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Analyse d’une méthode multigrille Jacobi-multipas pour résoudre
les équations d’Euler

Résumé: Nous étudions la convergence de méthodes multigrilles avec itér-
ation de base multipas Jacobi pour résoudre les équations d’Euler station-
naires discrétisées par une approximation MUSCL. Ces méthodes étendent -
d’une certaine fagon les approches & pas de temps local et caractéristique.
Le principal outil utilisé est I'itération bigrille. Une étude analytique est
réalisée en 1D. On propose une regle heuristique en 2D a partir de quelques
expériences. Finalement, un algorithme de type W-cycle a faible complexité
est décrit et comparé a 'itération bigrille.

Analysis of a multistep Jacobi multigrid method for solving the
Euler equations

Abstract: We study the convergence of Jacobi multistep multigrid meth-
ods for solving the steady Euler equations with a MUSCL approximation;
these methods involve some advantages of local and characteristic time step-
ping. The main tool is two-grid analysis; an analytic study is done for 1D
case. Experiments are produced in 2D for proposing a heuristic rule. A low
complexity W-cycle is compared to the 2-Grid iteration.
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1 INTRODUCTION 1

1 INTRODUCTION

The Euler equations of compressible gas flow are expensive to solve numeri-
cally because they involve many variables, they are of hyperbolic type, and
because many nodes are often necessary for capturing complex phenomena
such as vortex flows. It is a striking fact that for many authors, the potential
flow can be solved within five multi-grid cycles, while the Euler equivalent
requires several hundreds of work units. In fact, many questions, that are
not arising in the elliptic case or are now well solved, are still not answered
for the so-called hyperbolic case. In particular, many people are interested
in obtaining the solution of discrete systems relying on upwind schemes like
MUSCL and other TVD ones; two difficulties arise:

Firstly, usual hyperbolic systems are severely non-isotropic since they involve
trajectories; this fact is amplified by upwind schemes (whatever be the spatial
order considered) since the internal numerical viscosity is non-isotropic (this
fact is still more important with some two-dimensional or narrow schemes).
This difficulty can lead to many incidents related in particular (but not only)
to alignment pathologies. Secondly, second-order upwind schemes really lack
of intrinseque dissipation; some explanation of the hyperbolic-MG conver-
gence is related to error expulsion instead of damping, but this does not yet
help a less dissipative scheme to work well. One issue is to use a first-order
MG scheme inside a first-order/second-order defect correction iteration [1].
A third difficulty (not necessarily related to upwinding) is the frequent arising
of a saturation phenomenon when too many levels are used. The limitation
of the number of levels is an obstacle to mesh-independent convergence.

A fourth difficulty is a still more general one: when non-structured meshes
are considered, one encounters difficulties to design a really implicit relax-
ation i.e. a relaxation with the help of non-diagonal direct methods; in this
paper we restrict ourselves to explicit-like methods.

The preconditioning that we propose is block-diagonal; indeed, local time-
stepping is a scalar-diagonal preconditioner that is less efficient at least in
1-D than both characteristic time-stepping [2] and Jacobi preconditioning
that are block-diagonal; in this study, Jacobi is preferred in 2-D because it
extends naturally to multi-dimensional systems.

Further, many ideas of the explicit approach can be extended to the Jacobi
formulation; we introduce a four-stage Runge-Kutta-Jacobi iterative method.
Our main concern in this paper is to compare a 1-D study involving a sim-
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plified advection model with its 2-D application to the Euler equations.
The 1-D analysis is of two-grid type because it takes into account transfers.
Extension to 2-D is complicated by the problem of anisotropy and mesh
alignment; since we are working with non-structured meshes, we neglect the
influence of a strong alignment.

The main parameter to optimize is the relaxation parameter; we present a set
of experiments for studying the sensibility of the algorithm to this parameter
and to compare the behaviour of a practical algorithm to analysis.



