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NEW VARIANTS OF BUNDLE METHODS
NOUVELLES VARIANTES DES METHODES DE FRISCERUX

Claude Lemaréchal®, Arkadii Nemirovskii**, Yurii Nesterov®**

In this paper, we study bundle-type methods for convex optimization,
based on successive approximations of the optimal value. They enjoy optimal
efficiency estimates; furthermore, they provide attractive alternatives to
solving convex constrained optimization problems, convex-concave saddle-
point problems, and variational inequalities. We present a number of possible
variants, establish their efficiency estimate, and give some illustrative
numerical results.

Cet article concerne des méthodes de type faisceaux pour
l'optimisation convexe, construisant des approximations successives de la
valeur optimale. Leur vitesse de convergence est optimale; de plus elles
fournissent d'intéressantes méthodes pour le cas contraint, les problémes de
point-selles, et les inégalités variationnelles. Nous présentons plusieurs
variantes possibles, établissant leur vitesse de convergence, et nous les
ilustrons sur quelques exemples numériques.
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0. Introduction
0.1. Consider the basic problem of minimizing a convex func-
: " n .
tion f over a "simple" convex set @ < R . Having generated the

iterates x,,...,xX, € Q and using an oracle to compute function-
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values f(x) and subgradient-values f’(x), a fruitful object is the

cutting-plane model

P J))T(x-x plisi=o

under-estimating f. To exploit it, the very first idea is the

fi(x) = max{f(x

classical cutting~plane algorithm of [Ke. 1960], [CG 1959], in

which x,
i+l

from the theoretical and practical viewpoints; see [NYu 1983] for

minimizes f[ over Q; it is known as very slow, both

example.

More recently, some refinements of this idea have been propo-
sed, under the wording of bundle methods. In their simplest form
[Le. 1978), [Mi. 1982}, {Ki. 1983}, the next iterate is

x = argmin{f.(x) + 1 u Ix-x+|2 | x € Q) (0.1}
i+l i 2 1 i )

+
where the current prox-center x

) is a certain point from the set

{xl,...,xi} and u, is the current penalty parameter. If f(xi+1)
turns out to have “sufficently decreased" (descent step), the
+

otherwise (null step), x\ .= x..

rox-center is updated to x .
P © P ) i+1 i

{+1'
This idea looks natural: the model accumulates all the information
about f obtained so far, and the penalty term reduces the influen-
ce of the model's inaccuracy, thereby reducing instabilities. A
bundle method is thus determined by two rules: (1) to define a
"sufficient” decrease, and (2) to select the penalty parameter.

Satisfactory rules have been developed for (1}, based on a compa-

rison between the actual value f(xl +1) and the "ideal” value



fi(xiﬂ) of the model. As for (2), the question is not so clear:
the simplest choice u; = ] is theoretically possible but experien-
ce demonstrates that efficiency requires "on line" adjustments, as
in [Ki. 1990}, (SZ 1991l

0.2. Alternatives to (0.1) can be considered, which have the
same stabilizing effect. Let us mention two of them: the "trust-
region approach"

X1 argmin(ft(x) | x € Q, lx-x{l = ri},
which does not seem to have been studied, and the proposal of [LSB
1981], in which the control parameter is a certain € whose choi-
ce implies a detour in the dual space. In what follows, we study a
fourth variant: instead of u, T, or g, we control the value of
the model at the next iterate: we choose a level li and replace
(0.1) by
X, , = ar‘gmin(-llx'«xfl‘2 | x € Q, F,(x) =1} (0.2)
i+1 2 i i i

it turns out that the level-sets of the model are rather "stable",
so that extremely simple rules can be used for updating the level
Li' This property also allows us to forget about the concepts of
prox-center and null-step: x: may be systematically set to the
last iterate x; in (0.2).

Our basic strategy works as fallows: at the i-th step, compu-
te the minimal value f (1) of the model over Q (assumed bounded);
also, let

FUD =minif(x ) | 1s jsi)= f(x:)

J

be the best value of the objective obtained during the first i

steps, and call

) = £ - £ 00 (0.3)



* . . : .
the i-th gap (xi certainly minimizes f within A(i) and our aim is

to force A(i) - 0). Then, having A € (0,1), solve (0.2) with the

value
L= A () + (170 £ (1) = £00 + A 80, (0.4)
0.3. Needless to say, the value A = 1 in (0.4) would result
in X T x:_ﬂ; a value close to 1 would mimic a pure subgradient

method with very short Steps. possibly converging to a wrong
point. By contrast, A = 1 would yield the convergent (even though
slow) pure cutting plane methods; this suggests that small values
should be less dangerous than large values of A, i.e., of the le-
vel.

An arbitrary but fixed A € (0,1) gives the following effici-
ency estimate: to obtain a gap smaller than €, it suffices to per-
form

M(e) s ¢ (LD/e)? (0.5)
iterations (here, L and D are the Lipschitz constant of f and the
diameter of Q respectively, ¢ is a constant depending only on A).
Such an efficiency is optimal in a certain sense (see [NYu 1983]):
suppose Q is a ball of radius D/2, the dimension is n =2
4_1(LD/€)2, take an arbitrary method but usé at most 4"1(LD/€)2
evaluations of f and f’ (and ‘no other information from the prob-
lem); then, there exists a function for which this method does not
obtain an accuracy better than €. As a result, our method cannot
be improved uniformly with respect to the dimension by more than
an absolute constant factor.

To obtain the estimate (0.5), the key argument is as follows:

consider, for a given io, the maximal sequence I =



{io,i0+1,...,i1} of iterations (we call it a group), at the end of
which the gap has not been reduced much, namely,

A(i]) 2z (1-2) A(i) for all i € I.
Then, all level-sets characterising (0.2) with { € I have a point
in common. This crucial property allows the following ma joration
of the number of iterations in the group:

11 s c(LD/aCi)Y,

where ¢ is a constant depending only on A. Then, using the fact
that the gap is reduced by (1-A) at the iteration i1+1, repeated
use of this argument results in the majoration (0.5).

In Section 2 .we present a number of variants of the above al-
gorithm, all enjoying the same efficiency property (0.5).

0.4. The subsequent sections are devoted to problems for
which the same idea can be considered. After all, the above "le-
vel" principle gives an implementable mechanism to solve a system
of inequations (via a method resembling Newton’s method, see [Ro.
1972)): we want to find x € Q such that

fi(x’') + (f’(x’))T(x—x’) [= f(x)] = f* for all x’ € Q.
Here, there are infinitely many indices, so they are accumulated

one after the other: x' = x, x

1 2,...; and f* is unknown, so the

level-strategy takes care of it.

The essential feature to make the method work is to define an
appropriate nonnegative gap as in (0.3), which is 0 when the prob-
lem is solved. The whole approach is therefore to minimize this
gap, an idea which can actually be extended to several problems.

A. Saddle-point problems (Section 3): given a convex-concave

function f(x,y) defined on the direct product of Q and H {(convex



and compact), find a saddle point (x*,y*) € QxH, i.e. a point sa-
tisfying

max{f(x*,y) | vy € HY = f(x*,y*) = min(f(x,y*) | x € Q).

This just amounts to minimizing the convex function

F(x,y) = max f(x,*) - mino f(,y)
over QxH. The difficulty is that we have no oracle computing the
values and the subgradients of F; nevertheless, a set of iterates
((xj’yj) | 1= j = i} yields the model

F(x,y) = ?i(x) - £,(0), (0.6)
where the standard first-order information is used:
700 = max{f(xuy )+ (£l y ) Gex ) 1 15§ s 0,
£ily) = mindfCx iy )+ (e y DNey-y ) 1 15§ = iy

thus, Fi underestimates F. We know that the minimal value of F is
zero; the minimal value of each Fi is therefore nonpositive and
provides the gap Ai=_Fi' This enables us to define a method of the
type (0.2} for saddle-point problems with the efficiency estimate
(0.5).

It is interesting to note the decomposed property of the mo-
det (0.6): to minimize it, it suffices to solve successively the
two linearized optimization problems

min,, f(x) and then max, f.(y).
This suggests an interpretation of our app‘roach in terms of games:
there are two players x and y, in charge of minimizing f and -f,
respectively; ?i and (-f i) can be interpreted as under-
approximations of their worst-case loss-functions.

We recall that the usual algorithms for saddle-points are ba-

sed on subgradient optimization [Er. 1966]. In [Au. 1972], approa-



ches similar to ours were considered, but of course based on pure
cutting-plane approximations.
B. Convex constrained problems (Section 4). Given the functi-

on G, convex on the compact convex set Q, our approach to solve

min{f(x) | G(x) = 0, x € Q}
is via the equivalent problem

min{max[f(x)—f*,G(x)] | x € Q. (0.7
(it is to alleviate notations that we assume just one inequality
constraint). The optimal value f* is of course unknown, which int-
roduces a new difficulty: no oracle can compute the function-~value
in (0.7). We therefore under-estimate f* by the' optimal value
f*(i) of |

min(fi(x) | Gi(X) =0, x € Q}
(Gi being the cutting-plane approximation of G), and we propose
two approaches.

First, duality theory tells us that (0.7) is equivalent to
max{h(cc)-af* | 0 =a=1 (0.8)
where
h{e) = mindef(x) + (I-2)G(x) | x € Q)

can be over-estimated by the function

hi(oc) = min{af(xj) + (1-~a)G(x ) | 1= j =i}

J
Thus, a gap is obtained:

Ai = max{hi(a) - ocf*(i) | 0O0sas1]
which must be reduced to the optimal value in (0.8), i.e. in
(0.7), namely O.

»
In our second approach, f is replaced by a parameter t, and

the problem is to solve the equation



k(t) = min{max{f(x)-t,G(x)} | x € Q} = O
(this is close to the method of "loaded functional” [Lb. 1977]).
Here again, x cannot be computed exactly. A gap is therefore defi-
ned, by way of cutting-plane approximations in k, and t is updated
to the current f *( i) whenever this gap diminishes by a sufficient
amount.

In both methods, the need to identify f while solving the
saddle point problem (0.7) is paid by an extra cost in the effici~
ency estimate, which becomes as follows: to reach a point x satis-
fying

f(x) = f* + € and G(x) = &,
its suffices to ber‘f orm
Mce) = ¢ (LD/e)In(LD/e)
iterations. Note, however, that no Slater assumption is needed; as
a result, the efficiency is not affected by large Lagrange multi-
pliers, as is the case with methods involving exact penalty.

C. Variational inequalities with monotone operators (Section
5) also admit a solution procedure of the type (0.2) with effici-
ency estimate (0.5). Indeed, consider again Section O0.l: in the
definition of the model fi’ replace the values f(xi) by the cur-
rent best value f*( i). The result is a further underestimate of
the model:

8,x) = £ rmaxi(s (e o) | 15 j = b = £ (%),
so a variant of the level algorithm is readily obtained if we rep-
lace the function fz‘ by ¢i (note the similarity with the conjugate
subgradient approach of {Le. 1975}, [Wl. 1975]). The interest of

this variant is that function-values are no longer involved, so it



can be used to solve the problem
find x € Q s.t. (F(x’'),x’-x) =20 for all x’ € Q (0.9)
(F is a (possibly multivalued) monotone mapping and Q is again
closed and convex). Here, the monotone mapping F plays the role of
f’ and ¢i allows the definition of a gap Ai associated with the
function
f(x) = sup{(F(x’ ), x-x’') | x’' € Q).

The resuiting method is reminiscent of [MD 1989], but conti-
nuity of F(-) is not assumed (although we require both F and Q to
be bounded).

Recall that the standard formulation of a variational inequa-
lity is )l

find x € Q s.t. (F(x),x'-x) z 0 for all x’ € Q, {0.10)
which is not the same as (0.9). It can be proved, however, that
(0.9) and (0.10) are equivalent in the maximal monotone case (see
Appendix for precise formulations).

An important computational advantage of (0.9) as compared to
(0.10) is that we have to minimize the function f which is convex,
but so would not be the case when dealing with the gap

f#(x) = sup{(F(x),x-x’') | x’ € Q}
associated with (0.10).

A final comment: solving the applications described above was
made possible thanks to the introduction of levels into the bundle
approach. In return, the same applications can be solved by the
other variants of bundle methods, such as those alluded to in Sec-
tions 0.1, 0.2. This may be useful to remove any compactness as-

sumptions; furthermore, the similarity between bundle methods and



sequential quadratic programming (see [PD 1978]) opens the way to
attractive alternatives to the exact penalty approach {cf. the end
of Section B above).

In this technical report, we describe the methods and
establish their theoretical efficiency estimates. We also give a
number of nmerical illustrations (Section 6).

Main notations. |+| denotes the standard Euclidean norm on
n

R . If Q@ is a nonempty closed convex subset in R” and x e [Rn, then

n(x,Q) denotes the (unique) point of Q closest to x.

1. Problems

We consider the following four problems:
(Min) minimize f(x) s.t. x €Q
Notation and assumptions on the data: f is convex Lipschitz conti~
nuous on the bounded closed convex set Q < IRn. L denotes the Lip-
schitz constant of f, D denotes the diameter of Q with respect to
the norm |+| and V = L D. f* denotes the minimal value of f on Q.
Oracle: given an input x € Q, computes f(x) and the support
functional f’(x) of f at x, |f'(x)| = L.

Accuracy measure: e(x) = { te, x € Q

f(x)-min

Qf, x €Q
(Sad) find a saddle point of f(x,y) on QxH

Notation and assumptions on the data: f is convex in x € Q, conca-
ve in y € H and Lipschitz continuous on the direct product of bo-
unded closed convex sets Q ¢ an, H ¢ ant Lx (Ly) denotes the Lip-
schitz constant of f with respect to x (resp., y); Dx (Dy) denotes

the diameter of Q (resp., H) with respect to the norm |+|; V deno-

tes the quantity L D+ L D_.
x x y y



Oracle: given an input (x,y) € QxH, computes f(x,y) and the
support functionals f)’c(x,y) of f(-,y) at x and f;,(x,y) of f(x,+)
at y, |f (ey)l =L, Ify(x,y)l = Ly-

Accuracy measure: €(x,y) = { to, (x,y) & QxH

mafo(x,-)-min fle,y), (x,y) € QxH

Q
(CMin) minimize f(x) st. x € Q, gi(X) =0,i=1..m
Notation and assumptions on the data: f is convex Lipschitz conti-
nuous on the bounded closed convex set @ ¢ !Rn; gi, i = 1,...,m,
are convex Lipschitz continuous on Q. L denotes the maximum of the
Lipschitz constants of f, gl,...,gm; D denotes the diameter of Q@
with respect to the norm l-|; V = DL, G = max(gl,...,gm). The pro-
blem is assumed to be consistent, and f* denotes the optimal value
of the objective over the feasible set.

