N
N

N

HAL

open science

Mellin transforms and asymptotics: digital sums

Philippe Flajolet, Peter J. Grabner, Helmut Prodinger, Robert F. Tichy, Peter

Kirschenhofer

» To cite this version:

Philippe Flajolet, Peter J. Grabner, Helmut Prodinger, Robert F. Tichy, Peter Kirschenhofer. Mellin
transforms and asymptotics: digital sums. [Research Report] RR-1498, INRIA. 1991. inria-00075064

HAL Id: inria-00075064
https://inria.hal.science/inria-00075064
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00075064
https://hal.archives-ouvertes.fr

NI

UNITE DE RECHERCHE
INRIA-ROCQUENCOURT

Institut National
de Recherche
en Informatique
et en Automatique

~.Domaine de Voluceau
Rocquencourt
BP105
/8163 Le Chesnay Cedex
France

T(1)39635511

Rapports de Recherche

N° 1498

Programme 2
Calcul Symbolique, Programmation
et Génie logiciel

MELLIN TRANSFORMS AND
ASYMPTOTICS : DIGITAL SUMS

Philippe FLAJOLET
Peter GRABNER
Peter KIRSCHENHOFER
Helmut PRODINGER
Robert F. TICHY

Septembre 1991

gy



Mellin Transforms and Asymptotics:
Digital Sums

PHILIPPE FLAJOLET, PETER GRABNER, PETER KIRSCHENHOFER,
HELMUT PRODINGER, AND ROBERT F. TICHY

Abstract. Arithmetic functions related to number representation sys-
tems exhibit various periodicity phenomena. For instance, a well known
theorem of Delange expresses the total number of ones in the binary repre-
sentations of the first n integers in terms of a periodic fractal function.

We show that such periodicity phenomena can be analyzed rather sys-
tematically using classical tools from analytic number theory, namely the
Mellin-Perron formula. This approach yields naturally the Fourier series
involved in the expansions of a variety of digital sums related to number
representation systems.

Transformation de Mellin et Asymptotique:
Les sommes digitales

Résumé. Les fonctions arithmétiques associées aux systemes de repré-
sentation d’entiers mettent en jeu divers phénomenes de périodicité. C’est
ainsi qu’un théoréme classique de Delange exprime le nombre total de chiffres
uns dans la représentation des n premiers entiers au moyen d’une fonction
périodique fractale.

L’on montre ici que de telles périodicités peuvent s’analyser assez systé-
matiquement au moyen d’outils usuels de la théorie analytique des nombres,
en particulier les formules de Mellin-Perron. Cette approche fournit na-
turellement les séries de Fourier qui apparaissent dans développements de
diverses sommes digitales liées aux systémes de numérations.
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ABSTRACT. Arithmetic functions related to number representation systems exhibit various
periodicity phenomena. For instance, a well known theorem of Delange expresses the total
number of ones in the binary representations of the first n integers in terms of a periodic
fractal function.

We show that such periodicity phenomena can be analyzed rather systematically using
classical tools from analytic number theory, namely the Mellin-Perron formulze. This ap-
proach yields naturally the Fourier series involved in the expansions of a variety of digital
sums related to number representation systems.

July 25, 1991

1. INTRODUCTION

Let S(n) represent the total number of 1-digits in the binary representations of the
integers 1,2,... ,n — 1. It is not hard to see that

(1.1) _ S(n) = %nlogzn-{-o(nlogn),

since asymptotically the binary representations contain roughly as many 0’s as 1’s. The
Trollope-Delange formula is more surprising. It expresses S(n) by an exact formula [De75)

1
(1.2) S(n) = §n10g2 n + nky(log, n),

where Fy(u), a ‘fractal function’, is a continuous, periodic, nowhere differentiable function;
Fo(u) has an explicit Fourier expansion that involves the Riemann zeta function, its Fourier
coefficient of order k, k # 0, being

1 C(xe) omik

= - fi = .
i log2 xx(xx + 1) o Xk log 2

The argument given by Delange relies on a combinatorial decomposition of binary rep-
resentations of integers, followed by a computation of the Fourier coefficients of the fractal

1 Research of these authors was supported by the French-Austrian scientific cooperation programme.
2 Research of these authors was supported by the Austrian science foundation (Project Nr. P8274PHY)
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2 P. FLAJOLET ET AL.

function. Our approach instead is more direct and in line with classical methods from
analytic number theory. It is based on an integral representation (see Eq. (3.2)), here

24100

1 n-1_1 ¢(s) , ds
e e T / 21" s(s+1)

2—100

itself closely related to Mellin transforms and the classical Perron formula. In this context,
the periodicity present in S(n) simply arises, by the residue theorem, from poles of the
integrand at the regularly spaced poles s = 2ikn/log 2.

