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Abstract

A class of degenerate second order stochastic PDE is considered, for which a representa-
tion result in terms of stochastic characteristics has been proved by Krylov-Rozovskii [2]
and Kunita [3,4]. An example of a stochastic PDE in this class has been exhibited in
Florchinger-LeGland [1] as the result of a Trotter-like product formula for the Zakai
equation of diffusion processes observed in correlated noise. Particle approximations are
introduced for this class of stochastic PDE, and error estimates are provided which extend
the results of Raviart [6] on first order deterministic PDE.

Résumé

On considere une classe d’EDP stochastiques du second ordre dégénérées, pour lesquelles
un résultat de représentation a ’aide de courbes caractéristiques stochastiques a été prouvé
par Krylov-Rozovskii [2] et Kunita [3,4]. Un exemple d’EDP stochastique de ce type, a
été obtenu par Florchinger-LeGland [1] comme résultat d’une formule produit a la Trotter
pour l’équation de Zakai des processus de diffusion observés dans un bruit corrélé. On
étudie des approximations particulaires pour cette classe d’EDP stochastiques, et des
estimations d’erreur sont fournies, qui étendent les résultats de Raviart [6] sur les EDP
déterministes du premier ordre.



1 Introduction

Consider the following stochastic differential equation
dX; = b(X)dt + o(X;) [dW; — e(X,) dt] , (1.1)

where {W,, t > 0} is a d-dimensional standard Wiener process, and the associated sto-
chastic flow of diffeomorphisms {£,:(-), 0 < s < t}, and define

Zo.() = exp{/ot e*(€o,s(z)) dW,

1 [ lelean(e)ds + [ elloula))ds) -

Introduce the following partial differential operators

II[>

1y i
22; 3x8x1+2b8x,+c’

=1

Bkéek+za;;-5‘9—, 1<k<d,
1=1 I

with a = ¢ ¢, and the stochastic PDE

d
dgy = L qidt + y_ Biq dW . (1.2)
k=1

Because of the relation a = o o* between coefficients of higher order partial derivatives
in operators L and By, equation (1.2) is a degenerate second order stochastic PDE or
equivalently, after transformation into Stratonovich form, a first order stochastic PDE.
Existence and representation results have been obtained by Kunita [4] for (generally
nonlinear) first order stochastic PDE, based on the notion of stochastic characteristics.

In a previous work [1], the Zakai equation for the nonlinear filtering of diffusion pro-
cesses observed in correlated noise has been considered. A decomposition of the Zakai
equation has been introduced, exhibiting a degenerate second order stochastic PDE sim-
ilar to (1.2) in the correction step. In addition, a time discretization scheme has been
proposed for this degenerate second order stochastic PDE, with rate of convergence of
order V6, where § is the time step.

The purpose of this paper is to provide a discretization scheme of the degenerate second
order stochastic PDE (1.2) with respect to the space variable z € R™. This approximation
relies on the representation of the solution in terms of stochastic characteristics, and
approximation of the initial condition by a convex linear combination of Dirac masses.
This kind of aproximation is called a particle approzimation, see Raviart [6].



More specifically, for any probability measure p{dx) on R™, define the transformed
measure Q; u(dz) by

(Quid) = [ #léodl)) Zol) u(da) , (1:3)

for any test function ¢, or equivalently
A) = / = dz) .
Qi p(A) 61 04) 0,4(z) p(dz)

Note that, if ¢ is regular enough, then the It6 formula gives

d
d[ ¢(foe(z) Zoe(z) ] = Lo(boi(z)) - Sop(z) dt + z Bid(£o4(x)) - Zoe(z) dWF .

k=1

Therefore p(dz) = Q, p(dz) solves equation (1.2) in weak form, i.e.

d
due = L pydt + Y Bppe dW o= 1 . (1.4)
k=1
Consider next the following two different assumptions on the original measure po(dz) :