Oracle: given an input x € Q, computes f(x), gl(x),..., gm(x) and
the support functionals f’(x), g’z(x),..., g,;_l(x) of f, &ppr8,, at

x such that |f’(x)| = L, Ig’i(x)l <L, i=1,..,nm.

Accuracy measure: £(x) = { to, x € Q "
max{f(x)-f ,G(x)}, x € Q
(Var) find x € Q such that FT(y)(x-y) 20,yeQ

Notation and assumptions on the data: F is a monotone bounded-
valued operator on the bounded closed convex set Q c R". L denotes

the quantity sup,, |F(-)|, D denotes the diameter of Q with respect

Q
to the norm |+|, and V denotes the quantity L D.

Oracle: given an input x € @, computes F(x).

to, X € Q
Accuracy measure: £(x) = { T
max{F (y)(x-y) | y € Q}, x € Q

10



2. Methods for (Min)
2.1. Notation. Assume we have called the oracle at the points

X ppeesX; € Q. Then the following objects are defined:

Model: f,(x) = max(f(x ) + (f'(x ))T(x-xj) L 1= j=i)

J
Remark 2.1.1. Clearly,

fI(X) < f2(x) < .. = fi(X) = f(x), x € Q, (2.1)

all fj are Lipschitz continuous with Lipschitz constant L and
(x,))=f(x), 1= js=i 2.2
f ¥ fz XJ J (2.2)

e-subdifferential of the model at x € Q:
i.
8 (x) = {p | f(y) =z fi(x) -+ Pl(yx) ¥y eRY = (p = Zt,
t, J=1
i
- . T, _
z 0, '}: tj =1, tj (f(xj) + (f (xj)) (xi xj)} Z

J J=1 J

™Mo

’ . t.
f(xJ) | 1

fi(x) - ¢}
Remark 2.1.2. From (2.1) - (2.2) it follows immediately that
aefi(xi) c 6€f(xi). (2.3)

Model’s best value: f (i) = min ft(')

Q
Function’s best value: f*(i.) = min(f(xl),...,f(xi))
Gap: A(D) = £(i) - f (1)

Best point: x: € Argmin{f(x) | x € {xl,...,xi})

Remark 2.1.3. In view of (2.1) one has

FD=f s sfi)=s
* * x * } (2.4)

fzfE@z.zf)zrf

Remark 2.1.4. In view of (2.4) we have
.3 E.
f(xi) - f = A (2.5)
and

A = A2) = 2 A1)z 0 (2.6)

Truncated model: ¢i(X) max((f’(xj))T(x-xJ.) | 1= j = i)

Remark 2.1.5. Clearly,

11



¢1(x) = ¢2(x) s ... 2.7

and all ¢J.(-) are Lipschitz continuous with Lipschitz constant L.

Truncated model’s best value: ¢ (i) = mino ¢i(°)
Truncated gap: 8(i) = - ¢ (i)
Remark 2.1.6. The following relations hold:
8 =z 82)=z .. z28(i)=z0 (2.8)
* *
¢i(xi) z 0; f(xi) - f = &(i). (2.9)

a Monotonicity of &(+) immediately follows from (2.7). To
*
prove nonnegativity of &(i), let x be an optimal solution to
»*
(Min). Then (f’(xj))T(x -xJ.) = 0 for all j, so that ¢i(x*) = 0.
"(2.8) is proved. The first relation in (2.9) is evident. To prove
the second relation, note that f(x*) z f(xj) + (f’(xj))T(x*—xJ.) z
* , T . * *
f(xi) + (f (xj)) (x -xj), J = L., i, whence f(x ) = f(xi) +

B.0x7) = FO) + B (0.

2.2. Methods
2.2.1. Level Method (LM)
A. Description of LM
Parameters: A € (0,1)
Initialization: X, is an arbitrary point of Q
i-th step:
1) Call the oracle, x; being the input
2) Compute £, (i), £ (i), x (i)
3) Set
Wi) = £ (1) + A AL,
Xy = n(xi,(x [ x € Q, £,0c) = WOD

B. Efficiency estimate. We claim that

12



e(x}) = ML),
i>c(A) (V/c)2 » e(x:) = g,
where
e = =02 a7 @™
(note that min c(+) = 4 = c(0.29289...)).
Proof.
B.1. The efficiency estimate
e(x}) = B(1) (LM.1)
was established in (2.5).
B.2. Set S, = [f*(i),f*(i)]. Then (see (2.4))
;28,2 .., 151 = AL, (LM.2)
where |S| denotes the length of the segment S.
B.3. Lemma. Let i” > i’ be such that
A(L") = (1-A) A(L). (LM.3)
Then
L7 = 1), (LM.4)
o Indeed, the length of the segment {s € Si, | s = (i)} is
(1-A) A(i’) and, since Si’ 2 Si” ((LM.1)), the converse of (LM.4)
would imply A(i") = ISi,,I < (1-A) A(i’), which is impossible. m
B.4. Let us fix € > O and assume that for certain N and all i
< N we have A(i) > e. Let us split the integer segment I = 1,.. N

in groups II""’ Ik as follows. The last element of the first

group is jl N, and this group contains precisely those i € I for

which A(i)

A

(I-A)_IA(J'I). The largest element of I, which

Jor
does not belong to the group Il’ if such an element exists, is the

last element of 12, and the latter group consists precisely of

those i = jz, for which A(i) s (I—A)_I A(jz). The largest element

13



of I, j3, which does not belong to I, is the last element of 13,

2)

and this group consists of those i = satisfying A(i) = (1—)\)-1

3
A(j3), and so on. Let u(l) be the minimizer of the function fj ()
l

over Q. Lemma B.3, applied with an arbitrary i’ e IL and with

i" = jl‘ demonstrates that f*(jl)) = fj (u(l)) = (i) for all i €
l

I.. (2.1) shows that fj(u(L)) = I(i) for all i,j € I

! Thus, we

Tz
have established the following:

the (clearly convex) level sets Q, = {x € Q| fi(x) = l(i)} asso-

ciated with ieIl, have a common point (namely, u(l)). (LM.5)

B.5. By virtue of standard properties of the projection
mapping, (LM.5) imply

_ 2 2 :
T = Ixi+1 w()|” = T, dist (xi,Qi), ie Il' (LM.6)

i+l
We also have f(x) - Ui = f(x) - Ui) = ) - W =

(1-A)A(i) and fi(xiﬂ) = I(i). From the Lipschitz property of fi'

. . _ B -1 _
it follows that dlst(xi,Qi) = lxi x, .| z L Ifi(xi) fi(xiﬂ)l

i+1
= 17! (1-2)A(i). Thus,

=t - L2 (1-a)% 2%i) =

-2 2.2, . .
Tiel i i L “(1-2)°a (Jl), tel

1
Because 0 = T, = DZ (evident), the latter inequality immediately

implies that the number Nl of elements in I ) satisfies the estima-

te

N, = DZLZ(z-A)'ZA'Z(jl). (LM.7)

B.6. Form the definitions of N and of a group, we have
Sy . S O
A(Jl) = A(N) > ¢, A(J“]) > (1-A) A(Jl).

These relations combined with (ILM.7) imply N = £ N, = DZLZ(I--M_‘2
=1

=wre -0 Azl -

l
s c—-2 (I-A)Z(l-v
lz]

14



2.2.2. Proximal Level Method (PLM)
A. Description of PLM
Parameters: A € (0,1); u = (1-1)
Initialization: X, is an arbitrary point of Q; 4’(0) = »
i-th step:
1) Call the oracle, X, being the input
2) Compute f,(i), £ (i), x (i)
3) Set
(i) = f, (1) + X AL,

(D) = { L(i), if ACL) < pA’ (i-1)

min{l(i),l’(i-1)}, otherwise

ATCL) = { ACD), if A(L) < pA’(i-D
A’ (i-1), otherwise
»*
X1 = n(xi,(x | x € @, fi(X) = 1"()h

Remark. The difference between PLM and LM is first that, in

PLM, x,

*
i+1 is the projection of the i-th best point x, (and not the

i-th iterate xi) onto the level set of the i-th model fi,; second,
the levels defining the above level sets are different: in LM this
quantity, (i), divides in a fixed vratio the segment
[f*(i),f*(i)]. and it can increase as well as decrease, as i vari-
es, while in PLM the corresponding quantity is forbidden to incre-
¥*
ase until the gap r (i) - f*(i) decreases "substantially".
B. Efficiency estimate. We claim that
*
e( xi) = M),
, 2 *
i >cdA) (V/e)” = s(xi) = g,
e = (a-0™F -

(note that min c(+) = 6.75 = ¢(0.18350...)).
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Proof.
B.l. The efficiency estimate
e(x7) = ACD) (PLM.1)
was established in (2.5).
B.2. Set S, = [£,(1),f (D]. Then (see (2.4))

51 2 52 2 .., lsil = A(i), (PLM.2)

where |S| denotes the length of a segment S.
B.3. Let us fix £ > 0 and assume that for certain N and all i
= N we have A(i) > e£. Let us split the integer segment I = 1,...,N

in groups 11,..., Ik as follows. The first element of the first

group is i, = 1, and this group contains precisely those i € I for

1

which A(i) = p.A(iI). The smallest element of I, i_, which does not

2I
if such an element exists, is the first

belong to the group II’

element of 12, and the latter group consists precisely of those i

z iZ, for which A(L) = uA(iz). The smallest element of I, i3,

is the first element of I and

which does not belong to IIUIZ’ Py

this group consists of those i = i satisfying A(i) = ul‘.\(i3), and
so on. Note that the following relations come from the description

of the method:

A (L) = A(il), { e Il; (PLM.3)
l'(il) = l(il), (i) = min{l’' (i-D,I(i)}, i € Il\{il}' (PLM.4)
Lemma 2.2.1.B.3 implies that, for all t’, i" € Il’ i o= i,

we have f*(i") = (i’). Combined with (PLM.4), this observation
means that f*(i") = '(i') if i', i" € Il and i’ = i". In particu-
lar, the level sets Qi = {x € Q | fi(x) s l’(i)} are nonemply, so

that the method is well-defined.

Now note that Oi 2 Oi+1’ if i, i+l e Il' since fi+1(-) =
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fi(') and 1’ (i+1) = L’ (i). Thus,
the (clearly convex) level sets Oi ={x € Q | fi(X) = 1l'(i)} asso-~
ciated with i € Il are nonempty and contain Oj . (PLM.5)
l
B.5. For a fixed 1, let us divide the group Il into the

sequential subgroups JI""'Jq in such a way that the best points

x: associated with i € Jr coincide with each other and differ from

*
the remaining best points associated with other i € I,. Thus, x, =

l

x(r) for i € Jr' and the points x(1),..,x(q) are

mutually different. In view of the description of the method we

have

x, ,=mx(r),Q.), it € J_,
i+ ¢ r } (PLM.6)
% o,

x(r+1) = = n(x(r),Qi(_r)), if Jr_+

Xitr)+1

where i(r) is the last element of Jr.

1

B.6. By virtue of the standard properties of the projection

mapping, from the inclusions Qi € Q it follows for for i € Jr:

i-1
2

IZ = T + |x.-x, .|, (PLM.T7)

T = |x(r)-x, 7% i1

i+1 i+1

We also have f(x(r)) - () = £(i) - U'(1) = f() - W) = (1
- A) A(i) > 0, so that x(r) does not belong to Oi; it immediately
follows that f(x;,)) = 1'(i) = WD), while f(x) = fx) = £ (i)
= (1-A) A(i) + U(i). Thus, fi(xi) - fi(xiﬂ) = (1-a)A(L), and sin-
ce fi. is Lipschitz continuous with constant L, we conclude that

x| = Lo = L"(:—A)Zml). This inequality, combi-
2

. -2 4
ned with (PLM.7), means that |x(r) xi(’_)”] z IJ’_IL (1-2)

Ag(il), where lJrI denotes the cardinality of Jr'

Now let us minorize the quantity RZ = |x(1) ~ xJ. HIZ, where
l

jl is the last element of Il' We have: x(1) is a certain point of

Q; x(2) is the projection of x(1) onto Oi(l); x(3) is the projec-
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tion of x(2) onto Oi(Z)""' x(q) is the projection of x(q-1) onto

Oi(q-—l)' and le+1 is the projection of x(gq) onto le. The sets Q,

involved in the latter family are included the next into the pre-

vious, so that RZ = Ix(D) - x(2I% + .. + Ix(q-D - (@] +

Ix(q) - xJ. +1|2; the latter sum, as it was proved, is not less
1
tan L 2a-0%%i) = 11 = Pt II,1. On the other
r
2 2
hand, we clearly have R~ = D", whence
11,1 = < 12 D% (-a)” A_Z(il). (PLM.8)

We have A(ik) > £ (k is is the number of the last group Il in the

segment I = 1L..N) and A ) > TSR (i) (the latter

inequality is a' consequence of our definition of the groups I).
k k
11 =% II Z p?

_ -2,
Therefore N = 1 ] L 1 K+1- ll = L D" (1- A) A (Lk) sz (1

l
<122 -t e v Al = con) wre) m

N ™Mx

)2(1 -

2.2.3. Dual Level Method (DLM)

A. Description of DLM

Parameters: A, p € (0,1)

Initialization: X, is an arbitrary point of Q
i-th step:

1) Call the oracle, x; being the input

2) Compute f*(i), £, x:

3) Set
i) = £, + A A (= £7(0) = (1-A) AL,
e'(1) = flx) - WD) - p (1-2) (D)
(note that e'(1) = 0, since fGx) = L) = f() - WD =

(1-A) A(i)). Define p; as the solution to the problem

18



P(i): minimize IpI2 subject to p € 8 . f.(x.)
MO

. -2
X, = n(xi - u(1-A)A01) Ipil Pi.Q).
B. Efficiency estimate. We claim that
e(x}) = B(D),
2 *
i > ca,u) (Ve)™ » e(xi) =< g,
e = pla-02 a7 @

(note that min c(A,u) = 4 “-2 = ¢(0.29289...,11)).
A

Proof.
B.l. The efficiency estimate
e(x) = 1) (DLM.1)
was established in (2.5).
B.2. Set S, = [£,(),f ()] Then (see (2.4))
51 2 5‘2 2 .., ISiI = A(i), (DLM.2)
where |S| denotes the length of a segment S.
B.3. Let us fix € > 0 and assume that for certain N and all i
< N we have A(i) > €. Let us split the integer segment I = 1,...,N
in groups Il""' Ik as follows. The last element of the first
group is ‘jI = N, and this group contains precisely those i € I for
which A(i) = (I—A)-IA(J'I). The largest element of I, jz, which

does not belong to the group I, if such an element exists, is the

1
last element of IZ' and the latter group consists precisely of
those { = j2, for which A(i) = (1-?\)—1 A(jz). The largest element
of I, j3, which does not belong to 12, is the last element of 13,
and this group consists of those { = j3 satisfying A(i) = (1—?\)_1
A(j3), and so on.