In other words, as is customary from standard analytic number theory (e.g., the prime
number theorm), fluctuations in a number-theoretic function appear to be directly related
to singularities of an associated Dirichlet series.

The Mellin Perron formula are reviewed briefly in Section 2. In general, they provide
asymptotic rather than exact summation formula. A simple additional argument is then
needed in order to establish an exact representation like (1.1). Similar exact formula are
established for the standard sum-of-digit function (Section 3), for the more general case
of the number of blocks in binary representations and Gray codes (Section 4), and for a
function related to the Cantor set (Section 5),

(55

where the exponents e; are strictly increasing.
Sections 6 and 7 deal primarily with asymptotic summation formulae. Section 6 is
concerned with the asymptotic evaluation of the function

n—1

k=0

where v(k) denotes the binary sum-of-digits function. The value ®(n) is also equal to
the number of odd binomial coefficients in the first n rows of Pascal’s triangle. Stolarsky
[Sto77] earlier gave upper and lower bounds for this expression. Applying the Mellin-Perron
formula and a pseudo-Tauberian argument the Fourier coefficients of the corresponding
fractal function are computed. (Further estimates were given by Harborth [Ha77] and in
the g-ary case by Stein [Ste89].) It is found that ¢1£I);1) is a periodic function of log, N,
with p = log, 3, see Figure 1 for a graphical rendering. Section 7 is concerned with the

asymptotic evaluation of

S3(n) = 'i(—l)"m),
k=0

a function obviously related to the distribution of 1-digits in the multiples of three which
was first studied by Newman [Ne68]. J. Coquet [Co83] established a Delange type theorem
in this case.
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Figure 1. The representation of Q,ff) plotted against log, n; ®(n) represents the number

of odd binomial coefficients in the first n rows of Pascal’s triangle and is also defined by
Eq. (1.3); p = log, 3.

The asymptotic formula obtained in connection with ®(n) and S3(n) when matched
against exact formule obtained by direct combinatorial reasoning, lead to new Fourier ex-
pansions. This mixed combinatorial-analytic process constitutes another source for sum-
matory formulae with explicit Fourier coefficients developed in Sections 6 and 7.

Exact summation formule related to number representations arise at various places in
elementary (combinatorial) number theory as well as in the average case analysis of algo-
rithms. For instance, Delange’s formula was used to analyze register allocation algorithms,
or equivalently the order of random ‘channel networks’ in [F-R-V79]. It was later extended
to some non-standard digital representations of integers, like Gray code [F-R80), for the
purpose of analyzing sorting networks, as well as to occurrences of blocks of digits in stan-
dard g-ary representations [Ki83] and subblock occurrences in Gray code representation
[K-P84] or to the classical Rudin-Shapiro sequence [Co83). In a recent paper [G-T91],
Delange’s result was extended to digit expansions with respect to linear recurrences.

As general references, we refer to Stolarsky’s survey [Sto77] and to [K-P-T85). An
especially important paper by the spectrum of its analysis techniques is Brillhart, Erdés
and Morton’s work [B-E-M83]. It concerns the Rudin-Shapiro sequence, r(n), which gives
the parity of the number of blocks 11 in the binary representation of n.

In another direction, the summatory formulae considered here are also closely related
to number-theoretic functions arising in the context of iterated substitutions and so—
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Figure 2. Pascal’s triangle modulo 2. The odd numbers are represented by black squares,
the even numbers by white squares.

called ‘automatic sequences’ (see Allouche’s paper for a survey [Al87]), which constitute a
natural framework in which several of our analyses could have been cast. In that framework
Dumont and Thomas [D-T89] have used elementary methods to derive for linear functionals
of iterated substitution sequences a whole class of asymptotic forms of the type

n®(logs n)YF(logn) + o(n®(logg n)7),

involving some fluctuating function F. Closer to our objectives, Allouche and Cohen
have shown that Dirichlet generating functions associated to automatic sequences have
meromorphic continuations (see [Al87, p.261] and [A-C85]); techniques developed in this
paper could then be used in order to provide alternative derivations for some of the results
of Dumont and Thomas.