2 MODELS FOR HYPERBOLIC MULTIGRID 3

2 MODELS FOR HYPERBOLIC MULTI-
GRID

In order to compare analysis with practical calculation, we restrict ourselves
to the Ideal 2-G scheme, in which “Ideal” non ambigously indicates that the
coarse grid correction involves either a direct method or a fully converged
iterative one.

2.1 Basic model

One very simple model of iteration for searching the steady solution of an
hyperbolic problem is defined as follows: the advection equation is considered
(¢ > 0) on the unit circle, (0 = 27), u + cu, = 0, and, an explicit upwind
discretisation is choosen; we call it RK1:

At
n+l __ . n By e /| B )
ut =] -i-ch(uj_‘1 u?) (1)
this defines an iterative process u™*! = f(u") which converges to a constant
solution, due to the numerical dissipation. From this one-grid example we
can derive some 2-Grid schemes:

2.1.1 Finite volume 2-Grid

Usual 2-Grid: In order to understand the behaviour of a 2-Grid scheme it
is interesting to write the correction built by such a scheme. Let us consider
one cycle for the 1D-advection equation (¢ = 1), then define some terms:

o A coarse finite volume grid is generated by grouping cell,, and cellypiq

e The notations u, or u define the value of u on the fine grid, and uy, or
2 the value of u on the coarse grid.

o The basic iterative scheme:

n+l __ ,on
ult = ul - o(u

7 i u"l—l)

) J

At .
where ¢ = cK- is the classical Courant number.
T
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o The residual on the fine grid:
Ra(up) = Ry = (uj —u-1)

e The transfers from grid to grid:

— The injection of the solution:

U U
I n(Un), = _ﬁ’%ﬂ.

— The restriction of the residuals:

hal’ + Rh2p+ 1

fh_.H(Rh)p = 2

— The interpolation of the correction:

IH_.;,(COTH)Q,,
. =C
Tn(Cory)opsa OTHy

It is now useful to write the source term used by the iterative scheme on
the coarse grid (i.e.: we must solve the following problem: u; + cu, = S, S:
source term, S = 0 on the fine grid):

Py, = th(ug;z)) - ZR;(UA) =
p _ R(ﬁ(n)) _ (R2p + R2r+l)
= =
2
— sy _ (u2p+1 = uzp-1)
R(@T) 2Ax

where @(® is the restriction of the fine grid solution that initializes the pro-
cessus on the coarse grid:

(uzp + U2p+1) _ (u2p—2 + Uzp—1)
2 - 2

Thus, the first step of the scheme on the coarse grid can be written as follows:

7™ — A
Up™ = v Upa

_ _(0 = (0
(@™ - 'U',(,-)l) _(a - u;—)l) (uaper — “2r-1)]

20 = g _ 92A¢
Up = Up Az Az 24z
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The coarse grid correction is then defined by:
—(1) _ A0 _ (u2p+l - 'U-Zp—l)
ug, u, = -At A

If we now use the interpolation of the coarse grid correction on the fine grid,
we can write the iterate solution after one cycle:

_ At(u2p+l — Uzp-1)

e+l —_ e
Y T Yo Az
i —u
41 e (u2p+1 — Uzp-1)
Uppp1 = Uppyy — O Az

We can notice first that it corresponds to a centered scheme for the even
nodes, and an upwind scheme for the odd nodes. Then we also see that the
fixed points (undamped frequencies) of the coarse grid correction are of the
following type:

Ugps1 = cONst.