Let u(l) be the minimizer of the function fj (+) over Q. Lem-
l
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ma 2.2.1.B.3, applied with an arbitrary i’ e Il and {" = jl' de~

monstrates that f*(Jl)) = fJ. (u(l)) = (i) for all i € Il' (2.1)
l

shows that fj(u(L)) = (i) for all i,j € I,. Thus, we have estab-

l
lished the following:

the (clearly convex) level sets Oi = {x ¢ Q | fi(X) = I(i)} asso~
ciated with i € Il’ have a common point (namely, u(l)). (DLM.3)

B.4. Let i € Il' The definition of p; implies

fix) = fle) + pl Gemx) - €7 = £ ). In particular, £iu(i)
< FuD) = 10, while fix) = fx) - €7 = WD + w AN
A(L) =z l(i). We conclude that fi(xi) - fi(u(L)) =z u(1-A)A(L), so

that pTi-(xi—u(’l)) = p(1-A)A(L). Since x4 = n(xi - u(l-Aa)aci)
Ipil-2 pi,O), it follows that

]

. Ix,,, - wDI® = 1 - 1p, 72 P

L+1 i+

clearly, Ipil = L (since fi is Lipschitz continuous with constant
L) and A(i) = A(jl)’ and we obtain

_ _ 2 -2 2, 22
Tipp 0, - u@WIT =1, = L7 @ (-A)°87°()), i e I, (DLM.4)

Because 0 = T, = D‘2 {evident), the latter inequality immediately

implies that the number N, of elements in Il satisfies the estima-

l
te

N, = DZsz'Z(J—A)'ZA'Z(jl). (DLM.5)

B.5. From the definitions of N and of a group, we have
Sy : vl
A(JI) = A(N) > &, A(JHZ) > (1-A) A(Jl).

These relations combined with (DLM.5) imply N =2Nl <
l=]

2D _ e -0 A -0

D18 %08 7% (-n)
121
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2.2.4. Truncated Level Method (TLM)

A. Description of TLM

Parameters: A € (0,1)

Initialization: X, is an arbitrary point of Q

i-th step:

1) Call the oracle, x; being the input

3 * . *
2) Compute ¢ (1), f (i), X,
3) Set
(i) = =(1-1) &(i),
X LEME | x € Q, ¢, (x) = 11¢9));

Remark. The difference between LM and TLM is that the latter
method uses an artificial model which involves only subgradients,
not the values of the objective. This feature of TLM is not
valuable in the case of (Min), but it will be useful for (Var).

B. Efficiency estimate. We claim that

*
e(xi) = &(i),
2 *
i>c(d) (Vie)” s e(xi) < g,
cn) = (=078 a7 e-a)7!
{(note that min c(+) = 4 = ¢(0.29289...)).
Proof'.
B.1. The efficiency estimate
*
e(xi) = &(i) (TLM.1)
was established in (2.9).
B.2. Set Si. = [¢,(i),0]. Then (see (2.7), (2.8)) Si # @ and
S;25,2 ., Isil = 8(i), (TLM.2)

where |S| denotes the length of a segment S.

B.3. Let us fix € > 0 and assume that for certain N and all i
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< N we have &8(i) > €. Let us split the integer scgmen:. I = 1,...,N

in groups I]""' Ik as follows. The last element ot the first

group is j1 = N, and this group contains precisely those i € I for
which &(i) = (J—A)_Ia(jl). The largest element of I, jZ’ which
does not belong to the group II’ if such an element exists, is the

last element of 12, and the latter group consists precisely of

those t = for which &(i) = (I—A)_I 6(j2). The largest element

Jo

of I, _j3, which does not belong to I is the last element of 13,

2,

and this group consists of those i = satisfying 8(i) = (I-A)_I

I3
6(j3), and so on.

B.4. From (TLM.2) it immediately follows that ¢ (J)) = L),

i e Il' Let u(l) be the minimizer of the function ¢j (+) over Q;
l
then for { € Il one has ¢i(u(l)) = ¢j (u(l)) = l(i). Thus, we have
l

established that

the (clearly convex) level sets Q; = {x € Q | ¢i(x) = (i)} asso-

ciated with [ € IL' have a common point (namely, u(l)). (TLM.3)
B.S. The standard properties of the projection mapping and

(TLM.3) imply

_ _ 2 . .2 .
T = lxi” u(l)|” = T dist (xi,()i), ilel (TLM.4)

i+1 U

We also have ¢i(xi) - Wi) =z - I(i) (see (2.9)), so that ¢i(xi) -
W)= (1-2)8(i), and ¢i(xi+1) = I(i). Since ¢, is Lipschitz
continuous with the constant L, it follows that dist{xi,Qi) = Ixi
-1 -1 .

- xi.+1| = L |¢i(xi) - ¢i(xi+1)| = L~ (1-A)8(i). Thus,

=1 ~L2a0% 8% =t - L21-00%% ), i e 1,

i+1 i i l L
Because 0 = T = D2 (evident), the latter inequality

immediately implies that the number Nl of elements in Il satisfies

the estimate
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N, = pPrPa-07%s 7% ). (TLM.5)
B.6. From the definitions of N and of a group, we have
Sy . sy Lo
5(J1) = &8(N) > &, 5(JL+1) > (1-1) 5(Jl).

These relations combined with (TLM.5) imply N = X N, = p°1éa-08

=1

20-D _ yser? -2 A -0l w

T e (1-)
121

3. Methods for (Sad)

3.0. Initial scaling. In what follows we assume that the dia-
meters of Q and H coincide; D denotes their (common) value. This
assumption can be provided by an appropriate isotropic scaling of,
say, the y-variable. Note that the quantity L _ D_+ L_D_ remains

X X y y
invariant under this scaling. We denote L = max{Lx,Ly}.

3.1. Notation. Denote

mino f(e,y): H SR

(these are, respectively, the worst-case payment of the player

fx) = maxy f(x,+): Q> R, f(y)

choosing x and the worst-case income of the player choosing y in
the game associated with f).
~Assume  we have called the oracle at the points
(xl,yl),...,(xi,yi) € Q. Then the following objects are defined:
Models:
x-model:
Fi) = maxtf(x iy )+ (£ y ) (xx ) 1 15 j 5 1 Q5 R,
y-model:
F() = mintfCxy )+ (£ y DN(3=y ) | 15 = ik H 5 R,
model:
Fi(xy) = f(x) = f(y) QxH > R.

Remark 3.1.1. Clearty, ?i is convex, ii is concave,
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?l(x) < ?Z(x) <., = ?i(x> = f(x), x € Q, (3.1)

v

fy) 2 f(y) = .. = f(y)= fly) y €H, (3.2)

?i’ Zi are Lipschitz continuous with Lipschitz constant L,
Consequently,
flxy) = f(xy) s .. = f0oy) = fx)-f(y), (x,y) € QxH,  (3.3)
and fi is Lipschitz continuous with Lipschitz constant 21/2L.
g-subdifferential of the model at x € Q:
- n_.n’ T
aefi(x,y) = {p € R xR | fi(u,v) = fi(x,y) - € + p ((uv)-(x,y))

Y (u,v) € anx(Rn }

ianH fi(.).)

Model’s best value: f (i) = m
Gap: A(L) = -f (1)
Remark 3.1.2. The following relations hold:
A(l) =2 A(2) = ... = A(L) = 0; fi(xi’yi) = 0. (3.4)
o Indeed, the monotonicity of A(-) follows from (3.3). Let us
prove that A(-) is nonnegative. Let f* = mino f(+); by von

»
Neumann's lemma, one also has f = maxH f(')' It follows that

(Fex) - fy)) = £ - 5"

mexH 0, and the first relation in
(3.4) follows from (3.3). On the other hand, clearly fi(xi) =
f(xi,yi), _f:i(yi) = f(xi,yi), which implies the second relation in
(3.4). =

Truncated model:

T T
(x,y) = max{(f'(x .,y J)) (x-x) - (fi(x,y))(y-y,) | 1= j =
bl x 77 J y X1ty J
i}: OxH » R.

Remark 3.1.3. Clearly, ¢i(x,y) is convex and Lipschitz

continuous with Lipschitz constant 21/2L, and
¢1(-,~) = ¢2(-,°) = .. (3.5)
Truncated model’s best value: ¢ _(i) = min

QXH ¢i(".)
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Truncated gap: 8(i1) = - ¢ (i).
Remark 3.1.4. We have
S zd8(2)z ..z 0 (3.6)
o The monotonicity of &(e) follows from (3.5). Let us prove
that &(i) = 0. Indeed, let (x*,y*) be a saddle point of f and let
»
(x,y) € OxH. We have f(x*,y) z (f)'c(x,y))T(x -x) + f(x,y), f(x,y*)
T * * * T
= (f;,(x,y)) (y ~y) + f(x,y), whence f(x ,y) - f(x,y ) = (f)’c(x,y))
» T, * . * K . *

(x -x) - (f;}(x,y)) (y -y). Since (x ,y ) is saddle point, f(x ,y)

~ fix.y) = 0, so that (f)’c(x,y))T(x*-x) - (f'y(x,y))T(y*-y) < o0,

»*
(x,y) € QxH. In other words, ¢i(x*,y )=<0. =m

3.2. Methods

3.2.1. Level Method (LM)

A. Description of LM

Parameters: A € (0,1

Initialization: (xl,yl) is an arbitrary point of QxH

i-th step:

1) Call the oracle, (xi,yl.) being the input

2) Compute f (i), i.e., solve the pair of convex problems

Px(i): minimize

1A

— _ , T _ <
fi(x) = max(f(xj,yj) + (fx(xj,yj)) (x xj) | 1= j =i}
subject to x € Q

and

Py(i): maximize

i}

1A
.
1A

_ p T,
ii(y) = max{f(xj,yj) + (fy(xj.yj)) (y yj) | 1
subject to y € H.

3) Set
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i) = f(L)+7\A(L)
(xm,ym) = n((xi,yi), {(x,y) | (x,y) € QxH, fi(x.y) s 1(i))).

The i-th approximate solution is defined as follows. When

solving the problems Px(i) and P (i), we find also optimal dual

solutions, i.e., the quantities {t, (_])s (‘))}1< =i , satisfying
i i
z ti(j) = 1, t(J) =z 0, min Z t(j)(f(x ,y) + (f (x, ,yj)) (x
J=1 xeQ Jj=1
- x )} = min —.(°),
i J i O f
L s(j) =1 s(j) =z 0, max I s(J){f(x .y) + (f (> ,y )) (y
. i L l
J=1 yeH j=1
- )'J.)) = max £i(°).
and the i-th approximate solution is defined as
x i i
(x. = Zs(J)x,y=Zt(J)y)
t J
J=1 J=1
B. Efficiency estimate. We claim that
* *
e(x,,y.) = A(L),
[ l
i > c(A) (V/s:)z = s(x:,y:) =g
where
e = 4 (=072 A7 (2=
(note that min c(+) = 16 = c(0.29289...)).
Proof'.
B.l. Let us fix (x,y) € QxH. We have
T
(x ,y) = flx,y.)+ (f'(x,y.))(y-y.J,
foy) Flx gy fy(nyJ (ny
T
Wz filx,y )+ (fl(x.,y. -x ).
fi(x yJ) fo .VJ + fx(xJ yJ)) (x xJ
i i i
It follows that X t, (J) f(xy J - I s, (J) flx ,y) Tt (J)
J=1 Jj=1 i J=1
(f(x .,y J o+ (fx(x .,y .)) (x-x .)) - p) si(j) (f(x .,y Jo+
J=1
(fy(xJ,y )) (y- y ). Since f is convex in Xx and concave in y, we
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i
have Z ti(j) f(x,yj) -

T

() Flxpy) s fOay)) = FOeLy).

j=1 j=1
Thus,
* *)>ét(‘)(( )+ (F .,y D x-x ) -
i
ST s () (Fepy )+ (f;,(xj,yj))T(y-yJ.)), (x,y) € OxH.

J=1
Taking the minimum over (x,y) € QxH and using the definition of
ti(°), si(°), we obtain
— % * . —_ o
f(xi) - i(yi) < max ii(') - min, fi( ) = mmoxH fi(x,y).
In other words,
»*
z:(xi,yi) < A(Q), (LM.1)
as is required in the accuracy estimate.
B.2. Set Si = [¢,(i),0]. Then (see (3.3), (3.4)) Si # 2 and
2 = L
5’1 2 S‘2 2 .., lSiI A(L), (LM.2)
where |S| for a segment S denotes the length of S.
B.3. Let us fix € > 0 and assume that for certain N and all i

= N we have &(i) > €. Let us split the integer segment I = 1,...,N

I aé follows. The last element of the first

in groups IJ,..., K

group is j1 = N, and this group contains precisely those i € I for

A

which &(1) = (1-a)"la( j)- The largest element of I, j,, which
does not belong to the group II’ if such an element exists, is the

last element of I2, and the latter group consists precisely of

those i = for which &8(i) = (1-7\)-1 6(j2). The largest element

JZ'
2 is the last element of 13,
and this group consists of those i = j3 satisfying &(i) = (I—A)_l

of I, j3, which does not belong to I

6(j3), and so on.

