0)
{ ? event TICK ! [P] integer mu } =

(| array j to T of
(1(l STOCHASTIC_TIMED_TRANSITION (j,P,T,I,0)
? SELECTED: SELECTED{j], old_mu: old_mu(j]
! ENABLED: ENABLED[j], mu: mulj]
| S[3] := S[j-1] default (when ENABLED[j])
| SELECTED[j] -= (S[j] -- S[j-11)
| global _mu(j] := global_mul[j-1] default mul[j]
1
end
| S[0] ~= absent
| global_mu[0] ~= absent
| mu := global_mul[T]
| old_mu := mu $1
(D)
where
% declarations of local signals ...

This finishes the proof of the theorem. The reader should not deduce from this theorem
that we do recommand to translate Petri Net specifications into SIGNAL or SiGNalea! But
we claim that applications that are usually handled via a Petri Net approach can be directly
modelled with SIGNAL or SiGNalea, using an appropriate programming style: such a claim
is indeed allowed by the above theorem.
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