D Assume that the original measure u(dz) has a density g(z) with respect to the
Lebesgue measure on R™, i.e. u(dz) = q(z)dz. Then, the transformed measure Q. u(dz)
has itself a density ¢.(z) which satisfies

g1(€0.4(2)) - Jos(z) = Zo,e(z) - g(2) ,

or in integrated form
/A () dz = /{ IEYCRCES

Here, Jo.(-) is the Jacobian (i.e. the determinant of the Jacobian matrix) of the sto-
chastic flow &.(-). In addition, the density ¢(z) solves the degenerate second order
stochastic PDE

d
dg. = L*q,dt + > Bq.dW} Go=q . (1.5)
k=1

D Assume that the original measure u(dz) is a convex linear combination of Dirac
masses, also called particles

p(dz) =3 a'é(z - 2'),

el

where {a*, ¢ € I} are the particle weights, and {z*,¢ € I} are the particle locations.
Then, the transformed measure Q; u(dz) has a similar representation

Qt# d:l? Zat .’B;) ’

i€l
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where the particles have been transported by the flow i.e. z} = &(z*), and the Weights
have been updated according to a! = a' =g (z*).

The idea behind particle approximation for equation (1.2) is the following :

. given an initial condition uo(dz) with density go(z), find an approximation uf(dz)
in terms of a linear convex combination of Dirac masses,

- use the exact solution of equation (1.4) with the approximation pk(dz) as initial
condition, as an approximation for the solution of the original equation (1.5), and
get error estimate if possible.

This can be illustrated by the following diagram

qo(x) dz = po(dz) p4(dz)
Q: Q.
gi(z) dz = p,(dz) uf(dx)

The remaining of this section is devoted to recalling standard results concerning sto-
chastic flows of diffeomorphisms and stochastic PDE.

Proposition 1.1 Let n > 0 be fized. Assume that

- b, 0 and e have bounded derivatives up to order (n + 1),

- ¢ has bounded derivatives up to order n.

Then &s.(+) s a C™—diffeomorphism in R™. In addition, the following estimates hold for
alp>1

sup E [lD"{,t(:l:)Ip < o0, 1<|a|<n,
zeR™

sup E [ID"’:,,(x)I” < 0o, 0<]|e}j]<n.
zeRm




Restricting to compact sets of R™, it is possible to invert the supremum and the
mathematical expectation in the estimates above, see the Corollary 4.6.7 of Kunita [5)

Proposition 1.2 Under the assumptions of the Proposition 1.1, there exists a constant
C > 0, such that for any compact set B C R™ and € > 0 the following uniform estimates
hold for allp > 1

E [sup]D"E,,,(z)l”J < C[1+67, 1<]a|<n,
z€EB

E[S“plpasa.:(z)r’ SCn+&, o0<lal<n,
z€B J

where § = §(B) denotes the diameter of B.

For alln > 0, p > 1, let W™? = W™P(R™) denote the space of real-valued Lebesgue-
measurable functions on R™ whose generalized derivatives up to order n are integrable in

p-mean, and define the corresponding norm || « ||»,, and semi-norm |- |, by
iz, & ¥ [IDu(@Pdz and i, Y [IDu(z)Pds,
o< |a|<n loej=n
respectively.

Consider the following degenerate second order stochastic PDE

d
dgy= L*q,dt + Z Brq dW} | Go=gq. (1.6)

k=1

Although no coercivity hypothesis is satisfied, the following existence, uniqueness and
regularity result is proved in Krylov-Rozovskii [2].

Theorem 1.3 Let n > 1 be fizred. Assume that

- a has bounded derivatives up to order max(n,2),

- b, o, ¢ and e have bounded derivatives up to order n,

. the initial condition satisfies qo € W™P,
Then equation (1.6) has a unique solution ¢ € MP(0,T; W™P). In addition
g € L*(Q; Cu([0,T]; W™P)),
and the following estimate holds

E[ sup |lg:ll2,) < llol%,, €T .
0<t<T



2 Quadrature—based particle approximation

With the quadrature formula (A.1)

[o(@)ds ~ T 9=,

el
is associated the following particle approximation for the initial density go(z)

go(z) dz = po(dz) ~ pl(dz) = Y w' go(z*) 6(z — ') . (2.1)

el
This induces the following particle approximation for the solution ¢;(z) of equation (1.6)

qi(z)dz = p(dz) ~ pp(dz) = Y w' Zou(z') go(a’) 8(z — £ou(2')) -

i€l

The following error estimate holds in Sobolev space with negative exponent, which
extends the result of Raviart to the case of first order stochastic PDE.