The subject of this paper is finally also close to the classical divide-and-conquer recur-
rences of theoretical computer science. In a forthcoming paper Flajolet and Golin will
discuss several examples for such recurrences that appear in mergesort, heapsort, Karat-
suba multiplication, and similar algorithms.

Graphics. As an illustration of the fractal phenomena at stake, we have displayed in

Figure 1 the ratio ¢}(J:7) plotted against log, N. When considering successive intervals

[2%-1,2*], we see the function %ﬂ,l which gets refined in a stepwise manner. The pic-
ture clearly illustrates the fractal nature of the graph. Figure 2 shows Pascal’s triangle
mod 2. The picture reveals another aspect of the fractal structure underlying the problem.
(Performing an easy transformation one obtains the famous Sierpinski triangle [Fa85]; a
popular source for similar graphics is [Wo84).)

2. MELLIN-PERRON FORMULE

For completeness, we give a brief outline of the Perron formula by relating it to the
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Mellin transform. The resulting summation formula are essentially classical, so that we
content ourselves with a sketchy description of the analysis involved.

The major reference for Mellin transforms is Doetsch’s book [Do50]. Mellin summma-
tion is briefly surveyed in [F-R-S84] which is directed towards applications in the average
case analysis of algorithms, while in the context of integrals (rather than sums), a use-
ful reference is [Wo89, Chap. III]. The classical Perron formula is discussed at length in
Apostol’s book [Ap84], and a higher order version is for instance given by Schwarz (see

Chapter IV of [Sch69)).

Let f(z) be a function defined over [0, +00). Its Mellin transform f*(s) = M(f(z);s]
is defined by

(2.1) () = /0 " fa)z* .

By linearity and the rescaling property we have

(2.2) F(z) = 3 Mf(uez) = F*(s) = (Z Ak#?) £2(s).
k k

The condition is for s to belong to a ‘flundamental strip’ defined by the property that the
integral giving f*(s) and the sum Y, Axpu;° are both absolutely convergent.

Similar to the Laplace transform there is an inversion theorem (cf. [Do50]). When
applied to (2.2), it provides

c+100

(23) > Mefue) = 5 [
k

(Z /\kp,:"> fr(s)z™%ds,
c~too k
with ¢ in the fundamental strip.

Formula (2.3) could be called Mellin’s summation formula. It is especially useful when
the integral can be computed by residues, and in that case each residue contributes a term
in an asymptotic expansion of F(z).

This formula lends itself to various number theoretic applications, e.g., proofs of the
prime number theorem. Introduce the step function Hy(z) defined by

1 ifz€[0,1
Ho(z) = if 2 €[0,1]

0 ifz>1,
together with the functions Hy,,(z) = (1 —z)™Ho(z). In the interesting case where ui = k,
we obtain from (2.3) formule of the Perron type that provide integral representations
for the iterated summations of arithmetic functions in terms of their Dirichlet generating
function:
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Theorem 0. Let ¢ > 0 lie in the half-plane of absolute convergence of 3, Axk~°. Then
for any m > 1, we have

c+ioo .
1 E\™ 1 YR ds
24 —_ A1 - — = — — s .
(24) m! Z k( n) 271 (kZI k’)n s(s+1)---(s+m)

1<k<n c—100

c+ioco
Ao 1 A\, ds
> Mt = / ( k—s)"?-
k>1

1<k<n c—too

For m =0,

Formula (2.4) is obtained from (2.3) by setting z = n~!, f(z) = Hn(z), and observing
that H}(s) = m!(s(s +1)---(s + m))~1. For m = 0 the formula has to be modified
slightly by taking a principal value for the sum, since Hy(z) is discontinuous at £ = 1. See
also [Ap84, p.245] for a direct proof of the m = 0 case.

For instance, if we use Ay =1 and m = 1, we get

24100
n —

(2:5) 2 27rz / ¢s)n? s(s+1)

2—100

Shifting the line of integration to the left and taking residues into account we obtain

1+too

(2.6) / ((s)n?

- —too

s(s + 1)

Identity (2.6) is the basis for the existence of several exact rather than plainly asymptotic
summation formule.
3. SuM-OF-DIGITS FUNCTIONS

We apply the Mellin-Perron technique described in the preceding section in order to
derive a new proof of Delange’s theorem.