Let (u(l),v(l)) minimize the function fj (+,*) over QxH. For
l

i€ Il from (LM.2), the definition of (i) and the relation B(jl)
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=z (1-a) &(i), i € I, it immediately follows that f*(jl)) =

fjl(u(l),v(l)) = l(i) for all i e Il' (3.3) shows that
fj(u(l),v(l)) = (i) for all i,j € Il' Thus, we have established
the following:
the (clearly convex) level sels Oi = {z € QxH | fi(z) = (i)} as-
sociated with i € Il’ have a common point (namely, 2(l) = (u(l),
v(l))). (LM.3)
B.4. By virtue of the standard properties of the projection
mapping, (LM.3), under the notation z, = (xi,yi), implies
T = Izi”—z(l)l‘2 st - dist2{zi,0i), ie Il" (LM.4)
We also have f.(z,) - (i) = - I(i) (see (3.4)), whence fi(zi) -

1(i) = (1-A)8(i), while fi(ziﬂ) = I(i). Since fi. is Lipschitz
1/2

continuous with the constant 2 “L, it follows that dist(zi,Oi) =

~-1/2, -1 -1/2 -1 .
Izi - zi+1| = 2 L 'fi(zi) - fi(ziﬂ)l =z 2 L (1-2)8(1).
Thus,

. st -2 0% 0% %) =T, - 20155 ), i e 1.
i+1 i i l l

Because 0 = T, = 2D2 (evident), the latter inequality immediately

implies that the number N, of elements in Il satisfies the estima-

l

te

N, = 4DZL2(1—A)'25'2(jl). (LM.5)

B.5. From the definitions of N and of a group, we have
. . -1, .
= > > - .
6(,}1) 8(N) > ¢, 3(Jl+1) (1-2) S(Jl)

These relations combined with (LM.S5) imply N =X Nl = 4D2L2(1
lz1

-2 =awre a0 ATzl

s 8—2 (1—7\)2(1-1)

1=1

-A)
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3.2.2. Dual Level Method (DLM)

A. Description of DLM

Parameters: A, p € (0,1)

Initialization: (xl,yl) is an arbitrary poiat of QxH
i-th step:

1) Call the oracle, (xi,yi) being the input

2) Compute f (i), (ti(j)’si(j)}lsjsi
(see 3.2.1.3))

3) Set

L(i)

£ LD+ X AD) (= =(1-0M(D),

et £y = 1) = u (A AGE)
{note that fi(xi'yi) z 0, see (3.4), so that c+(i.) = 0).
Define p, € R'xR" as the solution to the problem

P(i): minimize IpI2 subject to p € 8 +

f.(x.,y.)
ety b Ut

and set
_ _ _ , -2
(x“l,yi”) = n((xi,yi) u(1 A)A(z)lpil pi,QxH).
The i-th approximate solution is defined as
i i
* . * .
(x. =Z2s(j)x,y, = Ztljy.
N | i . | J
J=1 J=1
where {si(‘j)}j and {ti(j)}j are the same as in 3.2.1, namely, the

optimal dual solutions to Py(i), Px(i), respectively.
B. Efficiency estimate. We claim that
(¥ = = (1)
€ xi:yl - f* l ’
iz clAp) (V/e)2 2 e(x:,y:) =g,
where
conw = 4p 2072 AT 2-a)!

(note that min c(A,u) = 16 u—z = ¢(0.29289...,u)).
A
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Proof.
B.1. The efficiency estimate
* x X
e(xi,yi) = A(L) (DLM.1)
was established in 3.2.1.B.1.
B.2. Set Si = [f,(i),0]. Then (se: (3.3), (3.4)) Si + @ and
51 2 SZ 2 .., Isil = A(i), (DLM.2)
where |S| denotes the length of a segment S.
B.3. Let us fix &€ > 0 and assume that for certain N and all i

= N we have A(i) > €. Let us split the integer segment I = L,..N

in groups I.,.., I as follows. The last element of the first

1 k
group is j1 = N, and this group contains precisely those i € I for
which ‘A(i) = (1-7()-1A(j1). The largest element of I, j2' which

does not belong to the group I, if such an element exists, is the

1

last element of 12, and the latter group consists precisely of

those i = j2, for which A(i) = (I—A)-I A(jz). The largest element

2 is the last element of I3,

and this group consists of those i = j3 satisfying A(i) = (1—A)~1

of I, j3, which does not belong to I

A(j3), and so on.
Let (u(l),v(l)) minimize the function fj (+,*) over QxH. For
l

i e Il from (DLM.2), the definition of (i) and the relation A(‘jl)

(1-A) &), i € I

v

D it immediately follows that f*(jl)) =

fj(u(l),v(l)) s (i) for all i € Il' (3.3) shows that
l

fj(u(L),v(l)) =< (i) for all i,j € I,. Thus, we have established

i
the following:

the (clearly convex) level sets Oi = {z € QxH | fi(Z) = (i)} as-

sociated with i € I,, have a common point (namely, z(l) = (u(l),

ll
v(l))). (DLM.3)
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B.4. Let i € Il' z, = (xi,yi). By virtue of the definition of

1A

T + .
fi(zi) * P (z-zi) - & (i)

p;, we have for z e QxH: fl(z)

f(2). In particular, fiz(1) = f£(z(1) s U1), while fiez)
flzp - () = K + p G- AG) = K. We conclude that

fizp = fiz0) = p-OMD, so that pl(z-z(1) = p(I-MACL.

Since 24 = n(zi - u(1-2)0(10) Ipil_‘2 pi,QxH), it follows that
_ 2 -2 2 2,2,.
Tieg = Iz“_l z(L)|” = T, Ipil Mo(1=A)7AT (L)
clearly, Ipil =< 21/2L (since fi is Lipschitz continuous with

constant 21/2L) and A(i) 2 A(jl)’ and we obtain

_ 2 _ L2 2, 220
Ti+1=|zi+12(l)l st,-2'L u(IA)A(Jl).LeI

X {DLM.4)

Because of 0 = T = 2D2 (evident), the latter inequality immedia-

tely implies that the number Nl of elements in Il satisfies the

estimate

N, = 4D2L2u_2(1—h)_2A—2(jl). (DLM.5)

B.5. From the definitions of N and of a group, we have
Sy . RS o
A(JI) = A(N) > &, A(Jl+1) > (1-A) A(Jl).

These relations combined with (DLM.5) imply N = Nz = 4D2

Y|

21-1) 207!

1

2u -0 5672 (-n) = avre)fula-0"% A

lz]

3.2.3. Truncated Level Method (TLM)

A. Description of TLM

Parameters: A € (0,1)

Initialization: (xl,yl) is an arbitrary point of QxH
i-th step:

1) Call the oracle, (xi,yi) being the input

2) Compute ¢ (i), i.e., solve the convex programming problem
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P (i): minimize
X,y

¢i(x,y) = max{(f)’c(xj.yj))T(x-xj) - (f;,(xj,yj‘)T(y-yj) ] 1= j =i)
subject to (x,y) € QxH.
3) Set
(i) = =(1-a) 8(i),
and set
(xi+1’yi+1) = n((xi,yi), {(x,y) | (x,y) € QxH, ¢i(x.y) < W(i)}).

The i-th approximate solution is defined as follows:
* L X L
(xi =z ri(j) xj, y; = > ri(j) yJ.),
J=1 J=1

where the quantities {ri(j)} form an optimal dual solution to

1= j=i

Px y(i), i.e., these quantities satisfy the relations

e

™M e~

r.(j) =1,
1 l

f‘i(J) = 0,

J

l
min £ r (JH(F(x Y xe-x ) -
(x,y)eQxH j=1 JJ J

, T .
(fy(xj’yj)) (y yj) = mexH ¢i( ,0 ).
B. Efficiency estimate. We claim that
* X
e(xi,yi) < 8(i),
2 * x
i > c(A) (V/e)™ » t:(xi,yi) = g,
where

) = 4 (=072 A7t e-n)!

(note that min c(+) = 16 = ¢(0.29289...)).

Proof.
B.1. Let (x,y) € QOxH. We have
< , T,
f(xj,y) = f(xj,yj) + (fy(xj,yj)) (y yj),
, T, _
f(X.yJ.) z f(xj,yj) + (fx(xj,yj)) (x xj),

whence
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’ T _ - ’ T -
f(x,yj) - f(xj,y) > (fx(xj,yj)) (x xJ.) (fy(xj,yj)) (y yj),
which in turn implies
i i
. > M 4 T  — -
JE] ri(J) (f(x,yj) - f(xj,y)) z jEI ri(J)((fx(xj,yj)) (x xJ.)
P T, _
(fy(xj,yj)) (y yj)).
Since f' is convex in x and concave in y, we have f(x,y:) - f(x:,y)
i
= T r(j)(flx,y.) - f(x_,y)), so that
je1 ¢ J J

FOoy) = fxLy) = I r(f(x

T , T
1 j.yj)) (x xJ.) (f'(x.y.))

y J°J

i
J:
(y-y Jh
y YJ
Taking the minimum over (x,y) € QxH and using the definition of

ri(-), we obtain
FD - £y = mi ()
fle) = fly) = ming gy 8,000
In other words,
* X
e(xi,yi) = &(i), (TLM.1)
as is required in the accuracy estimate.
B.2. Set Si = [¢*(i),0]. Then (see (3.6)) Si # @ and
S,25,2 .., IS = &), (TLM.2)
1 2 i
where |S| denotes the length of a segment S.
B.3. Let us fix € > 0 and assume that for certain N and all i
= N we have 38(i) > €. Let us split the integer segment I = 1,..,N
in groups II""’ Ik as follows. The last element of the first

N, and this group contains precisely those i € I for

group is j1
which &8(i) = (I—A)‘IB(J'I). The largest element of I, j2, which
does not belong to the group II' if such an element exists, is the
last element of IZ’ and the latter group consists precisely of
those i = j2, for which &(i) = (J—A)—I 6(j2). The largest element
Py is the last element 6f I3.
satisfying (i) = (1-A)!

of I, j3, which does not belong to I
and this group consists of those i = j3
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6(j3), and so on.
B.4. From (TLM.2) it immediately follows that ¢*(‘jl) = (i),

i e Il' Let z(l) minimize the function ¢j (+) over QxH; then for i
l .

€ Il one has ¢i(Z(l)) = ¢j (z(l)) = U(i) (see (3.5)). Thus, we ha-
l

ve established that
the (clearly convex) level sets Qi = {z € QxH | ¢i(z)sl(i)} asso-

ciated with i € Il’ have a common point (namely, the point z(l)).

(TLM.3)
B.S. By virtue of the standard properties of the projection
mapping, (TLM.3) implies, under the notation z, = (xi,yi),

_ _ 2 . .2 .
Ti,+1 = 'Zi+1 z(1)|” = T, dist (zi,Oi), i€ Il' (TLM.4)

We also have ¢i(zi) - i) =z - U(i) (since clearly ¢i(zi.) z 0), so

that ¢i(zi) - (i) = (1-A)8(i), while ¢i(zi+1) = |(i). Since ¢i is

Lipschitz continuous with the constant 21/2L (Remark 3.3), it

i = - > -1 - >
follows that dlSt{zi’Qi} = lzi z, 0 =L Mi(zi) ¢i(zi+1)| =

i+]
L7 (1-a)s(i). Thus,

. =1, - 2072 g% & s T, - 2_1L_2(1—A)262(j[), i€,

Because 0 = T, = 2D2 (evident}, the latter inequality immediately

implies that the number N, of elements in Il satisfies the estima-

l
te

N, = 40?2072 ). (TLM.5)
B.6. From the definitions of N and of a group, we have
L . N o
G(JI) = &8(N) > g, B(JH]) > (1-a) 6(11).
These relations combined with (TLM.5) imply N = Z Nl = 4D2L2(1-
>

l=1

02 5 -0 s e an ATl el w

=1

34



4. Methods for (CMin)

4.0. Additional assumption. In what follows we assume that
there exists x € Q with G(x) > 0, so that the problem
really is a constrained one.

4.1. Notation. Assume we have called the oracle at the points
X ppeer X € Q. Then the following objects are defined:

Model of f:

£ = maxifix )+ (£ 0x DN ex ) 1 15 5 1)

Model of G:

Gi(x) = max(gk(xj) + (gl’((xj))T(x-xj) | 1= j=i,1=k=m)

Remark 4.1.1. Clearly,

fl(x) = fz(x) = = fi(X) = f(x), x € @ (4.1)
GI(X) = G2(x) = .. = Gi(X) = G(x), x € Q (4.2)
fi(xj) = f(xj), Gi(xj) = G(xj), 1= j=i (4.3)

and the functions fi’ Gi are Lipschitz continuous with Lipschitz
constant L.
Model’s best value: f*(i) = min(fi(-) | x € Q, Gi(X) s 0)
Remark 4.1.2. From Remark 4.1 it follows immediately that
f, (i) are well-defined and
F (D =7fl2)=.. =f()= f* (4.4)
Admissible set: T(i) = {(f(xJ.),G(xj)) | 1= j=si}c IR2

Completed admissible set: C(i) = (Conv T(i)) + lRf

4.2. Constrained Level Method (CLM)
4.2.1. Preliminary remarks. Assume we have called the oracle

at the points x X, € Q. Then, besides the objects described

11

in 4.1, we can define also the following:
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Support function:
h.(«) = minia (f(xj)—f*(i)) + (1-a) G(xj) 1= j=si)=
= min{a(u-f (i) + (1-a) v | (u,v) € C(i)}: [0,1] > R.
Gap:
8(i) = maxth () | 0 s & = 1)
Best point: let (u(i),v(i)) € Argminip(u-f (Dyv) | (uv) e
C(i)}, where

p(p,q) = max{(p),.(q )},
i
Then there clearly exists a convex combination I ri(j) (f(x ),
Jz1 J
G(xj)) of points belonging to T(i), such that I

J=1r’i(j) (f(xJ.),

G(xj)) < (u(i),v(i)). Set
* i

x, = z ri(j) X

J=1 J

this is the best point associated with x ,...,xi.

1
Remark 4.2.1.1.
1). We have

x; € Q, e(x}) = min{p(u-f (D) | (uv) € G} = ACi), (4.5)

o The inclusion in (4.5) is evident. The inequality follows

i
from the relations (f(x:)—f*(i),G(x:)) s I ri(j) (f(xj)-f*(i),
J=1

G(xj)) = (u(i)-f (Dv()) = min{plu-f (D)v) | (uv) € C(i)}
(1,1) (we have taken into account the convexity of f and G). Since
f*F = f (i) (see (4.4)), the resulting inequality implies the
inequality in (4.5).