Ideal 2-Grid: Another way to study the behaviour of the 2-Grid scheme
is to consider an Ideal 2-Grid cycle. In order to do that, we keep the same
definitions as previously written except what concerns the convergence: an
Ideal 2-Grid is defined by the complete convergence on the coarse grid during
the cycle. If we now write the processus on the coarse grid we obtain (ﬂ;x')
is the converged solution on the coarse grid):

_ —(00) =~ ~(0)
) = gl _ zAt[(u;”) o)) _ (u;") — Up) + (u2p+1 — u2p—l)]
P

r 2Az 2Azx 2Ax
Thus we have:
_ —(o0 - ~(0
(u;x) - u;»-l)) - (U;O) - “;»—)1) = _(u2p+1 - u2p-l)

As written previously, the coarse grid correction is the difference between the
converged coarse grid solution and the injection of the fine grid solution, so
we define 42 by:

§1 = o) — g®

Lemma 2.1 8@ s given by:

bi=0+K, K== upn €R
r

3 -
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Proof:
We can write:
(517.,, —_ 6177,_1 = _(u2p+l — ‘U.z,,_l)

In order to find the coarse grid correction we must solve the previous equa-
tion, so we put:

Up = —Ugps1 &= Up_1 = —Uz(p-1)41 = —U(2p-1)
We have now to solve the following equation:
5’1-Lp - (51_1.p_1 = 'l_}p - 'l—)p_]

The right-hand side of the equation corresponds to the derivative of a periodic
function, thus if we introduce the operator A : Z /nZ — ZZ/nZ defined by:

Abt = 6ty — bTip_q = Tp — Dp_y = AD
we can write:
e The Kernel of A has a dimension of 1 thus A can not be inverted.

o We apply Fredholm’s alternative, we have the isomorphism:
E/Ker(A) — Im(A)
where A is the circulant matrix:
A = Diag (—110)
and there exists a solution:
Sa=v+K, KeR
K is determined by the initialization and the conservativity.

In order to calculate the value of K, let us consider the coarse grid processus
that we integrateon [0, 2 7 |:

—(n _(n) . ~(0)
/ﬁ(n+l) - /{ﬂ(n) _ 2At[(u§’ ) - up—l) _ (U;O) — up—l) + (U-2p+1 - u2p—1)]}
P P 20z 20z 2Az
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Most of the above terms are equal to zero (derivation of a periodic function)
(u2p+1 — U2p-

except the last term l). A condition for this term to be equal

T
to zero is that it must correspond to the derivation of a periodic function on
the coarse grid, and that occurs if the number of nodes (cells) of the fine grid
G} is an even number. If this condition is verified we can write:

/a(nn) - /ﬂ(n) _ / 7 = /u

And we deduce the value of K:
1
/61_1.=0=> /K = ZU2P+1 = K = —Zu2p+1
P Py
End of the proof

Therefore we have a solution, and the coarse grid correction is:
08y = —tUgp1 + K

The iterate solution after one cycle is given by:

c+1 _ e I
u?l = u2p - u2p+1 + K

v — _ e —
Upp1 = Uppyy —Uppp + K = K

Conclusions:
1. The ideal coarse grid correction is uniform for the odd nodes.

2. We define the Ideal 2-Grid scheme by:

1 cycle = 1 fine grid iteration + 1 ideal coarse grid correction

Lemma 2.2 In the particular case where o = % the solution 1s obtained in
two cycles.
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Proof:
After one cycle, the solution on the odd nodes is uniform: Then the iterative

basic scheme is: .

ntr _ (47 T i)

T 2
It means that after one fine grid iteration the solution is averaged, and two
successive nodes have the same value. Thus the iterate solution, after the

coarse grid correction, is:

e+l coo__ ac —
uzpl = uj,—up,+K = K
o+ —

Upprr = K

And the fine grid solution is constant (end of the proof).