Theorem 2.1 Let n > m be fired. Assume that

- b, 0, ¢ and e have bounded derivatives up to order (n + 1),

- the tnitial condition satisfies go € W™P.

Then there exists a constant C > 0 independent of h, such that

Ellue — p¢ll-np < C 8" llgollnp -
PROOF. Let ¢ € W™ be an arbitrary test function. Since

{1, b /46({0,(::: ) Eo.() go(z) dz | (1, d) = 3w’ ¢(bos(x')) Zou(a) gola’)

i€l

it follows from Theorem A.2 that

|<ut’ ¢) - (#:" ¢)| S C hn lgln,l ’

with ¢ = ¢ o €0t - S0t qo , provided g € W™, n > m.

Under the assumptions on the coefficients, ¢ o &, € Wn?' and Zot - g0 € W™P, for
conjugate p and p’. Moreover, the generalized Leibniz formula yields

gl € X [ Ixes(z) D"$lEou(z)) D ac(z)l dz ,

(a.8)€ln



where I, denotes the set of pairs (@, §) of multi-indices such that |a|+|8] < n, and xa,8(*)
are random fields involving the derivatives of £o(-) and Zo.(-) up to order n. Using back
and forth the changes of variable induced by the differomorphisms &.(+) and &5} (-), and
the Holder inequality, gives

lglnn £ 30 / Ixa.8(€5 (2)) D?é(z) DPqo(€51 ()] [Jou(€5s ()] 7" dz

(avﬁ)eln

< ¥ {[ 1o aa} " { [ st DatetF

(c,8)€In

1/p
[Joe(&52 ()] ™" dz}

<oy 3 {[ osle) Doan(e)P LoD dz)

(ayﬁ)eln

Therefore

(e 8) = (W8 BN o g 3 {/lxa.;a(m) D go() PP [Jo,,(z)]—(p-l)dm}l/p

[|8ln.5+ (cB)Eln

and

Ellu = pill-np < C A 32 { / E {IXas(2)I? [Jou(z)]"*V}

(a’ﬁ)eln
1/p
| DPgo(z)| d:z:} .
From estimates in Proposition 1.1, it holds
sup E {[Xas(2)I” [Jotl)] 7V} < 00,

so that
Ellp: — #tll-np < C 2" [igollnp - o

Regularization

Let {(z) be a continuous cut—off function defined on R™, which satisfies

() / ((z)dz =1,
(i3) /:c"‘((:t)d:v=0, 1<]a|<k—1,

i) [lel @)de < o0,
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for some k > 2. For any € > 0, {.(z) is defined by the following scaling

a1 z
(@) 2 5:¢(5) -
With the particle approximation

pe(dz) = 3 w' Eou(e') go(2*) 8(z — 27) ,
i€l

is associated the regularized measure
pee(de) = pf * C(dz) = ¢/"(2) dz

where the density /() is given by

‘It’e -’5) Ew -—Ot )Ce(:l:—m)

tel

The main result of this section is the following theorem, which is an extension of the
Theorem 4.2 in [6], to the case of first order stochastic PDE.

Theorem 2.2 Let n > m be fired. Assume that

- the cut-off function { satisfies (i)-(iii) for some k > 2, and { € W™1,
- b, o, ¢ and e have bounded derivatives up to order (£ + 1),

- the initial condition satisfies go € WP,

where £ = max(k,n).

Then, there ezists a constant C independent of both h and ¢, such that

& l/ n
{Ellg — at*lI8,} < C {e" llgolls + (B/E)" llgollnp} -

Proor. Obviously
h,e h,e
g =" =g~ q*C]+[ge*C—q].
First, it follows from Lemma 4.4 in [6] that

”qt —qQt* CeHO,p <C e |qllkm

provided ¢, € W*?, Under the assumptions, Theorem 1.3 gives

1/p 1/p
{Ellg— g+l 7 <C e {Blal,} " < Ce* ligolles -



On the other hand, using the change of variable induced by the diffeomorphism {5’} (-),
it holds for all z € R™