Now let us prove that

A(i) = min{p(u-f (i),v) | (uyv) e C(i)} (4.6)
Indeed, p(p,q) = (max{ap + (l~va)g | 0 s = 1})+, whence
min [ max (a(u-f*(i))**(l—oc)v)] = [ min max
(u,v)eC(i)‘ae(0,1] + (u,v)eC(i) ael0,1]
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(olu-fF (D) + (I—a)v}] - [ max min {a(u—f*(i))+(1~<x)v}]
+ «el0,1] (u,v)eC(i) +

= [ max hi(oc)] = (A(i))+. It remains to verify that A(i) =z O,
ac[0,1] +

Assume that A(i) < 0. Then, evidently, the closed convex set C(i)
c (R2 cannot be separated (even nonstrictly) from the point z =
( f*( i),0), so that the latter point belongs to the interior of

C(i), and, consequently, there exists a convex combination 2z’

i i
=Zt, J,G(x ) ch that z’ < z. Sin Tt, (f(x ),6(x.)) =
Zt, (f(xJ (xJ) su z ce It i J j
j=1 J=1
L i i t
(FAZt. x)6(Zt. x.)), we obtain (f.(ZTt. xJ)G(Zt. x.))
P IR ST Voo d I S0 T

=< (f*.(i),O), which contradicts the definition of f*(i). [
2). One has
hz(a) = hz(a) z ..., ae€[0]1] (4.7)
and ‘hi(-) is concave Lipschitz continuous function with Lipschitz
constant V.

o The monotonicity of hi(-) in i immediately follows from
(4.1), (4.2) and (4.4). Since fi is Lipschitz continuous with
constant L and f(xj) = fi(xj)’ Jj = i, we have lf(xj)—f*(i)l =V,
and since G is Lipschitz continuous with the same constant and
takes on Q positive (see 4.0) as well as nonpositive (since the
problem is consistent) values, we have IG(xj)I = V, so that hi(')
is Lipschitz continuous with the constant V. The concavity of h is
evident, =

4.2.2. Description of CLM

Parameters: A, p € (0,1)

Initialization: x, is an arbitrary point of Q, amin(o) = 0,
« (0) = 1, (1) = 172.
max

i~th step:
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1) Call the oracle, x; being the input

2) Compute £, (i), h.(+), A(L), x:

3) Define amin(t) as the minimal, and ocmax(t) - as the
maximal of « € [0,1] such that hi(oz) = 0. Set

(amin(i)+ocmax(i))/2, if (cz(i)—amin(i))/(ocmax(i) -
afi+l) = amin(i)) € [W2,1-u/2}

a( i), otherwise

4) set

w(i) = a(i) f*(i), W(i) = min (afi) f(xj
1= jsi

I = w(i) + 2 (W(i) - w(i)),

) + (1-a(i)) G(xj)),

X1 = n(xi,(x | x € Q, a(i)fi(x) + (I-a(i))Gi(x) = U(i)}).
4.2.3. Efficiency estimate. We claim that
e(x:) s A(D),

and if 0 < £ < V, then the following implication holds:

i > clA,pm) (I//z:)‘2 In(2v/€) = e(x:) = g,

where

couw = 2 (n 277 (swPtineran) -z

{note that min c(+,*) = ¢(0.29289...,0.53247...) = 360).

Proof.

1) The efficiency estimate

¥*
e( xi) = A1)

was established in Remark 4.2.1.1.1.

2) Let € > 0 and let N be such that A(i) > €. Let us split
the integer segment I = 1,..,N into sequential groups JI""'Jk

in such a way that a(i) = «, is constant for i € JL and «, # «

l l l+I

Let P, be the first, and q; be the last element of Jl' We call a
group substantial, if q, > P,

3) Let us prove that the amount k of groups satisfies the
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relation
k = (In(2/(+w)) " In(wre + 1 + 1. (CLM.1)
Indeed, let TO =.[0,1], Ti" = [ocmin(i),ocmax(i)], i = 1. Then Ti 2

Ti+1 {see (4.7)) and hi(~) is negative outside Ti' Note that @ is

the center of T _, and for ! < k, either «
l

1 does not belong to

Tq, or this segment is divided by « into parts such that at le-

l

ast one of them is less than p|T 1|/2. Since T_ < T , it fol-

lows that |T < (1+)IT 172 = (1+)|T /2, where = 0,
| qll 1 p,-1 Wl qHI 9

I = 17 | = ((1#wr2 ] since ho¢e) is
a,_, N

l

Thus, if k > 1, then ITN

negative outside TN and is Lipschitz continuous with the constant
V (Remark 4.2.1.1.2)), it follows that in the case of k > 1 we ha-

ve A(N) = max hN(oc) =V ((1+u)/2)k_1. Since A{N)} > &, we obtain
O=a=l]

in the case of k > 1. k = (1n(2/(1+u))}-1 In(V/e) + 1, which im-
plies (CLM.1).

4) Now let us prove that the amount of elements, Ml’ in the

group JL satisfies the relation

M =1+ 1w "0 T (e (CLM.2)

Of course, we can assume that the group Jl under

consideration is substantial. Denote Ji = Jl\{ql)' Let &(i) =

hi(al) {= W(i) - w(i)). We have (see (4.4) and {4.7))

W(pl) = W(pl+1) R W(ql—l), (CLM.3)
w(pl) < .= w(ql—l), (CLM.4)

so that
8(p)) = &(p+D) = ... = &(q,~1). (CLM.5)

Let us prove that

8(q,-1) = (u/(u+D) e. (CLM.6)
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Indeed, «, splits the segment Tq

! in two parts, each not

l-—]

shorter than plT 172; h () isAnonnegative on T and con-
q,-1 q,-1 q,-1

cave, so that max.,. hq _1(-) = (1 + /) hq -1(“1) = (1 + /)
g1 T !
8(q,-1). Outside T the function h (+) 1is negative; thus,
l ql—l ql-l
A(ql—l) = maqu , hql_1(°) = (1 + 1/y) B(ql—l). Since A(ql—l) >
l

€, we obtain (CLM.6).

5) Let us split the integer segment Jz into groups II""‘Is

as follows. The last element of II is j1 = q, - 1, and II consists

precisely of those i € J’l for which &(i) = (1-7\)—1 5(j1). The lar-

s

l

the last element, j2' of the second subgroup 12, and 12 consists

gest i € J’ which does not belong to I, if such an' { exists, is

1)

precisely of those { € J/, { = j2, for which &(i) = (1-?«)_1 5(j2).
The last element of J‘l which does not belong to IIUIZ' if such an

element exists, is the last element, j3, of I3, and I3 consists of

those i € I\{IZUIZ} for which &(i) = (1 - A)—I 6(j3). and so on.

Let us prove that the number of elements, Nr’ in the subgroup Ir'

satisfies the relation

v = pL? a-072 57 ). (CLM.7)

Indeed, let i € Ir and let Si = [w(i),W(i)]. Then (see

(CLM.3) - (CLM.6)) Si are nonempty segments, ISiI = 8(i); besides

, . l _ _
this, Si+1 [« Si’ i+l e Il' Let ¢ (x) = oclf(x) + (1 al) G(x), and

let ¢i(X) = oclfi(x) + (I-al)Gi(x). Then clearly

< . < < . < lo
ORI NOER O (CLM.8)

r r r

where i’_ is the first element of Ir' and

¢i(xi) =z W), i € Ir‘ mino ¢i(°) < w(i). (CLM.9)
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Let u(r) minimize ¢J. (+) over Q. Then (see (CLM.9) ¢J. (u(r))
r r

=< W(jr)’ so that (see (CLM.8)) ¢i(u(r)) = W(jr)' On the other
hand, for i € Ir we have L(i) = w(i) + A (W(i) - w(i)) = W(i) -
(1-A)8(i) = W(jr) - 6(_}"_) = W(jr) (we have taken into account that
W(i) = W(j) and 5(i) 5 (I-A) 8(j ), i € I). Thus, ¢(u(r)) =
(i), L € Ir. We have proved that

the (clearly convex) level sets Qt = {x € Q | ¢i(x) = (i)}, t €
Ir' have a common point (namely, u(r)). (CLM.10)

Now, x, , = n(xi,Oi), i e Ir. In view of the standard proper-

1

ties of the projection mapping, we have

_ 2 2
T, = Ixi+1 - w(r)|® = T, dist (xi,Qi). (CLM.11)

Furthermore, ¢i(xi) = W(i) (see (CLM.9)) and ¢t(xi+1) = (i),

so that ¢i(xi) - ¢i(xi.+1) z (1-A) &(i). Clearly, ¢i(°) is
Lipschitz continuous with the constant L, and we obtain that Ixi -
xi”l = dist(xi,()i) 3 L_z (1-A) &(i). Thus, (CLM.1l) implies

v, =1 - L2 s v, - L2025 ), 1 e 1.
i+l 4 i r r
Since clearly T = DZ, (CLM.7) follows.
It remains to note that S(jr”) > (I-A)-l 6(_)"_), so that Ml =
il +1=1+2N =1+ D°L° 5'2(j1) (-0 %2-0" A7, which
r

combined with (CLM.6) proves {CLM.2).

6} (CLM.2) combined with (CLM.1) imply the required

efficiency estimate. m

4.3. Constrained Newton Method (CNM)
4.3.1. Preliminary remarks. Denote
Ft(x) = p(f(x)-t,G(x)),

where, as above, p(u,v) = max{(u)+,(v)+), and let
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Kk(t) = mino Ft(').

Assume we have called the oracle at the points x X, € Q.

r
Then, besides the objects described in 4.1, we can define also the
following:
Upper distance function:
K(ist) = minlp(u-t,v) | (u,v) € C(i))
Lower distance function:
x*(i;t) = min(p(fi(x)-t,Gi(x)) | x € Q}
Remark 4.3.1.1. The functions k(t), x*(i.;t), Kk, (iit) are
nonincreasing convex Lipschitz continuous with Lipschitz constant

1 functions of t € R, and

K*(l;t) = K*(Z;t)

1A
l

K.*(i,‘t) s k(t), (4.8)

v

) = C2t) = ) = k(L) (4.9)

o p(+,*) is monotone and convex on lRZ; therefore for convex
p(+), q(+): @ > R the function p(p(x)-t,q(x)) is convex on QxR, so
that mino p(p(+J)-t,q(*)) is convex on R (and clearly Lipschitz
continuous with constant 1). These remarks prove the convexity and

* »*
the Lipschitz continuity of k, k , k The monotonicity of k and

.
K, in 1 immediately follow the monotonicity of p combined with
(4.1), (4.2) and the (evident) inclusions C(1) ¢ C(2) < .. ¢
c(i). (4.1), (4.2) and the monotonicity of p imply also the
inequality «k (ijt) = «k(t). Convexity of f and G implies
immediately that for every (u,v) € C(i) there exists a convex

combination x of the 'points X gpeerX g such that (f(x),G(x)) =

1l
(u,v), and this observation combined with the monotonicity of p,

leads to the inequality 'c*(i;t) =z k(t). m

Best point: let (ui(t),vi(t)) € Argmin{p(u-t,v) | (u,v) €
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C(i)}. Then there clearly exists a convex

L
Zri(j;t) (f(xj),G(xj)) of points belonging to T(i),
J=1

1
.Z ri(j;t) (f(xj),G(xJ.)) = (ui(t).vi(t)). Set
x 3
xi(t) = .Z ri(J;t) xJ.;
J=1

¥
Remark 4.3.1.2. Let t = f . Then

e(x:(t)) < Kk (ist).

combination

such that

(4.10)

: i
o Indeed, we have (f(x:(t))-t,G(x:(t))) s Z ri(j;t) (f(xj)-

J=1

LG(x ) = (u(D-tyv(t), so  that p(f(x’i‘(t»-t,c(x’i‘(t)» s

* *
p(ui(t)-t,vi(t)) = k (i;t). It remains to note that t = f, so

that e(xj() = p(fO(EN-fGOXU(ED) S p(FOX(E)-GxX;(t)

oc*(i;t). [
4.3.2. Description of CNM
Parameters: A € (0,1), u € (1/2,1)
Initialization: X, is an arbitrary point of @
i-th step:
1) Call the oracle, x; being the input
2) Compute f*(i), x*(i,"), nc*(i,u)

3) Set

. . - . .' .. *
. { (1), i=1orif (K*(l,ti_l) >uk (L,ti_l
¢ t. ,, otherwise.
i-1
. s . — * s
w(i) = K*(L;ti)' W(i) = x (l;ti).
Wi) = wl(i) + X (W(i) - w(i)),

X = nr(xi,{x | x € Q, p(fi(x)-ti,Gi(x)) = I(i))).

4.3.3. Efficiency estimate. We claim that

» E 3
e(x (t.))) =k (i;t.),
i i
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and if 0 < € < V, then the following implication holds:
*
i > c(A,u) (V/C)Z In(18 V/€) » e(xi(ti)) = g,

where

couw = 2 finewr ! aw @078 z-u A

(note that min c(+,*) = ¢(0.29289...,0.65252...) = 249).

Proof.

1) The accuracy estimate follows from Remark 4.3.1.2 combined
with the fact that t = f(i’) for each i =z 1 and some i’
depending on i (see the description of the method), while f (i) =
f* in view of (4.4).

2) Let £ > 0, and 1e.t N be such that n*(N;tN) > €. Let us

.split the integer segment I = 1,..,N into groups J.,..,J

1 as

k

follows. The first element of JI is p2 = 1, and JZ consists of

those i € I for which ti = 11. In the case of I\IJ # @ the first

element, pz, of the latter set is the first element of J2, and J2

consists of those i € INI, for which t. =t . If IN(Iul,) # @,
1 i P, 172

then the first element, p3, of the latter set is the first element

of J3, and J., consists of those i € I\(IIUIZ) for which ti =t ,

3 P4
and so on.

3) Let us prove that the amount k of the groups JI""’Jk
satisfies the relation
k =2+ (1n(2}1))—1 In(2uV/e + 1). (CNM.1)

Indeed, ti = t(l), it e Jl. We have (see the description of

the method)

(L) = £, (p 1= 1=k,
. } (CNM.2)
x*(pl;t(l—l))>u K (pL;t(l—J)), 1<l = k.
Note that since k(i;*) = x (i;+) (see (4.8) - (4.9) (CNM.2)
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implies

K*(pl;t(l-l)) >0,1<1 =k (CNM.3)
Let us prove that

(1) = t(2) = ... s (k) = f. (CNM.4)
Indeed, the relations t(i) = f* were aliready established (see 1)).