Theorem 1. [Delange] The sum-of-digits function S(n) satisfies
S(n) = —n log, n + nFy(log, n),

where Fy(u) is representable by the Fourier series Fo(u) = 3¢z fre?™** and

°T 2 2log2 4
1 C(xx) 27k

log2 xx(xk +1)

fe=-
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Theorem 3. Let (n;w) denote the number of occurrences of the 0-1-string w as a con-
tiguous subblock in the binary representation of the integer n. (If w starts with 0, we
also count occurrences that overhang to the left of the most significant digit of n; we
only exclude strings w consisting solely of 0’s?.) Then the mean number of occurrences,

L %" (k;w), is given by
k<n

—Z(k )—l°g2"+H (logy n) + w(”)
k<n

There |w| denotes the length of the string w, H,,(z) is a continuous periodic function of
period 1 with Fourier expansion Ekez hke2k"“‘

ho = log, (r((oii()zli);)-"“')) - 2|1w| ('“" - % + 1011;2)

B = SOk (0-w)2) — ((x, (0w)2 + 9=lwl)
* (log 2)xx(xx + 1)

((z,a) the Hurwitz (-function, (z), denotes the real number with binary representation x

and E,(n) is a dyadic rational with denominator 2\*! which is described explicitly below
in (4.9).

Proof. As in Section 3 we start with summation by parts to find
(4.1) > (kw) =) Ay(k)(n — k),
k<n k<n

where Ay(k) = (k;w) — (K — 1;w). The differences A, (k) obey the following recurrence
relation: If n = 2/¥lk 4 r is even, we have

)

1 if(w)Q::r
(4.2) Aw(n) = Ay (g) +{ 21 if(wp=r—1

0 otherwise
If n = 2/¥lk + r is odd, we simply have
1 f(w)y=r
(4.3) Ay(n)=¢ =1 if(w)e=r-1
0  otherwise.

From the recurrences (4.2) and (4.3) it easily follows that the Dirichlet series A,(s) of the
differences A, (n) satisfies

B w(n) w(k) !
Auls) =) =2 Z (2k)? 2, (21e1k + (w))*

n>1

1
-2 (21wlk + ()2 +1)°

k>0

2 A formula for this case exists, but is very unpleasant to formulate
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so that
(4.4) (1-3) Aule) =

where

o (¢, (0:0)2) = (5, )y + 2711),

((s0) = Z o a)

is the Hurwitz (-function [W-W27] and (0.w), denotes the rational number (w),2~1%!.
From (4.1) and (4.4) we find using Perron’s formula for m = 1:

$+ico
2w = o [ g (6 0)) = Cls, 00k + 271 x
k<n %_m

« (2n)°ds
(2 -1)s(s+1)

Shifting the contour of integration to the left, we observe that the first order poles of the
Hurwitz (-functions cancel since both have residue 1, so that the main contribution comes
from the second order pole s = 0. The residue is

C, 1 1
(45) Cl log2n+@+cl (-é —|w|— 10g2> )

with
C1 = ¢(0,(0.w)z) — ¢(0,(0.w), + 27 1¥ly = 2-lwl

since ((0,a) = 1 — a and

I'((0.w)2)
o8 T 0w); + 2-T1)’

= ¢'(0,(0.w)2) — ¢'(0,(0.w)y + 27I¥) =

since ¢'(0,a) = logT'(a) — 1 log(2) [W-W27].
Thus the main term and the mean hg of the fluctuating term are established. The other

Fourier coefficients h; are easily derived from the residues at the simple poles xx = fo’g’; ,

k # 0.

We still have to analyze the remainder term

-

—gtioco
Romom [ g (605000 GCo, (0wl +2714)
(4.6) —%—ioo
(2n)*ds
e F ey DL

k>0
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where
—i+ico
, 1 1wl (2n)%ds
Romgm [ (o @)= 0o 0 27eh) B

—;}—too

After shifting the contour back to the right, we find, by taking into account the residues
at s =0,

1 k
<2n

where
1 if k= (w); mod 2¥!

M =< =1 if k= (w)y +1 mod 2/*
0 otherwise.

The sum in (4.7) can be computed explicitly to give

(4.8) R = %tﬁ%% if r=2n—1 mod 2/¥l > (w),
| i 2—3):-';% if r=2n—1 mod 2/*! < (w),.

From (4.8) we see that R’ will be zero for k > |w| — 1, so that in fact (4.6) reduces to

lw|-2

(4.9) "’(n Z R,

and this completes the proof. O
Theorem 3 and formula (4.9) have a number of consequences of special interest:

Corollary 1. If {w| = 1 and w is the 1-digit, i.e. in the case of the sum-of-digits function,
we have E,(n) = 0, as stated already in Theorem 1.