0 G2) = a(2) = [ Zol2) a0(2) Gz ~ boul2)) dz
- E“" Eo,t(l‘i) QO(xi) (e(z - {0',(3‘)) = E(g(z,-))
i€l
with g(z,-) = Zoy¢ go - {(z — €o:). Therefore, it follows from Theorem A.l that for all

re R™
lge * Ce(z) — ¢ (2)] < C k™ |g(,)|na

provided g(z,-) € W™ n > m. Moreover, the generalized Leibniz formula yields

9@ s € 5 [ IXp(s) DPal2) D%z = o))l da

(x,B)EI

where I, denotes the set of pairs («, 3) of multi-indices such that |a|+|8| < n, and x}, 4(-)
are random fields involving the derivatives of & .(-) and Zg.(-) up to order n. From the
technical lemma below, it follows that

Jlsta Eade ¢ 5 {[iDc@lde} { [ Ioole) Doacta)r

(eB)EIn

[Jo,i(z))~ P~V d:r} .

Making use of
1
DaCz(l‘) m+|a| a(( )

taking mathematical expectation on both sides, and raising to the power 1/p gives

{ /lg |n1da:} pg "1;||C||n1 {/E{|Xo{ﬁ )P [Jou(z)]" P }

(a.8)€],
1/p
1D go(z)? do

From estimates in Proposition 1.1, it holds

sup E {16 s(2) Jou()] 7} < oo
TER™
Therefore
. 1/ n 1/p
{Bllacs ¢~ a1, }'" < ¢ 7 {B [ 1g(z, )12, do}

< C (h/e)" [Cllan ligollnp - O



Lemma 2.3 Let f € L? and g € L', and define

1(2) = [ £(2) g(a - €oa(2)) dz

Then I € L? and in addition
{ / ll(x)l”dm}llp < { / (f(z)[P [Jo,g(z)]'(”‘”d:c}l/p / l9(z)[dx .

PROOF. Using back and forth the changes of variable induced by the differomorphisms
€o,:() and {5,1(), and the Lemma 4.3 in [6], gives

I(2) = [ £(65}(2)) Wod&52 ()] 9la - 2)dz

and

([} < { [ 11w hdgi@rea)” [l

< ([P e e} [l@ias. o



3 Adapted particle approximation

Consider the particle approximation (A.3) for the initial condition pe(dz)

po(dz) ~ ph(dz) = 3 a' §(z - ')

tel

where the particle weights {a‘, : € I} and the particle locations {z*, ¢ € I} are defined
in the following way

. . . 1
a' £ po(B') = /B‘ po(dz) , ' & P /B.,SC#O(d"B) :

depending on the measure po(dz). This induces the following particle approximation for
the solution p(z) of equation (1.4)

pi(dz) ~ py(dz) = Y a' Zou(z) 8(z — ou(z")) -
el

Parallel to the Theorem 2.1 above, the following error estimate holds in Sobolev space
with negative exponent.

Theorem 3.1 Assume that

- b, o, ¢ and e have bounded derivatives up to order 3,

. for all i € I, the set B* C R™ is compact.
f

Then there exists a constant C > 0, such that

Ellue = pll-20 < C 3 8 ',
i€l

where a* = po(B*) and & = §(B*) denotes the diameter of the set B'.

PROOF. Let ¢ € W% be an arbitrary test function. Since

/‘h /QS 60! -—'Ot )ﬂo(d.’lf) ) /‘t , Za ¢ 601 '—'O,t(xi) ’

el

it follows from estimate (A.6) that

(e, @) — (uii's & Iszi;lglmlg..é2 a’
i€

10



with ¢ = ¢ o &o¢ - Zo,¢, Where Bt denotes the convez hull of B'. The generalized Leibniz
formula yields

92,008 £ D sup|xa(z) D*(éo.(z))l

laj<2 *€B

<Y Sunga(l')l] LﬁfmlD%(w)IJ

laj<2 L=€

< 4llzce D suplxa(z)l,

lajg2 *€B

where x(+) are random fields involving the derivatives of {o¢(-) and Zg.(-) up to order 2.
Therefore

— {(yh )
{8 — o9l < 15~ S sup Ixale)] 2 o,

”¢”2oo i€l |a|<2 z€B'
and
Ellu — il <33 S E [p Ixa(z)l] §ta'.
i€l |a]<2 r€B'

