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Unification des bases de données relationnelles et orientées-objet : une
approche basée sur des types abstraits de données

Scott Danforth, Eric Simon

Résumé:

Ce papier présente un modele de données et d'opérations qui combine les approches
relationnelles et orienté-objet des bases de données. Notre modéle intégre - dans un cadre
simple et typé statiquement - les types de données abstraits, les objets et valeurs, les classes,
les relations, le polymorphisme des méthodes et une persistance des données transparente.

Les principales caractéristiques de notre modele sont : (i) l'utilisation d'une notion
d’'héritage appelée similarité de comportement qui n'impose ni I'héritage de structure, ni
I'héritage de méthode comme fondation du polymorphisme de méthodes, (ii) I'autorisation
d'avoir des opérations discriminées sur plusieurs arguments, et (iii) la définition de
constructeurs de type classe et relation qui permettent une séparation claire entre types et
collections persistantes. Nous donnons aussi des conditions suffisantes que doit satisfaire un
schéma de base de données de fagon a garantir un controle de type statique str des programmes.

Enfin, la puissance et la flexibilité de notre modele sont illustrées a-travers le support de
la migration d'objets dans des classes et I'héritage sur des types paramétrés en présence de
mises a jour.

Mots clés : Modele de Données, Langages de Programmation de Données, Controle de
types, Types Abstraits de Données, Héritage, Objets Complexes, Relations.

Unifying Relational and Object-Oriented Databases :
An Abstract Data Type Based Approach

Scott Danforth, Eric Simon

Abstract :

This paper presents a data and operation model that combines relational and object-
oriented approaches. Our model incorporates - within a simple, statically-typed
framework - support for Abstract Data Types, objects, values, classes, relations, multiple
inheritance, polymorphic functions and transparent persistence.

The main features of our model are : (i) to use a notion of inheritance, called behavioral
similarity, that does not require neither structural inheritance nor method inheritance as a
basis for method polymorphism, (ii) to allow multi-targeted operations on ADTs (i.e., the
method selection is actually done according to the run-time type of several arguments), and
(iii) to define relation and class type constructors which enable a clear separation between
types and persistent collections. We also describe sufficient conditions that must satisfy a
database schema in order to guarantee a safe static typechecking of programs.

Finally, the power and flexibility of our data model is demonstrated via the support for
object migration, and inheritance orderings on parametric types.

Keywords:  Data Models, Database Programming Languages, Type Checking, Abstract
Data Types, Inheritance, Complex Objects, Relations.



Unifying Relational and Object-Oriented Databases:

An Abstract Data Type Based Approach

Scott Danforth!
Eric Simon?
INRIA-Rocquencourt
Abstract

This paper presents a data and operation model that combines relational and object-oriented
approaches. Our model incorporates -- within a simple, statically-typed framework --
support for Abstract Data Types, objects, values, classes, relations, multiple inheritance,
polymorphic functions and transparent persistence. The main features of our model are (i)
to use a notion of inheritance, called behavioral similarity, that does not require neither
structural inheritance nor method inheritance as a basis for method polymorphism, (ii) to
allow multi-targeted operations on ADTs (i.e., the method selection is actually done
according to the run-time type of scveral arguments), and (iii) to define relation and class
type constructors which enable a clear separation between types and persistent collections.
We also describe sufficient conditions that must satisfy a database schema in order to
guarantee a safe static typechecking of programs. Finally, the power and flexibility of our
data model is demonstrated via the support for object migration, and inheritance orderings
on parametric types.

Keywords  Data Models, Database Programming Languages, Type Checking, Abstract Data
Types, Inheritance, Complex Objects, Relations.

1. Introduction

In this paper, we present a data and operation model that combines relational and object-oriented
approaches. Our starting point is the belief that abstract data types, inheritance, shared objccts, and
relations are four valuable and orthogonal concepts useful in semantic modeling, and that these
concepts should therefore be supported by a single database system.