Corollary 2. If |w| = 2, the remainder terms E,(n) are given by the scheme

Eo] (n) Elo(n) Ell (n)

n even 0

n odd -%

N[ ]
i O

Corollary 3. [Flajolet, Ramshaw] The mean value of the sum of digits in the Gray Code
of n is given by

Logy + F; (logy n),
with F} as described in Theorem 2.

Proof. An alternative proof to that of Theorem 2 runs as follows. The k-th bit in the Gray
Code GC(n) of n is given by the sum mod 2 of the k~th and k + 1-st digit in the binary
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representation of n. Thus the number of 1’s in GC(n) is just (n;01) + (n;10), where we
have to count the one occurrence of 01 overhanging to the left of the most significant 1 in
the binary representation of n. It follows that the mean is given by

E()] (Tl) + Elo(n)

n

log2 n

+ Ho, (logy n) + Hyo (log, n) +

= log22 n + Fy (logy n),

which also relates Fy to Hg; and Hy. O

Remark 2. All results in Sections 3 and 4 are easily generalized to base ¢ representa-
tions. As an application of the special instance ¢ = 4 we could get an alternative proof of
a result due to Osbaldestin and Shiu [0-S89] concerning the number of integers < n that
are representable as a sum of three squares.

5. TRIADIC BINARY NUMBERS

Let h(n) be the number that results from interpreting in base 3 the binary representation

of n, 1.e.,
h (Eze-') =) 3,

) 1
where the exponents e; are strictly increasing. It is known that k(1) < h(2) < ... < h(n)
1s the ‘minimal’ sequence of n positive integers not containing an arithmetic progression.
The sequence is also an analog of Cantor’s triadic set. An exact formula for the summatory
function H of h is established.

Theorem 4. For the summatory function H(n) = ;. h(k) we have
H(n) = n**1F3(log, n) — -}In,

where p = log, 3 and F3(u) is given by its Fourier representation

2wiku

(p+xe)p+xk+1)

1
F3(u) = 302 ;ZC(P-F Xk)

with x;x = &2
Proof. Using h(n) — h(n—1) = %(3”’(") + 1) we obtain

° — - X avz(n)

Fre g
1

2221’32(2 + C(s)

—2_

((s).
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Applying the Mellin-Perron summation formula (2.4) with ¢ = 3 and shifting the line of
integration yields

—;}-Hoo
n 2% — R
B =3 [ Gscton S(s+1)
-l ico
Xk
p+1
o é:z C(HX)(;o+x:=)(p+><k+1)+ C(O)n

The remainder integral is 0 by the same argument as for the sum-of-digits function, and
the proof is complete. O

Remark 3. Obviously the base 3 can be replaced by an arbitrary number a > 1 and
a # 2. The corresponding exact formula is

) =n?t1F, 0gyn) — ——
3 holk) =¥ Fullogy ) = g7

where F, has a Fourier expansion similar to F3 and p = log, a.
Remark 4. The function g defined by h(n) = n®g(log, n) is periodic with period 1 but
not continuous.

6. OpD NUMBERS IN PAScAL’S TRIANGLE

In this section we establish an exact formula for the summatory function

on)= » 24,

0<k<n

As pointed out in the introduction, ®(n) is the number of odd binomial coefficients in the
first n rows of Pascal’s triangle.

The application of Mellin-Perron techniques requires convergence of the complex in-
tegral of Theorem 0. For an m-fold summation, the ‘kernel’ in the integral involves
1/(s(s + 1)---(s + m — 1)), which decreases at infinity like |s|~™. Thus, higher sum-
mations lead to better converging (inverse Mellin) integrals.

For the problem of ®(n), we thus start with the double summatory function

Y(N)= Y (8(n)-1),

1<n<N

where Mellin-Perron is easier to apply since the Fourier expansion converges absolutely
(We have to subtract 1, because the summation in (2.4) starts at n = 1.) The formula
that we get in this way is asymptotic.
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Theorem 5. The arithmetic function V(N ) satisfies the asymptotic estimate
¥(N) = N**'G(log, N) + O(N?*¢),

for arbitrary € > 0, where G is a continuous periodic function with period 1. G admits an
absolutely convergent Fourier expansion

G(u) — Egkemn'ku

kEZ
with
g = 2 (1= Bler))
log2 pr(px +1)°
where pr = p+ 12°ksﬂ2i and
1 [ =~
(6.1) B(s) = m/o ((1 —e™) (H (1 + 26"2")) - 1) t*dt.
k=1

In order to come back to the Fourier expansion of F' we need an external argument
in order to convert the expansion of ¥(N) into an expansion for ®(n). One ingredient
is a direct combinatorial proof of existence for the fluctuating part of ®(n); this induces
corresponding periodicities for ¥(N), and by identification, we indirectly derive the Fourier
expansion relative to ®(n). (This process is a pseudo—Tauberian argument!)