From estimates in Proposition 1.2, it holds

E sup Ixa(z)|} < C [1 +63"] ,

x€B*

for some p, where §; = §(B*) denotes the diameter of both B* and its convex hull B, so
that

Elp— phll2a <CY [1+677] 8o o
iel

11
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A Particle approximation of functions

Consider the following quadrature formula on R™

[9(@)dz ~ T 9= , (A1)

el

where {z*, i € I} is a coordinate grid of size h > 0, ] = Z™ and w* = A™ is the Lebesgue
measure of the m—dimensional cube B* with center z* and edge size k. For all g € C(R™),
the quadrature error associated with the quadrature formula (A.1) is defined by

E(9)2 [ o@de-wio),  E)2 T E)

iel
The following estimate is proved in Raviart [6]
Theorem A.1 There is a constant C > 0 independent of h such that
|E(g)| £ C k" |glay ,

forallge W™l n>m.

Let u(dr) be a probability measure on R™ having a continuous density g¢(z) with
respect to the Lebesgue measure, i.e. p(dz) = ¢(z) dz. With the quadrature formula (A.1)
is associated the following particle approximation for the density ¢(z)

¢(z)dz = p(dz) ~ ph(dz) = z;w q(z') 8(z — ') , (A.2)
1€

so that, for any test function ¢

= /¢(:v) g(z)dz,  (uh¢)=D w gz

i€l
The following result is proved in Raviart [6]

Theorem A.2 There is a constant C > 0 independent of h such that

le = #*ll-np < C B* [lgllnsp

for all g € W™P, n > m.

PROOF. From Theorem A.1, it holds

(e, ) = (u*, 8} = |E(g)] < C k" gl

13



with ¢ = ¢ - q , provided ¢ € W™!, n > m. The generalized Leibniz formula and the
Holder inequality yield

19ln1 < C | Bllnp llgllnp

for conjugate p and p’, and therefore

_ h
= plnp = sup AL oy o
o s

Another possible approximation is to consider a partition {B*, ¢ € I} of R™, and to
define the following particle approximation for the probability measure u(dz)

u(dz) ~ u(de) = o b(a = 2 (A.3)
t€

where the particle weights {a‘, i € I} and the particle locations {z*, ¢ € I} are defined
in the following way

i _ ial
B = [ wde), 2 [ zu), (A.4)
depending on the measure p(dz) so that, for any test function ¢

(it = [$@)ulda),  (u,9) = L a'8(a')

i€l

For all ¢ € C(R™), the quadrature error associated with the formula (A.3), is defined by

E(¢) & [ ¢ uds) —a' ¢(a)),  E(¢)E T ES).

i€l
Parallel to the Theorem A.2 above, the following result holds

Theorem A.3 For any partition {B*, i € I}

lo— il <3 Y67, (A.5)
1€l

where a* = u(B*) and §; = 6(B*) denotes the diameter of the set B'.

PROOF. Let ¢ € W?® be an arbitrary test-function. Using Taylor expansion around
the point z = z' yields

$(z) = ¢(z') + (z — z')" De(z")

+ (z - z)" {/01(1 —u) D*¢luz + (1 — u)z’] du} (z —2'),

14



and the definition (A.4) gives

E4) = [ (=) {/01(1 — u) D*@fuz + (1 — u)z'] du} (¢ —2')de .

Therefore . .
BAO) < 4 1ly 0 [, Nle = =17 1(dz) < 3 161, 005: 67 @

where B’ denotes the convez hull of B'. Then

s ) — () = B (D < 3 T lo,. 5 6 a (A6)
i€l
and X
e = p*l-21 = sup [, 8) — % &l 1S 6d. ©
pEW 2,0 ”¢||2,oo el

Remark A.4 If the partition {B;, ¢ € I} is given, with §; < C h for all 7 € I, then
e — utll2a S C B2

On the other hand, if the partition {B;,: € I} has to be chosen so as to make the
quadrature error as small as possible, then estimate (A.5) can be used to derive the

following criterion .
§2a'=c forallieI.

This criterion based on equidistribution of the local quadrature error, has the following

interesting property

- a set with a large mass, will be split into some smaller subsets,

- conversely, neighbouring sets with small masses, will be packed together into one
single set.
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