2.1.2 Local mode analysis

One way to analyze a scheme is the usual Fourier analysis, building its am-
plification factor G(#). This is usually done for one grid and, for that reason,
could limitate the field of investigations. It is usually said that the frequen-
cies to be considered must be the high ones (in the interval [ 2, 7 ]). Indeed,
it seems that these frequencies can be excited by the transfer processus and
thus must be damped by the smoother. Therefore, we define the local mode
analysis by ”eln;axw] | G(6) | as a function of w (Courant number or relax-
z.

ation parameter in a Jacobi method). If we compare the results obtained
with this analysis and with an experiment salving the 1D advection equa-
tion it is obvious that some informations have heen last. The hehrwioui- of
the analysis seems to tend to the result of the experiment but is much more
pessimistic. Some reasons to explain that, can be that such an analysis does
not take into account neither the transfers used in the multigrid processus
nor the effect of the coarse grid correction.

2.1.3 2-Grid analysis

Local Mode Analysis can give some approximate information about the above
2-grid schemes. Since there are only two levels, a non-approximate Fourier
analysis can be applied; we proceed as in Couaillier-Peyret (3] and Leclercg-
Stoufflet [4]. This kind of Fourier analysis consists in giving two Fourier
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modes for every node, in the iterative scheme. We consider differently the
even nodes and the odd nodes for our transfers, thus we have the following
kind of solution to be found:

U,’: = U‘n (2p)#),

n —_ n i(2p+l)0;,
h2p+—l V

go = vp

Then, setting in a first row the equation at the 2p nodes and in a second the
equation at the 2p + 1 nodes, we obtain an amplification matrix:

Un+1 [777, [70
=G ~h = G™ ~h
() -o (5 )-o(%)
np is the number of iterations on the fine grid and G is a 2 x 2 matrix built

as follows:
G = (gr(gh) go(eh) )
90(8)  9c(64)
9:(6n) + 90(08) = g(6s)
where g(6)) is issued from the usual Fourier analysis of the equation. The
amplification factor g can be written as follows:

B) = 3 met™
Y
Then we can deduce g, and g,:

gc(gh 27’ qel2q”h : go oh) an le'(2q+1)”"
For example, we consider the 1D advection equation with only one grid. The

matrix is: ( ) y A
1-0) o€ t
G_( oetn (l—o)) 7= Az

There are two eigenvalues: A\* = (1 — o) £ ge** The definition of the ampli-
fication factor we will use is the one given by [4], i.e. “the spectral radius of
the amplification matrix”. For the two-grid analysis, the transfers and the
calculus on the coarse grid are contained in a matrix that multiplies the pre-
vious one-grid matrix in order to give the amplification matrix of the scheme:
let us consider the different steps of a cycle ((@},7}) is the iterate fine grid
solution):
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Initialization on the coarse grid: The coarse grid source term S, and
coarse grid interpolation of the correction are given by:

and

{ gr” = R?;-—I_h—.n(ﬁﬁ) = CZH(GH) ﬁ2 - ]_h_.n(i%ﬂ)
iy = Inhn(7)

where 25(0y) is issued from the 1D advection explicit flux on the coarse grid.
Notice that:

01{ = —27l'kA23H = 291[ k = 1,3,...,N1{—1 (k oddnumber)

—~

Let us exhibit the residual restriction term: I_h_,H(R;:):

fh—;H(ﬁ:) = ih—»H (C Zh [ ;;':' ]) = ¢ [l,e—iﬂ,,] Zh(oh) [ ’lfl;: ]

h

where Z,(6)) is a 2 X 2 matrix given by:

(i = 20 2]

2, (0n) + 2,(0n) = Zh(gh)

where z,(65) is issued from the 1D advection explicit flux on the fine grid.
If we denote zx(fx) = ¥ ;e then 2, (6s) and 24,(64) are expressions of
the following type:

20, (0h) = DM€ i 2, (6h) = Zn2q+1ei(2q+l)""
1 q

The coarse grid solution u}: After ny iterations of the scheme on the
coarse grid we obtain the solution, with @y as first iterate:

1-g4(8y)
czy(n)

1—gu(0n)
CZH(HH)

iy = gu(On)aH " + Sry

= (gu(Br))™ 8% + Sru Tt N gn(8n))*
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The coarse grid correction Clory: Tts definition is given as the difference
of the calculated solution on the coarse grid and the injection of the fine grid
solution: .
Cory = ujy — 1’2?,
= Wy — Ihan ()
(1 = gn(8u))™"
0211(911)