Let us prove that t, = ¢,

, 1 < i = N. We have either t, = ¢t
i i-1 i

i-r
or x*(i;ti_l) > K*(i;ti_l) and ti = f,(1). In the latter case,
since K (i;t) = Kk, (ijt), we have K*(i;ti_l) > 0 and therefore
K*(i;ti-l) > 0. At the same time, by the definition of f*(o), for
every i there exists a depending on i x+ € Q such that fi(X+) =
f*(i), Gi(x+) s 0, wll}ich combined with the defi'nition of K*(i,")
implies

Kk (i;f (1)) = 0. {CNM.5)
Thus, the relations ti = f*(i) and K*(i;ti—l) > 0 combined with
the fact that K*(i;') is a nonincreasing function, imply ti.- <

1
t..

i

Let

Kl(t) = K*(Pl.'t), 1] =k,
(L) = - Kl(t(l-l)) Ki(t(l-l)), 1<1l =k

Since K*_(i;') is a nonnegative nonincreasing function, we
have &(1) z 0.

Let us prove that

ncl(t('l-l)) + K'l(t(l—l))(t(l) -t(l-1)) =0,1<1 = k. (CNM.6)

Indeed, assume that Kl(t(l—l)) + Ki(t(l-l))(t(l) - t-1) >
0. Since Kl(‘) is convex, it follows that :cl(t(l)) = n*(pl;t(l))
> 0, or, which is the same in view of (CNM.2), K*(pl;f*(pl)) > 0

the latter relation contradicts {(CNM.5).
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Since K*(i,") is a convex nonincreasing function, we have for
k21l>2:

Icl(t(l-Z)) z Kl(t(l—l)) + |K'l(t(l~1))|(t(l—1)-t(l-2)). (CNM.7)
We have ;cz_](t(l—Z)) # 0, since otherwise (CNM.6) would imply
Kl_l(t(l—z)) = 0, which contradicts (CNM.3). Thus, (CNM.6) implies
for k =z I > 2: t(l-1)- t(l-2) = In’l_l(t(l—Z))I_l Kl_l(r(l-Z)), or,
in view of (CNM.7), xl(t(l-Z)) = xl(t(l—l)) + IKi(t(l-l))I
K (H1-2) kg2l since K (#1-2)) > 0 (see
(CNM.3)), we obtain

:cl(t(l-Z))/;cl_I(t(l-Z)) z

= K, (H1-1))/k)_(81=2)) + 1 (t1=D)I /1K) _ ((1-2))] (CNM.8)
;ince K.L(t(l—Z)) = k(t(1-2)), KL—I(t(l—a)) > p k(t(1-2)) (see
(4.8), (4.9) and (CNM.2)), we obtain Kl(t(l—Z))/Kl_l(t(l—Z)) =
p_l, while the right hand side of (CNM.8) is not less than
2(x (t(1-1)) It =112 0, _ct1-2)) ks _ ct-2n)V2,
Thus, (CNM.8) implies

a1 = (2w %8(1-1), 2 < I = k. (CNM.9)
Now we can complete the proof of (CNM.1l). Let k > 2. We
clearly have K(tl) = V and |K2(f)| = 1, therefore from (CNM.9) it

follows that &(k) = (2u)~2(k_2)V

-k+2

, so that either Kk(t(k—l)) =

2w v or kgDl = (2wTFE since K, (£ (p)) = 0 (see

(CNM.S)) and k, is a concave nonincreasing function, in the second

2

k
case we have K (t(k-1) = (2 "% |5 (p )-t(k-D| = (20 F v

(the latter inequality is evident). Thus, in both cases we have

“k+2 (CNM. 10)

Kk(t(k—l)) = (2u)
In view of (CNM.2) the latter relation means that

K(p,t(k-D) = ook y,
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and since Py = N and t(k-1) = tN (see (CNM.4)), we conclude from

E . _
(4.8) and the monotonicity of K*(N,") that k (N:tN) = n ! (2u) k+2

V. Thus, “—1 (2}1)‘-}“2 V > g (definition of N), so that in the case
k > 2 (CNM.1) does hold. Of course, it also holds in the case k =
2.

4) Now let us prove that the number NL of elements in the
group Jl satisfies the relation
M= 1 amw P08 @ AT e (CNM.11)
Let JL = {pl,pl+1,...,ql}. (CNM.11) is evident in the case q, =
Py In the opposite case let J’l = Jl\{ql}' Observe that, inside
Jz, the method is basically the standard Level method with parame-
ter A, applied to the function (convex and Lipschitz continuous
with constant L)

dix) = max((f(x)—t(l))+,g1(x), ...,gm(x)}: Q- R,
the quantities w(i) being the best model’s values. More precisely,
the only differences with LM are:

a) more detailed models of d(+): first, we use the known max-~
structure of the function and take its model as the maximum of the
standard models of the maximands f(x)-t(l),gl(x), ...,gm(x); se-
cond, we append to these more detailed models the information ob-
tained at the iterations preceding those from the group J,L under
consideration;

b) instead of best function’s values we use some other
quantities (namely, W(i)), which, first, are not less than the
best model's values w(i), second, do not increase with i and,

third, satisfy the relations d(xi) = W(i).

From the above theoretical analysis of the basic Level method
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it follows that these modifications do not influence the efficien-
cy estimate: the number of iterations (in the group J’l) required
to ensure the relation W(i) - w(i) = v does not exceed the quanti-
ty -0 0T AT o 41

Now note that if j is the last element of J 2, then W(j) -
* *
Ny o= .. _ . s (1- . .
w(j) K (J’tj—l) K*‘(J’tj-l) (1-w) x (J'tj-l) (otherwise the

group Jl would terminate immediately after the j-th iteration). We

* * *
also have «k (J’tj—l) = K(N,tj_l) (see (4.8)) and n(N,tJ,_I) =

K*(N,tN) > €. Thus, W(i) - w(i) > (1-p) ¢, so that i - p,+ 1=

(-w8 -0 -0 AT e’ 1t immediately  implies

{CNM.11).
5) (CNM.1) combined with (CNM.11) iymplies the required

efficiency estimate. m

5. A Method for (Var)
5.1. Notation. Assume we have called the oraclie at the points

X ppees X € Q. Then the following objects are defined:

Model:

8,(x) = max((F(xj))T(x—x Jl1=j=i)

J

Model’s best value:

¢ (i) = mino ¢i(x)

8(1) = - ¢ (i),

Optimal multipliers are the quantities ri(j), 1 s j = i, such
L
that ri(j) z0 I ri(j) =1, and
i J=1
mint £ r.(j) (F(x ) (x=x ) | x € @} = min_ ¢.(+) = ¢,(1). (5.1)
j=1t J J Qi *
Best point:
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Remark S5.1.1.
1). We evidently have
¢1(x) = ¢2(x) = .. (5.2)
and ¢i( +) are convex and Lipschitz continuous with constant L.
2). We have
8 =z 82)=2 .20 {(5.3)
o Indeed, let x be a solution to (Var), so that (F(x))T(x -
x*) = 0, x € Q, whence ¢i(x*) < 0 and therefore ¢*(i) = - &i) =

0. Thus, &(+) is positive. The monotonicity of &(i) in i follows

from (5.2). m
3). We have
e(x’i‘) = &(1). (5.4)
T » T i
o Indeed, let x € Q. Then (F(x)) (x-xi) = (F(x)) £ ri(j) (x
. . J=1
e o) (Foe )T *) s mind £ r () *
- xi) = r; J)( (xj) (x ~ xi) z min ri(,]) (F(xJ.)) (y - xi)

J=1

| y € Q) = ¢*(i) (we have taken into account the monotonicity of

J=1

F(-) and (5.1)). Thus, c(x:) = max((F(x))T(x:—x) | x € Q) = -
¢ (i) = 3(i). m

5.2. Truncated Level Method (TLM) for (Var)

A. Description of TLM

Parameters: A € (0,1)

Initialization: x1 is an arbitrary point of Q

i-th step:

1) Call oracle, x, being the input

i
2) Compute ¢ (i) and x:
3) Set

i) = =(1-1) &),
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X0 = n(xi,{x | x € Q, ¢i(X) = (D))
B. Efficiency estimate. We claim that
e(x}) = &(0),
P> e (/e + e(x) 5 ¢,
where
e = (=072 a7 -0
_{note that min c(+) = 4 = c(0.29289)).
Proof.
B.l. The efficiency estimate
e(x}) = &(1) (TLM.1)
was established in (5.4).
B.2. Set Si = [¢,(i),0]. Then (see (5.2), (5.3!)) Si # @ and
$; 25,2 . IS, 1 =81, (TLM.2)
where |S| denotes the length of a segment S.
B.3. Let us fix € > 0 and assume that for certain N and all i
= N we have &8(i) > e&. Let us split the integer segment I = 1,.,..N
in groups II""’ Ik as follows. The last element of the first
group is j1 = N, and this group contains precisely those { € I for
which &) = (1-2)"la( Jp- The largest element of I, j, which
does not belong to the group Il' if such an element exists, is the
last element of I 2 and the latter group consists precisely of
those i = j2, for which &(i) = (J-A)-z 8(j2). The largest element
e is the last element of 13,
and this group consists of those { = j3 satisfying &({) = (Z-A)-I

of I, j3, which does not belong to I

8(j3), and so on.
B.4. From (TLM.2) it immediately follows that ¢*(‘jl) s (i),

i e Il' Let u(l) minimize the function ¢, (+) over Q; then for i €

Ui
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Il one has ¢i(u(l)) < ¢J. (u(l)) = 1(i). Thus, we hav: established
l

that
the (clearly convex) level sets Qi = {x € Q | ¢i(x) .- (i)} asso-

ciated with i € I,, have a common point (namely, u(l)). (TLM.3)

l'
B.5. By virtue of the standard properties of the projection

mapping, (TLM.3) implies

_ 2 2
T, , = Ixi” u(l)|” = T, dist (xi,oi), iel (TLM.4)

i+l1 U

We also have ¢i(xi) - (i) =2 - l(i) (see (2.9)), so that ¢i(x[) -
W(i)= (1-A)8(i), and ¢i(xi+1) = I(i). From the Lipschitz property

of ¢>i, it follows that dist{xi,Qi) = |x, - x

-1
L Xl = L) -

_1 .
¢i(xi+1)| = L (1-2)8(i). Thus,

v o= - L2 aaf st - Udia%sj ) tel
i+1 i i l l

Because 0 = T = DZ (evident), the latter inequality immediately

implies that the number Nl of elements in Il satisfies the estima-

te

N, s DZL2(1~A)_26_2(jl). (TLM.5)

B.6. From the definitions of N and of a group, we have
A . SIS S
6(,]1) = 8(N) > ¢, 6(,)“1) > (1-A) 6(Jl).

These relations combined with (TLM.S) imply N = £ N, = DZLZ(I-?\)-Z

1=1 b

£ 40?2 e A -l
lz1

6. Computational results

All the test-problems described below are available from the
authors.

6.1. Unconstrained minimization

We have tested the simplest method of those described in Sect.

2, namely the Level method LM.

51



Our implementation used two features:
* An input parameter f*(O) was given to thz algorithm, serving as
a lower bound on the optimal value f_. The algorithm could then be
run without compactness assumption on Q.

* The two auxiliary problems to compute f,(i) and X, were solved

1
with the help of the code QLOOO! of K. Schittkowsky, itself based
on the algorithm of [Pow. 1983]. In some of the experiments we
used simplex codes of E. Borisova and N. Sokolov in order to com-
pute f (i).

In all our experiments reported below, the parameter A was
set to 0.5 and the algorithm was run until the gap became smaller
than 10_6 (in relative accuracy). We used doyuble precision Fortran
on a Sun Workstation. The test-problems were the following:

* BADGUY. This is a hand-made function, illustrating worst-case
behaviours; see [NYu 1983]. It is organized so that the gap after
t n calls to the oracle (n is the dimension of the problem) cannot
be reduced by mere than the factor 23“1. We used n=30 variables.

* MAXQUAD and TR48 are described in [LM 1978].

* MAXANAL is a .regularization of MAXQUAD, where the objective
max(fk(x)} is replaced by

max(zkkfk(x) + e 1n(?\k) | Z?\k = 1}.

Here, e=10_3.

* NET22h is the dual of a network problem, described by Goffin. It
has 22 variables and is badly scaled.

* URYI00 is a convex variant of a problem defined by Uryasjev. It
is actually the sum of a piecewise linear function and of a
quadratic, with n=100 variables bound by the box -0.2 = x, = 0.2.

t
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* TSP is the dual of a traveling salesman problem, following the
Lagrangian relaxation of [HK 1971]. The function to be minimized
is therefore the maximum of a very large number of affine
functions; we used datasets with n = 6, 14, 29, 100, 120 and 442
variables respectively, coming from VLSI design.

The results are reported in Tables 1 to 5 (see Appendix 2).
Observe the quality of the performances, as compared to the
simplicity of the implementation. Generally speaking, the method
is comparable to the best known methods, except on TSP442 (where
it can be considered as non-convergent). Indeed, a weak point of
the approach.‘ is to use the (bad) cutting plane model to provide
the estimate f (i). We have experimented the variant of Level in
which f*(i) is fixed to the optimal value f* (assumed known). When
applied to TSP442, this variant does reach the value -50505.5 (in
500 iterations, and the algorithm was stopped there). This seems
to confirm the important role of f (i); research is currently in
progress for a proper management of it.

6.2. Saddle points

We tested the Level method on a number of randomly generated
saddle point problems of the following type:
find a saddle point of the quadratic function

flx,y) = é(Px,x) - é(Qy,y) + (Rx,y)
under the constraints

Ax = a, leﬂm =r, By s b, Ilyllw =r,
where x and y are both n-dimensional, P, Q and R are matrices of
corresponding sizes, and P and Q are positive semidefinite. The

numbers of rows in the constraint matrices A, B, are equal to m.
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We used a simple generator of test problems. The input to the
generator includes the sizes n, m as well as the parameter dc used
to control the condition numbers of P and Q and the range of
Lagrange coefficients at the saddle point (i.e., the coefficients
in the representation of f)’c, f;, at the solution as linear
combinations of the gradients of the linear constraints active at

the solution). Table 6 (see Appendix 2) corresponds to problems

SADO8 (r =10, n =8, m =12, dc = 100)
saddle value: 58644.621053471
SADI6 (r =10, n = 16, m = 24, dc = 100)

saddle value: 31142.996423246
SAD32 (r = 10, n = 32, m = 48, dc = 100)
saddle value: -1200372.0857410

The control parameter A of the method was set to 0.5; the
process was terminated when the current gap A(i) was reduced to
10_6 (in reiative accuracy).