Theorem 6. The summatory function ®(n) satisfies the exact formula
(6.2) ®(n) = n’F(log, n),

where p = log, 3 and F' is a continuous function of period 1. The Fourier coefficients of
F(u) are given by

_ 2 (1-=B(px))
(63) fk = 10g2 Pk 3

and in particular the mean value of F(u) is approximately
fo = 0.86360 49963 99079 60496 05033 61308 09499.

F(u) is represented by its Fourier series in the sense of standard (C,1) Cesaro averages.

Observe that from [Ha77] it is already known that
0.812 < F(u) < 1.
Proof. (Theorem 5) Let

’ O H5y(n)
(6.4) A=Y 2n8

n=1
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be the Dirichlet generating function of 2*("™). Since ¥(N) is a double summation of 2*(¥
we have an integral representation by means of the iterated Mellin-Perron formula (2.4).

We get

34+1t00
N ds
. PY(N) = — A(s)N?®
(6.5) (N) 271 (s) s(s+1)
3—t10

where the abscissa R(s) = 3 has been chosen, since A(3) converges absolutely. We need to
locate the singularities of A(s). From the recurrences

v(2k+1)=v(k)+1 and v(2k) = v(k)

we get
9u(k) gu(k)
As)= Y, —+ ) =
k=0 mod 2 k=1 mod 2
1 . ov(d)
LA(s) 423 o =
2 — 214+ 1)
==%A@)+2—2B@)
with
(6.6) B(s) = f: gt (L1
' = (2k)*  (2k+1)* )
Using summation by parts and Stolarsky’s estimate (cf. [Sto77))
1 ®(n)
(67) § < P <3

we know that B(s) converges for (s) > p — 1 and by

99
2° -3

(6.7) A(s) = (2 - 2B(s))

A(s) has abscissa of convergence equal to p. This expression also provides us with the
analytic continuation of A(s) for R(s) > p — 1. We see that A(s) is meromorphic with
simple poles at the points px = p + %.

In order to shift the contour of integration in (6.5) to the left we need that A(s) does
not grow too large along vertical lines. For s =0 + it 0 > 1 and |t} > % we have

1o (1o =2 | <min (2,1
2k‘+1 s min ,k.
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Thus we obtain

oo ou(k) 1 s
1B(s)l = - <
=12 G (1= (- 3e53) )
(8 2B,
<2 D et 2 @k <M

1<k<2]|¢t| k>2|t]

Shifting the line of integration to R(s) = 1+ € < p, noting that |A(1 + ¢ + )| < |¢|'~¢
and taking the residues at the poles pi into account we get

N 14e4i00 d
YN) = 5 / AN o+
1+e—100

1 — B(px)
+ NPH
gz log2 pr(pr + 1)

Estimating the integral trivially we derive the asymptotic formula for ¥(N).
So far, B(s) is defined in terms of the sequence {2“(*¥)} itself. An integral representation
derives from an ordinary generating function, setting

oo o0 .
e(t) = 22"(")6_“ = H (1 + 26_2’t) .
k=0

=0

Consider the Mellin transform of (1 — e™*)¢(2t) — 1; by Formula (2.2) (with px = k,
f(t) = e71), we get the integral representation for B(s). Thus the proof of Theorem 5 is
completed. O

In order to get information on the number-theoretic function ®(n) we first work out a
refinement of Stolarsky’s elementary approach.

Proposition 1. There exists an exact summation formula
(6.8) ®(n) = n?F(log, n)

with F continuous and periodic with period 1.