We can notice that for an Ideal-2-Grid scheme the convergence is supposed
to be complete on the coarse grid (gy(65)™* & 0), thus:

-1 -
— -
CZH(OH) h H(

I-h—oH(ﬁt):)

1)

Cory =

The interpolation of the corrcctions on the fine grid: After one
multigrid cycle the fine grid solution is given by:

~n+1 ~a ]
[ =n+1 = ~ |+ ]H_.h(COTH)
Uy L Uy ]
[ 42 ] 1 ] 4~
— h Y
= ﬁ;,l + [ e,’yh ] COTH

We obtain the amplification matrix as follows: let n, be the number of
iterations of the scheme on the fine grid,

_ Ml M2 ny
AL

The terms of the matrix are given by:

( _ (1 —gu(fa))"" iy
Ml = 1- CZH(H[{) [zhe (gh) te zhn(eh)]
_ _(1 — gu(0n))"" 2 o= 5
1 M2 - CZH(GH) [ ho(gh) + he (0")]

M3 = [Ml(Gh)—l]e‘”"

M4 = 1+M2(9h)6wh
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Application to 1-Grid In order to clarify this kind of analysis we use
it on a classical 1D advection equation to compare it with what is already
known. We build the amplification matrix and apply the definition kept for
the amplification factor. We obtain then the two eigenvalues A* = (1 - o)+
oe'® where we recognize the usual amplification factor in A,. It occurs that
in the interval [ 0, § ], A, is the greatest and we have exactly the same
amplification factor, but in the interval [ 3, 7 ], A_ is the greatest. Thus we
deduce that this analysis can be pessimistic for two grids, since it is already
for only one (Fig.1).

Application to 2-Grid Runge-Kutta 1 In this case we use an Ideal-2-

Grid analysis (the solution is supposed to be converged on the coarse grid).

At
e K =
Choosing ‘a

as a parameter, we obtain the convergence rate presented

in Fig.2a. We can numerically measure these rates; we obtain (Fig.2b) - in
this actual case - exactly the predicted curve. In order to compare this
analysis with the one made previously, let us consider the particular case

1 1
where K = —. This choice should produce convergence within only one cycle

(direct solver). But we have seen that the convergence is obtained in two
cycles. Actually, the analysis gives us the eigenvalues (eigenfunctions) of the
system, thus it is possible that the matrix reduces to a triangular one A.

The multistage Runge-Kutta schemes A. Jameson proposed in [9] to
use the multistage schemes to solve the Euler equations. The reason is not
the order of accuracy obtained (4 in the classical Runge-Kutta), but their
properties of damping and stabilities. This kind of Runge-Kutta p-stage
schemes can be written as follows:

20 = n
W = u® — a;AtDu®
u@ = 4~ a,AtDuV
e (ap = 1)
u(p) = u(o) — apAtDu(p"l)
u™tl =

Du(? represents the fluxes calculated with the value of u(. It has been
shown [8] that the Runge-Kutta 4 scheme can present good properties as a
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smoother of the high frequencies.

2.2 Imposing an optimal CFL number
2.2.1 Characteristic preconditioning and Jacobi iteration

Clearly the efficiency of the above Ideal-2-Grid schemes is very sensitive to
the choice of w, that is a scaling for the wave speed. When two waves are
considered:

U+ AU, =0 , U(z,t)€ R

a 2x2 scaling matrix must be introduced in order to impose e.g. CFL = 0.5
for each wave; this is the idea of ”characteristic time stepping” (see Van
Leer et al. [2]) that is written in short as follows