Object-oriented databases [Cope84, Lecl88, Zdon90] have primarily focused on support for
complex, shared objects as first class data, and the use of inheritance for defining type structures
and polymorphic methods. Howewer, while these approaches address limitations of relational
systems, they generally omit support for relations, views and integrity constraints, and suffer from
the absence of a safe static typechecking (e.g., Ode [Agr89], Ontos [Ont90], and O2 [Lecl88]).
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Extensions of the relational model [Osb86, Ston88, Gard89, Kier90] have primarily focused on
incorporation of abstract data types (ADTs), but have been limited by absence of direct support for
sharing of data, and by absence of support for bulk data objects other than relations. Although
these limitations can be surmounted procedurally, this is in conflict with the otherwise declarative
nature of the relational approach. Recently, there has been a lot of research interest in supporting a
declarative language by an object-oriented data model, or designing declarative, object-oriented
languages [Abit89, Cac90, Kif89, Mai89, Lou91]. These data models combine objects, classes and
relations, and use a type inheritance hierarchy based on structural inheritance. Howewer, as
discussed in {Lou91], almost nothing is said about how methods are defined on classes and how
method inheritance works. Also, the corresponding type systems (when they exist) impose strong
restrictions on the use of the resulting data models,

This paper presents a new approach that is comprehensive in its support for both relational
and object orientcd databases, and includes in a simple statically-typed framework multiple
inheritance, polymorphic methods, objects, values, classes and relations. Our approach is based on
the framework provided by Partitioned Algebras, a formal model for object-oriented programming
developped in [McKen91]. Compared to existing work, our model has three major features: (i) it
uses a form of inheritance based on behavioral similarity, (ii) multi-targeted operations are allowed
(i.e., the method code is selected according to the run-time type of several method’s arguments),
and (iii) class and relation type constructors are introduced in addition to the usual set and tuple
type CONStructors.

The type hierarchy in our model, is not based on structural inheritance but uses instead a
weaker form of inheritance called behavioral similarity. Existing object-oriented data models use
different kinds of inheritance hierarchies like class extent inheritance, structural inheritance, and
method inheritance. Most generally, these notions are overloaded into a single type inheritance
hierarchy [Zdon90]. For instance, the following pseudo-code statements,

class person has attributes
name: string;
age: integer;

class student isa person has attributes
rank: integer;

have the meaning that: a student has all attributes of person plus other specific attributes (structural
inheritance), the class person contains all objects of class student (class extent inheritance), and
every method defined on person is inherited by student (method inheritance). In databases,
conceptual data (conceptual schema) are designed independently from their physical representation
(physical schema). Merging structural inheritance and behavioral (method) inheritance into a single
hierarchy makes both the conceptual and physical database schemas strongly dependent on each
other. Coming back to our example, it would not be possible to represent objects of the class
student as



class student has attributes
rank: integer;
have_rank: {[name: string, age: integer]}

because the structures of person and student will not be related anymore with respect to structural
inheritance. On the other hand, in our model, abstract data types can be related into a behavioral
inheritance hierarchy independently from their representation. Also, the class extent hierarchy is
specified separately from the type hierarchy. Thus, given types:

person = [name: string; age: integer];

student = [rank: integer, have_rank: {[name: string; age: integer]}];

type classof student can be declared as a subtype of classof person in a behavioral sense, (here, we
assume that classof is a type constructor). Furthermore, if Sorbonne stud and Paris_person are
two instances of types classof student and classof person respectively then we may additionally
declare -- (but do not have to) -- that Sorbonne_stud is a subclass of Paris_person.

A second feature of our data model is the use of multi-targeted operations as opposed to
single-targeted operations usually "attached" to classes. We shall see in Section 3 that this feature
is essential, in particular when one wants 10 model views and integrity constraints as part of an
object-oriented data model.

Finally, another fcature of our data model is the introduction of a class type constructor that
enables a clear separation between types that describe the structure of values, and classes that
denote collections of values. This distinction is important because a type describes the set of all
possible values of an expression (used at compile-time), whereas a class denotes a set of actual
values (only used at run-time). In particular, based on such a distinction, we shall present a
statically typecheckable solution to the problem of object migration in a class hierarchy, thercby
providing answers to the typing issues raised by [Brea89, Alba85). With the same objective in
mind of separating types from collections of values, we also introduce a relation type constructor.