Proof. From [Sto77] there is an alternative formula

(69) (i} (TL = izﬁ) — izi—l:}ce

=1 =1

with decreasing exponents ¢;. Pulling out the main term we get

(6.10) B(n) =3% Y 21713,

i=1
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where e; = |log, n].
We now define a real function (z) on the interval [1,2] as follows. Let

T = Z 24
=0
with 0 = dp < dy < .... Then we set
(6.11) P(z) =Y 27374,
7=0

Note that 3 is well-defined since the dyadic rationals are written in their infinite repre-
sentation. Next we show the continuity of ¢. As the representation of dyadic irrationals
is unique the continuity at these points follows immediately, since (because of d; > j) the
expansion (6.11) converges faster than a geometric series with quotient % For the proof
of continuity at dyadic rationals we have to show

k k-1 oo
gl =D 2%+ > 27,
7=0 7=0 I=di+1

which follows immediately by direct computation. Note that (1) = 1 and ¥(2) =3 and
that 1 satisfies a Lipschitz-condition

[¥(z) — $(y)| < Clz —y|P~".

Using the function ¥ we can write

n
(6.12) 2(n) =38y (57

since g{mg,wy s nothing but n “scaled” in binary to the interval [1,2). Formula (6.12) thus
transforms into

8(n) = n?F({log, n}),
where
F(u) =37"%(2")

is defined over the interval [0,1] and {z} = = — |z] denotes the fractional part. F can
be extended into a periodic function since F(0) = F(1). The proof of Proposition 1 is
completed. O

For the computation of the Fourier coefficients of F' we make use of Theorem 5 and the
following simple pseudo-Tauberian argument.
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Proposition 2. Let f be a continuous function and periodic with period 1 and let T be
a complex number with R(7) > 0. Then there exists a continuously differentiable function
g of period 1 such that

1

(6.13) Nt Z n’ f(log, n) = g(log, ) + o(1)
n<N
(6.14) /0 g(u)du = %—1—/0 f(u)du.

Proof. We set

o-(r+1)u r1 u
(6.15)  g(u)=log2 Sy / 20+t £(4)dt + log 2 - 2~ (Vv / 20+ £(1)dt.
—L1Jo 0
Obviously g is continuously differentiable and (6.14) follows by a straightforward applica-
tion of integration by parts. Further we note that g(0) = ¢(1).
In order to prove (6.13) we proceed as follows

1 T
N 2 n’ f(logyn) =

n<N
1 llog, Nj—1 N

=~ Z Z n” f(log, n) + N}'“ Z n” f(logyn) =

2P <n<g2rtl n=2l1cg2 N}

e 2 Y st
p<llog, N} 1<z<2

1
+ = NoFi ———2lloga N](7+1) Z f(log, z)Az,
1<z<y

where z = 3%, y = a—,ﬁ’m and z runs through all dyadic rationals with denominator 27

and Az =27P, p=0,...,|log, N]|. Now we interpret the sums over z as Riemann sums.
Thus we have with remainder terms €(p) tending to 0 (for p — o0)

1 ,
N+l Z n’ f(logyn) =

n<N

2
= E 2(p=llog, NJ)(r+1), —(r+1) (/ z" f(log, z)dz + E(P)) +
p<liog, NJ :
v
4y~ (r+D) (/ z” f(log, z)dz + £(|log, N | )) =
1

llog, N

=g(log2 y) + y—(r+1) Z 6(p)2-( llog, N) —p)-
p=0
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We note that only ¢(|log, N]) depends on y. Since the convergence of Riemann sums is
uniform with respect to the upper limit y, the remainder term tends to 0. Thus the proof
of Proposition 2 is complete. O

Proof. (Theorem 6) We can now conclude and determine the Fourier coefficients fi of the
fractal function F in Theorem 6. We set 7 = py in Proposition 2 and apply (6.14)

1 1
fe = / F(u)e 2% dy = (p + 1)/ G(u)e 2™ v dy = (pr + 1)gs.
0 0

Inserting the value of gi yields

__2 1-B(px)
T log2 pr

fr

Using |B(pi)| < k?~° we obtain the L?-convergence of the Fourier expansion of F. Also,
since we know that F(u) is continuous, its Fourier series converges in the mean by Fejér’s
theorem [Ko88]. (More information on the convergence of the Fourier series would have to
depend on a more detailed knowledge of the analytical behaviour of the function B.) This
completes the proof of Theorem 6. O

7. THE NEWMAN—COQUET FUNCTION

In this section we study the function

(7.1) Sa(n) = D (-1)C.

k<n

The motivation for the study of this function goes back to Newman [Ne68] who noted that
examination of the multiples of three, 3,6,9,12,15,18,21,24,27,..., written in the base
two,

11, 110, 1001, 1100, 1111, 10010, 10101, 11000, 11011,...,

shows a definite preponderance of those containing an even number of one-digits over those
containing an odd number. Newman proved that this strange behaviour persists forever.
Coquet [Co83] gave an exact formula by Delange type computations. Our method uses
this result and allows us to compute the Fourier coefficients (especially the mean value) of
the related fractal function.