At 0 A
n+l n 1 T—l n n
uptt = U7 +1 < 0 At ) Az Ui = Uf)

with

0 A2 Az Az

The idea uses a diagonalization of A at node j and is not easily extended to
multidimensional systems. It is interesting to note that this iteration scheme
can also be understood as a Jacobi process:

A=T(,\1 0 )T“ MAL Aoty

U;.-H =Ur+ wA_]A(U;l-l -uf)

in which the block-diagonal of the whole system is thus used for precondi-
tioning. While characteristic-time-stepping requires, in the case of variable
coefficients or non-linearity, to choose a local value of T, Jacobi iteration is
applied in a more straightforward manner both in this simplified case and
in 2D non-linear systems: unfortunately, in the 2D case, the different wave
speed are not uniformized (this would require a non diagonal precondition-
ner). In the sequel, we shall consider only Jacobi-like schemes and the
design parameter will be the damping parameter w.
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2.2.2 Multistage Jacobi

The idea of preconditioning the system to solve leads us to another kind
of schemes deduced from the Runge-Kutta ones. Thus we will use several
four-stage Jacobi iterations defined as follows [10]:

X(O) = Xif.nr
Forl=1to4: XW=XO+4ua DY B-MXID)
Xitn-r-H = X(4)

Where M X = B is the system to be solved and D the block-diagonal of M.
Several choices of the a; coefficients are possible:

(a) | RK4-S Standard 1/4 1/3 1/2 |1
(b) [ RK4-L From Lallemand (8 0.11 [0.2766 [ 0.5 |1.
(c) | RK4-VL | From van Leer et al {2] | 0.0833 | 0.2069 | 0.4265 | 1.

Referring to RK1 for the one-stage Jacobi, we observe a strong relation be-
tween wideness of the set of CFL that produce damping (Fig. 2, 6a, 6b, 6c)
and the corresponding maximal efficiency measures on the NACA practical
test (Fig. 4, 7.1a, 7.1b, 7.1c). Van Leer’s coefficients are the best among
the above choices; some attempt to locally vary them did not bring any
noticeable improvement.

2.3 A 2D Euler experiment
2.3.1 Numerical method

Because non linear effects may have consequences on the convergence of a
MG process, we shall first restrict to the study of the MG solution of a
linear system that is a linearization of the dicretized Euler equations. The
computer program that we use was initially written by M.H. Lallemand and
is described in [5]. In short, a Finite Volume upwind scheme is applied
on a maybe non structured finite element triangular mesh; an unfactored
linearized implicit time stepping is applied, relying on the Steger-Warming
flux difference splitting:

&(U,V) = AH(U)U + A~ (V)V
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and linearization is the usual one:
o(U", Ve sUTY!, 6V”“) = A(U”‘)(SU"’+1 + B(V")M/""1

So that the implicit part is “first order accurate”. We refer to [6] for a
further description. The solution of the linearized system is obtained by
applying a MG process: The MG scheme is a finite volume one (after the
above explanations) and coarse grid cells are group of fine grid cells; some
experiments showed that this “unstructured” point of view does not loose
convergence speed with respect to structured ones (7).

2.3.2 A first 2D experiment

The flow around a NACA0012 airfoil (Fig.3, Mach=0.85, a=0 degrees) is
computed and converged up to a 107* residual; then the linearized system
is picked up and we measure the MG performance. The MG scheme is an
Ideal-2-Grid one, with a sawtooth V-cycle, and Jacobi as an iteration on the
fine level (block 4x4); we verified that the results presented are mesh size
independent. While a rough application of the 1D analysis would have lead
to choosing w = 1, we see that wo, = 1.01, while Wy, = 1.13.

2.4 A 2-D scalar study

Our purpose now is to evaluate the different sources of discrepancy between
the 1-D analysis and the 2-D practical example. We consider a 2-D equation:
au, + bu, = 0 and periodic b.c. In order to get a straightforward extension
of the 1-D model, we apply the usual Donor Cell upwind scheme on a regular
mesh of squares and the Jacobi iteration.