Note that theoretically f(xt,yt) should not converge to the
value of the game (recall that all we claim is that c(x:,y:) tends
to 0 at the rate prescribed by the theoretical efficiency
estimate). Nevertheless, our tests demonstrate that the values
f(xi,yi) also behave themselves well.

6.3. Constrained minimization

We ran both methods of Sect. 4, j.e.,, CLM and CNM, on two
sets of test problems. Problems of the first set were randomly
generated problems of the form
minimize

f(x) = (c,x)
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sub ject to

IA

fi(X) = IIQix - qill2 -p = 0,1=1ism,

A

Ax=b,Abe,|lxllm r,

1 r 2 2

where x is n-dimensional, Oi are kxn matrices, and AI’ A, are

2
m _xn and m xn matrices, respectively.
The random problems of the above type were created by a
simple generator; the input to the generator includes the sizes
(n, m, Kk, m_, mi), as well as r (size of the box) and the
additional control parameters m; Man (the numbers of linear
inequality constraints and nonlinear constraints active at the
solution} and c, dc, ag (responsible for t.he condition numbers of
Oi, for the range of Lagrange multipliers at the solution and for
the range of values of the constraints nonactive at the solution,
respectively).
Tables 7 and 8 (see Appendix 2} represent the behaviour of
CLM and NLM on two instances
RAND20 (n =20, m=8m_=2,m, =4, m ., =2, m__ =4, k=10,
r =100, ¢ = 10, dc = 10, ag = 0.1)

optimal value: 515.95506279904

RAND40 (n =40, m =16, m_ =4, m. =8 m ,=4, m =8, k = 20,
r =100, c =10, dc =10, ag = 0.01)

optimal value: -5094.6311010407

Test problems of the second type were as follows. Consider a
chain made of n weightless segments in the vertical plane, and
assume that the first segment starts at (0,0) and the last ends at
the point (L,0) (the x-axis 1is horisontal, the y-axis is

vertical). The length of each segment is | = c|x|/n. At the end of
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the i-th segment (or, which is the same, at the beginning of the

the (i+1)-th segment) there is a unit mass, and we minimize the

potential energy of the resulting system. In other words,

should minimize the function
n-1
zy
=1
under the constraints

2 2 2 .
(xix ) +(yiyi+1) s1% 0 si = n-l,

i+]

where Xg =Yg =Y, = o, x, = L.

we

The above problem is defined by the data n, L, c. The results

in Table 9 (see Appendix 2) correspond to the problems CHAIN20 (n

=20, ¢c =2, L =1 and CHAIN4O (n = 40, c = 2, L = 2).
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Appendix 1

Let Q be a closed convex subset in R" with a nonempty inte-
rior, and let F be a monotone mapping with the domain Dom{F}, int
Q S Dom{F} £ Q. We establish relations between the following two
notions: a solution to the variational inequality associated with
(F,Q) is a point x* € Q@ n Dom(F} satisfying

(g,x-x*) > 0 for some £ € F‘(x*) and all x € Q. (A.1)
We define a weak solution of the same variational inequality as a
point x* € Q such that

(m.x-x") = 0 for all x € Q n Dom{F) and all 7 € F(x). (A.2)

Theorem. Let F and Q be defined as above. '

Every solution to the variatioxial inequality associated with
(F,Q) is a weak solution to this inequality.

Conversely, assume that either

(i) Dom{F}) 2 Q and F is single-valued continuous on Q,
or

(ii) F is maximal monotone.

Then every weak solution to the variational inequality asso-
ciated with (F,Q) is a solution to this inequality.

Proof. Let x e Q and € ¢ F(x*) satisfy (A.1). From the mono-
tonicity of F, we have for all x € QnDom{F} and all n € F(x)

(n,x-x*) z (E,x—x*) =z 0.

Let now x satisfy (A.2).

For every y € Q we have <F(x*+t(y—x*)),y-x*> 20, 0<ts=s],
so that in the case of (i) the continuity of F implies <F(x*), y-
x*> z 0, y € Q, so that x* is a solution to the inequality defined

by (F,Q).
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Now assume that F is maximal monotone on its domain. Consider

the normal monotone operator N(x), Dom{N} = @, defined as
N(x) ={n | <mx-y> =0, y € Q, x €Q.

It is well-known that this operator is maximal monotone (recall
that Q is a closed convex domain). Now consider the sum S = N+F
(Dom{S} = Dom{F}nDomi{N}, S(x) = (n+€ | n € N(x), § € F(x)}, x €
Dom({S}). Since both F and N are maximal monotone and the interiors
of their domains have a nonempty intersection int Q, S is maximal
monotone (see [Rock. 1970]). If y € Dom{S} and & € S(y), then { =
n + € for certain n € N(y), € € F(y). We have <n,y—x*> z 0 (since
x* € Q and in view of the definition of N) and <€,y-—x*> 3 P (since
x is a weak solution to the inequality defined by (F,Q)). It fol-
lows that <§,y—x*> z 0. Thus, x* is a weak solution to the inequa-
lity defined by (S,Q). This fact, in view of Dom{S} § Q, means
precisely that adding the pair (x*,O) to the graph of S preserves
the monotonicity, and since $ is maximal monotone, we conclude
that (x*,O) belongs to the graph of S. Thus, x* € Dom{F} and there
exists € € F(x*) such that -£ e N(x*). The latter relation means
that <€,x-x*> = <-§,,x*-x> 2 0, x € Q, so that x* is a solution to

the inequality defined by (F,Q). =
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Appendix 2

BADGUY30 MAXQUAD MAXANAL (e=103)
f,(0) =-5000 f.(0)=-10 f,(0) = -10

#f/g  function

#f/g function #f/g function
1 5337.066

3; ~:;2§: 2 2663.905 1 5337.035

2 -6, 3 1957 04t 2 2663.891

62 -2015.999 4 638.5464 3 132r. 939

63  -2034.666 5 324.2790 0205340

64  -2034.666 6 157.1409 o jes.2ned

65  -2039.333 7 98.60842 3 1oi. 1328

94  -2044.583 8 31.92933 25.55182
95  -2045.312 9 28.18153 g Sy o213
96  -2045.494 1 18.12639 : 28.50709
95 -2045.494 2 5 950893 " 18.34281
98 2045 251 13 4.668303 :2 8.963797
5 2045 554 15 2.387000 'g 4.716963
o0 5045 2es 18 0.7462724 2.333794
100 -2045.555 39 0 5202543 17 0.8354944
101 -2045. 559 35 0 5763271 30 0.6648366
10z -2045.555 i 0 8932995 31 0.6388888
104  -2045.555 48 -0.7259131 3 10 3567133
105 _204% ss% 49 -0.7712059 o -0.3767172
106  -2045.555 50 -0.8151109 42 IPRSEpoes
00 045 2% 55 -0.8164922 32 ~0.5510089
08 5045 oos 56 -0.8249957 -0.6109728
109  -2045.555 57 -0.8365571 37 -g'§338624
110 -2045.555 59 -0.8382780 52 '0'7363§§f
12 _504s oes 62 -0.8397590 22 ‘0'?92 o
120 -2045.555 63 -0.8408527 54 _0'8105751
124 -2047.111 64 -0.840960¢4 56 -0.8103293
125  -2047.694 73 -0.8411514 57 _0. 8225036
126  -2047.840 74 -0.8411876 58 ~0.8289160
129 -2047.876 & -0.8413011 62 _0.8299909
157  -2047.948 7 -0.8413429 64 -0.8304996
159  -2047.958 78 -0.8413639 66 0.8306314
160 -2047. 961 79 -0.8413671 25 :0.8307531
161  -2047.961 80 -0.8413694 87 0.8307792
162  -2047.961 81 -0.8413918 a1 -0.8307945
163  -2047.961 87 -0.8413928 95 ~0.8307994
loe 5047 o6l 88 -0.8414003 > T rornes
165  -2047.961 89 -0.8414029 102 0.8308067
166 -2047.961 90 -0.8414030 103 -0'83080?2
167 -2047.961 92 -0.8414064 104 —o'aaoaoaz
168  -2047.961 95 -0.8414064 108 ~0. 8308082
160  -2047.961 97 -0.8414069 110 -0.8308084
170 2047 961 98 -0.8414077 -0.

171 -2047.961

172 -2047.961

179  -2047.961

187  -2047.986

188  -2047.995

189  -2047.907

192  -2047.998

220 -2047.999
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£,0)

#f/g

1
2
3
1
S
6
?
8
9
!
4
?

L
1
1
19
20
22
295
26
28
31
34
35
39
42
43
45
46
48
S
53
56
357
60
61
67
71
12
T
78
80
86
87
88
89
91
92
93
94
97
98
101
102
104
105
108
116
1z

TR48
= -700000.

function

~464816.
-495706.
-52088¢.
-341830.
-560801.
-562650.
-563643.
-568830.
-578219,
-589969.
-591689.
-566044.
-598607.
-602712,
-603220.
-607083.
-609600.
-613822.
-620021.,
-622699.
-626303.
-627921.
-629003.
-6302009.
-630926.
-632947.
-633212.
-633522.
-634393.
-6349859.
-635256.
-636013.
-636537.
-637023.
-637073.
-637373.
-637415.
-637520.
-637785.
-637886.
-637886.
-637978.
-638075.
-638097.
-638148.
-638178.
-638259.
-638283.
-638334.
-638343.
-638392.
-638397.
-638423.
-638468.
-638472.
-638484 .

DO DO N INO —O0ON

119 -638486.9
120 -638500.1
124  -638506.8
125  -638531.6
126 -638548.3
127 -638556.6
128 -638560.8
129  -638562.9
130  -638564.0
NET22h
(106 < x)
f,(0) = -200.
#f/g  function
1 1121.34
2 520.610
3 250.115
4 180.318
S5 72.442
7 52.96013
9 4.51785
1 -5.90046
12 -46.08817
16 -61.16107
28 -17.76272
32 -78.53425
33 -83.67625
34 -85.486833
35S -94.05240
36 -95.05838
39 -95.2357%
40 -98.86736
41 -100.65651
S5 -101.54585
59 -102.06443
63 -102.50231
64 -102.80661
82 -102.89126
96 -102.94307
99 -102.96474
100 -103.11303
108 -103.18887
113 -103.25048
121 -103.2532¢6
122 ~103.30134
126 -103.34170
141 ~-103.34511
143 -103.35174
144 -103.35659
146 -1083.37712
149 -103.38933
152 -103.38986
153 -103.39267
135 -103.39548
156 -103.39908
157 ~-103.40671

63

197
198
199
204
207
208
209
245
248
257
262
261
270
281

284
286
288
304
306
KRN

3195
321

-103.
-103.
-103.
-103.
-103.
-103.
-103,
-103.
-103,
-103.
-103.
-103,
-103.
-103.
-103.
-103.
-103.
-103.
-103.
-103.
-103.
-103.

40673
40676
40935
40938
40975
41010
41055
41068
11094
41106
41127
41133
41148
41151

41155
41187
41173
41183
41190
41192
411196
41198



URYconv
(-02 < x < 0.2)
f,(0)=0.
#f/g function
1 10814.

2 ST,

3 3122.

4 1886.6
5 1811.0
8 1412.34
9 1351.46
10 1341.86
11 1255.478
16 1242. 176
17 1231.154
19 1227.923
20 1222.121
21 1221.392
22 1218.168
26 1215.048
34 1215.034
35 1214.462
36 1214.244
39 1213.287
45 1213.034
46 1212.893
47 1211.618
50 1211.724
52 1211.495
55 1211.079
58 1210.598
69 1210.587
70 1210.400
77 1210.364¢
79 1210.343
80 1210.336
82 1210.231
98 1210.169
100 1210.149
105 1210.120
107 1210.100
114 1210.095
118 1210.020
167 1210.019
170 1210.018
171 1210.001
176 1209.998
183 1209.995
207 1209.984
210 1209.963
212 1209.927
218 1209.923
226 1209.918S
271 1209.914 -
297 1209.907
323 1209.903
325 1209.902
342 1209.899

346

1209.696

max. iter = 350

URYconv
(box penalized)
f,(0) =0.
#f/g function

1 10814.

2 5717.

3 3122.
4 1886.6
) 1811.0
9 1567.8
56 1519.8
58 1403.6
59 1386.8
60 1306.7
63 1277.5
101 12?5.2
107 1274.8
123 1272.5
124 1269.8
166 1267.8
167 1264.9
168 1257.8
170 1255.9
171 1254.0
173 1252. 4
175 1241.,2
1688 1228.8
196 1223.5
199 1221.7
204 1218.1
213 1218.1
221 1216.8
225 1215.9
227 1215.1
298 1215.1
299 1214.7
302 1214. 4
310 1213.7
312 1213.5
314 1212.7
321 1212.5
331 1212.5
336 1212.4
339 1212.3
34t 1212.1
364 1212.1
383 1212.0
386 1211.7
406 1211.7
422 1211.7
430 1211.7
431 1211.6
432 1211.6

64

440
447
451
453
465
481
486
488
490
497

max. iter

1211,
1211,
1211,
1211,
1211,
1211,
1211,
1211,
1211,
1210.

500
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TSP6
f,.(0) =-1000
#/g function
1 -403.
2 -416.75
3 -472.00
S5 -611.50
9 -612.9643
10 -614.5168
1 ~-616.2584
12 -617.0000
TSP14
f,(1) = -4000.
#t/g function
1 ~2633.
2 -2721.
3 -2934.729
4 -3181.616
10 -3187.119
11 -3200.685
12 -3226.135
13 -3259.120
15 -3301.031
19 -3313.501
22 -3317.878
23 -3320.689
24 -3321.485
25 ~3322.000
TSP29
£,(0) = -3000.
#f/g function
1 -1666.
16 -1756.8
17 -1765.9
18 -1766.9
19 -1877.0
21 -1880.5
22 -1932.03
25 -1963.80
30 -1965.26
31 -1984 .24
35 -1996.98
41 -1998.32
43 -2002.882
47 -2004.106
49 -2005.646
51 -2006.982
52 -2010.877
53 -2012.80°7
S4 -2013.013
55 -2013.080
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56 -2013.151
61 -2013.199
62 -2013.329
63 -2013.4135
64 -2013.457
65 -2013.478
66 -2013.489
67 -2013.495
68 -2013.497
TSP100
£,(0) = -30000.
#/g function
1 -18993.07
10 -19161.91
[ ~-19858.97
15 ~-19954.67
18 -20488.03
33 -20568.25
42 -20598.64
43 -20710.57
S -20749.55
61 -20784.17
65  -20792.46
67 -20809.70
72 -20873.96
84  -20882.46
99 -20882.69
101 -20898.59
104 -20910.15
106 -20914.27
107 -20914.60
108 -20922.23
127 -20923.17
128 -20925.51
129 -20928.94
134 -20929.85
135 -20931.04
136 -20932.95
137 -20933.32
138 ~20935.30
139 -20935.75
141 -20936.03
142 -20936.06
143 -20936.49
144 -20936.76
145 -20937.06
146 -209837.22
147 -20937.48
148  -20937.63
149 -20937.73
150 -20937.81
151 -20937.87
152  -20937.91



TSP120
f,(0) = -8 000.
#f/g function
1 -5840.