Theorem 7. The summatory function S; satisfies the exact formula

Ss(n) = n"y(logym) + 17,

where 1 is a continuous nowhere differentiable function of period 1, ) is given by

(n) { 0 if n is even
n} =
7 (-1)*Gn=3)  ifn is odd
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and o = Bg? The Fourier expansion $(u) = 3,z ¥re* ™ is given by

3ok (—1)* .
Y = W(?’ + (—l)k\/_*- (1 + (—l)k\/g) So(ak)+

+ (24 (-1VB) Ai(er) - folew),

ki

fog 2 and

where ay = a +

fo(s) = 3T(s )/ e )+ F((e™") + F(¢%e™)) (1_e~%) _1) t*ldt

£19) = 3563 )/(F ™)+ CPF (Ce™) + CF (¢%e™)) (1~ e#) " Vat

fa(s) = 31,(3) ) +CF (e7) + (PF(¢%e™)) (1-e78) ' at

with ( = e*" and
(7.2) Fiz) =] (1 - 22*) .
k=0
In particular, a rough estimate of the mean value vy is
o ~ 2.93039 13325 63657 25112 43191 20179.
Sketch of the proof. The proof runs along the same lines as the proof of Theorem 5; the

only difference is that the computation of the Dirichlet generating function is slightly more
involved than in Section 6. We first prove an asymptotic formula for the double summatory

function
T(N)= ), (S(n)-1).
1<n<N

For this purpose we need some information on the function

1)1/(371)

fols) = Z( (3n)*

Using the function F given by (7.2) that satisfies F\(z) = (1 — 2)F(2?), and setting
Zo(2) = 5 (F(e) + F(¢2) + F(¢%2))
£:(2) = 3 (F(2) + C*F(G2) + CF(¢%2))
Za(s) = 3 (F(z) + CF(C2) + CF(C72)
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we obtain the functional equations

Zo(2) = Zo(2”) — 251 (2?)
(7.3) E1(2) = Ea(2?) — 250(z?)
Za(z) = E1(2?%) — 252(22).

Consider now the companion Dirichlet series £, for k = 1,2, defined in a way 31m11ar
to £o, where summation runs through the other residue classes mod 3,

l)v(3n+k)

Ex(s) = Z ((3n T for k =1,2.

By Mellin transforms again, Eq. (2.2), we derive the alternative expressions,

§o(s) = F(s)/(EO (e7!) = 1)t~ 1dt
(7.4) °
k(s) = ﬁ/sk (e7*)t*~'dt for k=1,2.
0

The image of the collection of functional equations (7.3) is then the system of equations

(1=-27%) &o(s) + 277 &s) = 27°fi(s)
(75) 2 Eo(S) + 61(8) - 2-s 62(8) = 2_3f0(3) -1
= 270 L(s) + (1427°) fL(s) = 27°f2(s),

where the functions fi; are given by

— v(3n 1 1
fO(s) = nz::l(_l) n) ((31’1)" - (3n + %)s)

R _1\w(3n+k) 1 _ 1 _
f"(s)‘;( 1 ((3n+k)’ (3n+k+%)’) fork=1,2

These functions are defined for R(s) > 0 and satisfy |fi(o +it)] < [t[' " for0 < o < 1,
which can be shown using the same arguments as in Section 6.
Solving (7.5) yields

(16) () = gy (4742~ 2 DA() + (@ +2 = D) - (o).

This equation provides us with the analytic continuation of £, and shows that all poles of
this function have to satisfy the equation 4° = 3.
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After these preparations we can write using (2.4)

24100
(7.7) T(N)——— / 3o (s)N* (dH)

Shifting the line of integration to the left and taking residues into account yields

(7'8) T(N) = Not! Z o + 1 2""‘]084 N + O(N1+e)’
kez 'k

where the term O(N!*¢) is obtained by trivial estimation of the integral from ¢ — ico to
€ + 100 over the same integrand as in (7.7).

Now using the exact formula due to Coquet and a slightly modified version of Proposition
2 yields the Fourier expansion of the function o). 0O

Remark 5. The method used above can also be used to gather information on the

summatory functions
Z(—l)y(3k+l)7 Z(_l)l/(sk)
k<n k<n

and other functions of this type.
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