2.4.1 The alignment phenomenon

This occurs when the coarse grid correction has no effect on the iterative
solution. That means the scheme behaves just like a 1-Grid one. Let us
consider the following example: the 2-D advection equation and a 2-Grid
cycle.

U + CUy + €U, =0

+periodic boundary conditions



2 MODELS FOR HYPERBOLIC MULTIGRID 16

To solve this equation we will suppose:

c=1
e=0

The upwind scheme used is then:

_ At
N

n+1
Uk —UJL'*’U( j— lL—uJL)’

Just as previously we can define the injection on the coarse grid of the fine
grid solution by:

_(0) = - Z (uzpt1.291)
l
~(0
5,_)1 = Z Z(u2p—2:hl.2q:kl)
We now write the process on the coarse grid and we determine the coarse
grid correction:
~(n41) _  =(n) " ) )
gnq )= (n to ((0) p"q)
+[— (Zp-14 '(O)) + 5 {(uzp-120 = Uzpr120) + (Uap-12041 — Uzpr12941)}]

In order to understand this phenomenon we take the following practical ex-
ample:

(2p,2q) [-1] : The value of the function is -1 in the fine grid cell (2p,2q)

(P,Q) [0] : The value of the function is 0 in the coarse grid cell (P,Q)
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veccceseonccneanen 4

1

7

t(2p-2.2q+1) [-1] | (@p-120¢1) (1] f @2 (1] | (20412001 (1] {2p+2.2q+1) [-1]

.............................................................................................

.............................

T (P-1Qr[or (P10
p-229(1) | @p-t2q() |i @21 | @s1290-1 |} (2pe229)[1]

i2p-220-1)1-1] | (20-1.20-1){-1] (20+1,2q-1)[1]

i (2p.20-1)[1) {20+2,20-1) 1]

Lemma 2.3 (i) in 1D: (1,1,-1,-1) is damped by the coarse grid correction
because it is captured by the correction (the convergence occurs in two

cycles)

(11) in 2D the coarse grid correction has no effect on the iterate solution
because uzpy1; = —Uzp—1,; and thus the source term is equal to zero so
that:

M = ﬂ(n)
2@ = gV

Therefore the fine grid keeps the property that uzpy1; = —ugp_1; and
the convergence is identical to a I-Grid convergence.

2.4.2 Experiments and an heuristic rule

Let us return to au, + bu, = 0; with an upwind scheme; the results that we
present in Figs.5.1a,5.1b,5.1c are obtained by experiments (with verification
of mesh independency). These curves can be interpreted as follows: The case
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a = b looks like the 1-D case, (with fastest convergence at w = .5, but with a
reduction factor of .6 instead of 0, and maximum stable w about .7 ; due to
2-D stability condition). In the case a = 0, b = 1, mesh and equations are
strongly aligned, this anihilates the efficiency of intermediary values of w; the
best factor is .8 for w = .2 or .8, but this measure was not mesh independent.
Case a = 5 b is somewhat intermediary; to understand it, we suggest to com-
pare it with a 1-D experiment in which the system au, = 0 ; bv, = 0 solved
with only an explicit (non-Jacobi) iteration; the resulting curve presents a
first segment related to the slow wave with a slope five times smaller than
with one equation, and then the fast wave part; this is sketched in Fig.5.2.
From the comparison with Fig.4, we have the following comments: No effect
resembling the strongly aligned case appears. The dissymmetry in Fig.4 is
similar to the dissymmetry in Fig.5.1b. The two-wave-speed model of Fig.5.2
is a rather accurate model of what is measured in Fig.4. We derive the fol-
lowing prospective rule:

1-D optimisation rule: one important feature of the scheme is its abil-
ity in damping stmultaneously waves with disparate speeds; therefore we need
a good damping for a large interval of CFL numbers.
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3 PRACTICAL APPLICATIONS