2 -6074.048
3 -6240.566
4  -6308.962
6  -6403.346
7 -6481.775
30 -6578.004
31 -6587.233
33 -6633.019
36 -6647.750
38  -6678.937
44  -6694.561
47  -6737.301
51 -6757.920
55  -6775.514
72 -6779.020
75  -6794.310
79  -6799.058
80  -6803.682
82  -6812.904
95  -6841.046
102  -6858.842
107  -6858.956
112 -6866.910
125  -6874.902
133 -6878.229
136  -6881.725
140  -6887.902
150  -6892.160
160  -6893.193
162  -6894.098
169  -6896.184
174  -6897.147
175  -6896.829
177  -6900.010
184 -6900.318
186  -6901.119
189  -6902.833
196  -6905.196
206  -6905.214
207  -6906.310
212 -6906.700
214 -6906.944
215 -6907.558
218 -6907.634
219 -6908.053
221 ~6908.970
231 -6909.201
235 -6909.221
237 -6909.729
240  -6909.925
244 -6910.158
245 -6910.160
246  -6910.327
253  -6910.494
25¢  -6910.509

259 -6910.773
260 -6910.864
261 -6910.988
271 -6911.009
272 -6911.018
213 -6911.096
274 -6911.,113
275 -6011.132
276 -6911.150
2707 -6911.172
278 -6911.190
279 -6611.199
281 -6911.211
282 -6911.219
283 ~6911.225
284 -6911.232
285 -6911.234
286 -6911.238
287 -6911.241
288 -6911.246
TSP442
f,(0) = -60000.
#f/g function
1 -46862.30
19 -47083.30
21 -47754.42
23 -48064 .40
27 -48314.50
31 -48452.01
33 -48464.14
35 -48545.13
37 -48584 .86
38 -48740.62
40 -48763.24
41 -49131.83
16  -49154.38
48 -49176.18
S -49230.08
56 -49334.63
59 -49412.26
62 -49416.44
63 -46513.38
67 -49674.64
72 -49745.21
76 -46773.25
79 -49815.93
85 -49827.59
87 -49883.24
92 -49910. 34
95 -49917.70
104 -50034.19
112 -50045.58
116 -50099.89
121 -50110.86
123 -S0142.61
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139 -501489
141 -50164
145 -50182
150 -50198.
154 -50206
160 -50215.
163 -30235.
167 -50236.
168 -50259.
173 -50263.
174 -50292.
179 -50297.
182 -50312.
186 -50326.
192 -50332.
156 -50335.
210 -50345.
219 -50349.
222 -50374
235 -5038+4
257 -50386

258 -50390

269 -50408
279 -50415.
283 -50422.
286 -50427.
296 -50437.
3t9 -50437.
329 -50438
349 -50444
353 -50462
384 -50466.
389 -50467
393 -50471.
396 -50471
401 -50474
405 -50475
410 -50477°
412 -50480.

max. iter = 420

.73
.50
.23

06

.96

61
17
6
73

01
04
75
23
78
65
95
48

.93
.63
. 45
.19
262 -50408.
.08

22

16
02
40
49
75

.35
.87
.73

24

.07

.77
.84
.85
.97

30



SADO8
#f/g gap objective
2 208364.1 26892.39
3 89255.71 46355.59
4 43520.98 52638.27
S 18244.58 55997.28
6 7741.616 57240.14
? 3532.174 58045.98
8 1523.933 58236.56
9 957.308 58501.01
10 470.576 58525.92
IR 277.448 58604.07
12 158.842 58579.83
13 113.201 58627.24
14 40,343 58634.34
1S5 30.218 58637.45
16 19.760 58642.40
17 5.872 58643.52
18 3.835 58644.10
i9 2.722 58643.97
20 1,754 58644¢.54
21 0.75! 58657.39
22 0.421 58651.07
23 0.313 58647.68
24 0.289 58646.00
25 0.282 58645.22
26 0.271 58644.77
27 0.268 58644.64
28 0.264 58644. 71
29 0.259 58644.65
30 0.249 58644.68
K] 0.240 58644.66
32 0.230 58644.66
33 0.219 58644.64
34 0.205 58644.62
35 0.167 58644 .61
36 0.083 58644.60
SADI16
#f/g  gap objective
2 117494, 34661 .43
3 18235, 33525.44
4 9828.8 31997.96
S 4291.3 31609.38
6 2361.1 31285.99
7 1388.1 31522.31
8 1066.3 31259.49
9 692.5 31236. 11
10 454.9 31521.22
11 395.7 31231, 72
12 275.7 31177.37
13 203.t 31181.35
14 163.0 31160.12
15 109.4 31159.29
16 76.94 31178.15

67

17 63.31 31150.13
18 44.27  31152.80
19 35.00  31148.70
20 2412 31144.33
21 20.91 31145.55
22 16.96  31144.76
23 10.62  31142.88
24 7.97  31143.32
25 6.3¢  31143.28
26 4.69  31144.14
27 4.47  31143.33
28 3.91 31143.80
29 3.01 31143.05
30 2.65  31143.20
31 218  31143.22
32 1.66  31143.23
33 1.41 31143.10
34 0.92  31143.37
35 0.72  31142.97
36 0.47  31143.05
37 0.36  31143.04
38 0.20  31142.92
39 0.12  31142.99
40 0.10  31142.99
41 0.08  31142.99
42 0.06  31143.01
43 0.05  31143.00
SAD32

#f/g gap cost
2 5448581, -963480.
3 1121204, -1202545.
4  458570. -1334416.
5 362633. -1218794.
6 205589. -1207426.
7 138308. -1208932.
8 99714, -1202523.
9 74153. -1204505.
10 30586. -1204660.
11 27454, -1202606.
12 22629, -1202367.
13 16673, -1208258.
14 13224, -1200468.
1S 11392, -1201155,
16 8064.8 -1200846.
17 5408.5 -1203882.
18 5062.2 -1199727,
19 3861 .4 -1200660.
20 3216.3 -1200496.
21 2510.4 -1200619.
22 2064.3 -1200269.
23 1584.9 -1200410.
24 1395.2 -1200444,
25 907.70  -1200245.
26 699.11  -1200454.
27 640.95  -1200440.
28 552.07  -1200428.
29 441.66  -1200394.

342
269
194
180
136

v = NN WWD IO
VOO WWOOOUOoOoONMOD

—_ e = e NN WA N

.32
.02
.68
.54
27
120,
.83
.57
.28
.52
.70
.54
.66
.00
.81

.84
.23
.0°
.99
.21

.23
.93
.26
.27
.51

aR

.78
.94
.02
.65
.51

27

-1200384.
-1200385.
-1200375.
-1200384.
-1200415.
-1200366.
-1200375.
-1200391.
-1200368.
-1200372.
-1200375.
-1200382.
-1200373.
-1200374.
-1200375,
-1200373.
-1200374.
-1200373.
-1200373,
~1200373.
-1200372.
-1200375.
-1200372.
-1200372.
-1200372.
-1200372.
-1200372.
-1200372,
-1200372.
~1200371.
-1200372.



RAN20 (constrained level)

£,(0) =0.

objective

-3104.
~-3627.
-7415.
-78%0.
~-7890.
-297S.
-902.
593.
595.
573.
562.
562.
565.
558.
557.
S44.
543.
533.
521.
521.
S521.
519.
516.
S516.
516.
5t6.
516.
S16.
St6.
516.
S516.
S16.
516.
S15.
515.
5185,
515.
515,
515,
515,
Sts.
515.
51S.
S15.
515.
515,

446

954

139

228

228

067

1215
0856
1646
9980
2839
1910
0481
4729
0874
9237
6074
5708
0267
2570
3004
5250
9066
6392
5071
3140
2809
2903
0568
0311
0270
0190
0146
9704
9644
9634
9583
9582
9569
9559
9558
9558
9558
9558
9557
9554

infeasibility

1245,
1035.

833.
.0

121

721,
21

605

154,
18.
16.

9.

424
.
0.

-0.

.0529

2

-0

-0.
-0.
-0.
.01384
-0.
.00457

0

-0

-0.
.0os7??
01011

-0
-0

-0.
.003918

-0

-0.
-0.
-0.
.000610

-0

-0.
.001225

-0

-0.
-0.
.000023
.000036

-0
-0

-0.
.000040
.000042

-0
-0

-0.
-0.
.000013
-0.
.000013
.000008
.ggoaogr

-0

-0
-0
-0

2

0

0

4

14
85
348
7538
3537
0331
1035
1761
2709
00166

0859

003914
003636
003980
000514
000408
001059
000190
000063
000015
000012

000013

68

RAN20 (Newton level)
£,(0) = 0.

#f/g  objective

2 44.
3 32
4 14
6 21
? 26.
8 29.
9 29.
10 419,
[ 475,
12 501.
t3 S14.
15 514.
18 513.
19 514,
21 515,
22 St6.
26 515.
28 S516.
29 516.
30 516
32 515,
37 S15.
39 515.
40 515,
41 S1Ss.
42 515.
47 515,
48 S1s.
49 S15.
50 515,
53 515,

59312

.69669
. 60221
.58758

23598
03952
71941
1160
3577
9541
9950
4676
1268
0681
6814
0958
8369
1400
0326

0124

9719
9474
9553
9549
9546
9549
9551
9550
9550
9551
9551

infeasibility

326
146

40
38

.96723
.02230
68.

737178

. 448620
. 418595
34.
. 842534
7.

057029

2074009

3.9754218
1.3725472
0.5491130
0.2290687
0.2275991
0.1404776
0.0352848
0.0092386
0.0053595
0.0031480
0.0026109
0.
0
0
0
0
0
o
0
0
0
)]
]

0015542

.0003822
.0003219
.0000367
.0000249
.0000237
.000008S
.0000061
.0000047
.0000056
.0000012
.0000003



RAN40 (constrained level)

#f/g

—_— OV NN DD LN

N

13
14
195
16
17
18
19
20
21
22
23
24
25
26
27
28
268
30
31
32
33
34
35
36
37
38
39
40
41
42
43

f,(0) = -10000.

objective infeasibility
-6183.871 782.028
-5187.675 193.68S
-4938.308 49,4309
-5060.899 12.6758
-5084.405 5.27870
-503?7.37S 2.51922
-5069.418 1.12415
~-5053.608 0.51602
-5068.662 0.13841
-5069.223 0.07101
-5067.736 0.02210
-5067.736 0.02215
~-5067.7?36 0.02216
~-5067.733 0.02241
-5067.732 0.02251
~-5078.722 -0.01970
~-5079.693 -0.00561
~-5079.723 ~-0.00385
-5082.975 -0.15849
~5087.995 -0.06667
~-5090.09S -0.02230
~-5090.089 -0.02249
-5093.158 -0.00964
~-5093.157 -0.00967°
~5094.048 -0.00276
-5094.203 -0.00168
-5094.202 -0.00170
-5094.202 -0.00171
-5094.322 ~-0.00275
~-5094.349 -0.00284
-5094.570 -0.00078
-5094.570 -0.00078
-5094.570 -0.00078
-5094.570 -0.00078
-5094.567 -0.00056
-5094.624 -0.00002
-5094.625 -0.00002
-5094.625 -0.00002
~5094.624 -0.00002
-5094.624 -0.00002
-5094.625 -0.00002
-5094.625 -0.00006
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#f/g

~NoNswnN

12
13
15
16
20
23
24
31
34
40
47
50
54

RAN40 (Newton level)

£,(0) =-10000.

objective infeasibility
~-6134.477 780.30
-5167.408 193.91
-4924.203 49.429
-5062.152 12.665
-5081.076 5.3618
-5037.342 2.6256
=5037.311 1.1368
-5044.745 0.6101096
-5090.168 0.3883399
-5082.450 0.0751529
-5087.145 0.037758+4
-5093.960 0.0120858
-5093.625 0.0022751
-5094.5586 0.0002471
-5094.627 0.0000513
-5094.621 0.0000099
-5094.631 0.0000075S
-5094.628 0.00000t11
-5094.631 0.0000004



CHAIN20 (constrained level) CHAIN20 (Newton level)

f,(0) =-1000. f,(0) = -1000.
#f/g objective infeasibility #t/g objective infeasibility
2 -14.56595  0.6682579
D I R i P pgme oo
4 -13.51848  0.6132536 5 18 38541 0. 641360
3 -12.97745  0.5796023 6  -22.98693 0.5690655
6  -14.54907  0.4726217 2 _31. 24539 0. 4371859
T -19.70359  0.1872318 8  -38.02470 0.3270592
§  -16.36018  0.1475199 9 -17.77501 0.1042374
9 -13.83541 0.10355811 14 -18.50436 0.0921989
10 -10.60577  0.0614231 's 10.244903 01659744
' -8.89049  0.0384369 '3 Z9.380816  0.0058774
12 -8.98122  0.0448675 o C0.414706  0.0031686
I3 -9.21371 0.0242676 20 -9.129002  ©0.0012095
' -9.13262  0.0235763 22 -9.140639  0.0004056
IS -9.17770  0.0074056 24 -9.103276  0.0001196
1 -9.07817  0.0064999 25 -9.104479  0.0000123
he -9.08397  0.0034704 27 -9.104542  0.0000065
'8 -9.07923  0.0033274 29 -9.103956  0.0000028
' -9.10023  0.0011768 30 -9.103983  0.0000007
20 -9.09121  0.0011246
21 -9.10110  0.000559!
22 -9.09984  0.0004791
23 -9.10172  0.0002388
24 -9.10342  '0.0000675
25 -9.10398  0.0000117
26 -9.10405  0.0000316
27 -9.10404  ©0.0000038
28 -9.10408  0.0000016
29 -9.10402  0.0000011
30 -9.10398  0.0000005
31 -9.10398  0.0000006
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