3.1 Illustration of the rule on several schemes

We present now some 2-D linearized-Euler experiments for illustrating the
above rule. We compare the 2-grid efficiency of several Jacobi iterations: -
the usual “one-stage” Jacobi iteration

3.2 From two-grid study to efficient MG

Although (rather) fastly converging, the two-grid scheme is not an efficient
one since a complete solution of the coarse grid system is assumed; we con-
sider now a MG scheme with five levels and a W*-cycle defined as follows:
a W*-cycle is a W-cycle for which smoothing is suppressed when returning
at the finest level and on intermediate levels when coming from a coarser
one going to a finer one. We think that such a cycle is one (among others)
natural extension of the two-grid scheme; in particular it involves only one
fine-grid smoothing per cycle; the complexity in 2-D is bounded by 2; the
motivation in choosing this scheme is to try to obtain a convergence rather
close to the 2-grid cycle, and in particular to avoid saturation effects pos-
sibly arising when many levels are used (in [5], 7 levels are used successfully).

3.3 Results

The convergence of the W*-cycle has been measured to be only slightly mesh
dependent (see [5]). We present in Fig.7.2c the reduction factor versus damp-
ing parameter for the RK4-VL iteration; this is to be compared to Fig.5.1c
(2-grid). The best reduction is obtained for w = 3.3, a figure very close to the
2-grid one; the corresponding factor is only .6 instead of .5 (for the 2-grid).
It is interesting to note that 4 W*-cycles with RK1 iteration (about same
expense) give a reduction of .659, and one W*-cycle with 4 RK1 iterations
as smoother gives a reduction of .76; thus RK4-VL is the efficient option.
At last, we evaluate the behaviour of the nonlinear algorithm with implicit
linearized time stepping; one W*-cycle is applied for (partly) solving the lin-
earized system at every time step. The convergence is still slower, with a
best reduction factor equal to .7; again the optimal parameter is not very
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different, around 3.25 (Fig.7.2d).

As a conclusion of this section, the 2-grid model gives an optimistic but rather
good prediction of the performance of the W*-cycle, with a good guess of the
optimal parameter.
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4 CONCLUSION

In this report we studied a class of explicit-like multi-stage multi-grid schemes
for solving the steady Euler equations; in this class, we suggest to include the
RK-Jacobi iteration that presents a natural block-diagonal preconditioner.

This class of schemes are studied as explicit ones although time-consistency
is not used for analysing the MG convergence; also, in order to easily take
into account transfers and aliasing phenomena that are not measured in the
usual local mode analysis, we concentrate the study on 2-grid analysis.

A two-mode Fourier formulation proves to be a predictive tool for the 1-D
case.

For the 2-D case, we tried to build a realistic rule, not taking into ac-
count alignment problems, since they are not generally encountered on un-
structured meshes and would lead to a too much pessimistic view of the
convergence.

The proposed rule were verified on a set of RK-Jacobi iterations, and the
discrepancy between each stage from models to practical calculation have
been quantified. In practise, linear convergence factor with 5 levels is as
good as .6 with a cheap W-cycle and a four-stage iteration as smoother.

For obtaining faster MG schemes, we think that we must extend the
family of schemes under comparison and optimization. In particular, adding
some extra linear algebra, that is, using non-diagonal preconditionners, should
be investigated.
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Figure 1: AMPLIFICATION FACTOR VERSUS THE FREQUENCIES
FOR THE 1-D ADVECTION EQUATION FOR A 1-GRID METHOD
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Figure 2: CONVERGENCE RATE VERSUS DAMPING PARAMETER



Figure 3: MESH AROUND A NACA0012 AIRFOIL
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Figure 4: CONVERGENCE RATE VERSUS DAMPING PARAMETER
FOR THE JACOBI SOLUTION OF LINEARIZED 2-D EULER SYSTEM
(FIRST-ORDER UPWIND DISCRETIZATION; V*-CYCLE)
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