The remainder of the paper is organized as follows. Section 2 introduces useful terminology
about abstract data types, operations and inheritance. Secction 3 presents the main choices that
guided the design of our data model, and their motivation. Section 4 describes how abstract data
types can be defined, their semantics, and the inheritance hierarchy between ADTs. Operation
semantics and overloading resolution are presented in Section 5. Section 6 provides examples
illustrating the expressive power and flexibility of the model, including dynamic object migration
and inheritance orderings on parametric types. Section 7 provides a summary and reviews our
contribution.

2. Preliminary Definitions
2.1. Abstract Data Types and Types

In our model, an abstract data type is not data, but a description of a type of data and its
semantics. An ADT specification is expressed by indicating a representation for instances of the
ADT, and by defining operations that implement the desired ADT semantics for these instances.



The representation of ADT instances is indicated using a type expression; the operations are
defined using programming languages. An ADT instance does not include the operations available
on it, but is simply data that may be passed to these operations. ADTs may be declared as in the
following examples:

point = [x: float, y: float]
polygon = { point }
square = [upper_left_corner: point, side_length: float]

A point is represented as a tuple and a polygon is represented as a set of point. The type
expression used to indicate the representation of ADT instances determines what is called the
representation type for the ADT [Mit85). An ADT instance can either be a value or an object.
Values are anonymous data, and objects have identity, i.e., no two objects are equal.

In this paper, we reserve the word type to indicate the denotations of type expressions. Type
expressions are composed from a fixed set of type constructors and primitive types. To each type
constructor corresponds a system-defined implementation structure and associated set of operations
that access, add, and remove data elements according to the semantics desired for the type. The
operations potentially available on an ADT instance are those that correspond to its representation
type (called representation operations), plus those that implement the desired ADT semantics
(called semantic operations), which are generally user-defined.

2.2. Generic Operations

We employ a traditional, procedural view of operations, thereby avoiding the message-passing
metaphor in which objects are viewed as receiving messages that request a given behavior. This
logical view is supported by overloaded, gemeric operations (sometimes called parametrized
operations), in which the receiving object in the message-passing metaphor is simply a specially
designated argument of the operation, whose runtime type is used to resolve overloading. Such an
argument is called a target for the operation. When more than one argument type is used to resolve
an overloaded operation, the operation is termed multi-targeted. Most current Object Oriented
systems are limited to a single target, although there are exceptions (e.g., CLOS [ANSI90], and
RDL/1 [Kier90)).

Operations are performed by methods, which are defined using a programming language (or
built-in system code, for representation operations). In general, corresponding to any given
operation will be a number of operation interfaces, each explicitly indicating the parameter ADTs
for which the interface is valid. For instance, the generic operation area may have two interfaces:
area (p:polygon) and area (s:square). Each operation interface is supported by a single method,
and resolving operation overloading (either at compile-time or run-time) involves choosing the
appropriate operation interface and, thereby, the appropriate method for performing the operation.

2.3. Inheritance

A partial ordering inheritance relationship between ADTs (denoted <) reflects the opportunity to
make use of common representation and/or operational interfaces to define polymorphic method
code. Given an inheritance ordering s, < s,, we shall distinguish between two main interpretations



. of this ordering.

A first interpretation is that the representation of the s; ADT is defined as a refinement of
§,'s representation (we call this representational specialization). For instance, a tuple type can be
refined by adding attributes to it or by refining the type of its attributes (see [Card84]). Thus, if
person = [name:string] and employee = [name:string, sal: float] are two ADTs, then the ordering
employee < person is possible. Remark that this implies that every method applicable to an s, can
work for an s,. Assuming the ordering employee < person, if free-time is an operation interface
applicable to person and supported by a method m, then there is a corresponding interface free-
time applicable to employee, supported by m or another method than m, but m would work anyway
for employee.

A second interpretation is that a generic operation available on s, may be supported on s,
(we call this inheritance ordering behavioral similarity). Behavioral similarity is based on
implementation specialization (supporting different interfaces for a generic operation with different
methods), and on implementation similarity (supporting different interfaces using the same
polymorphic method). Method polymorphism is based on the use of generic operations. Given the
earlier example representations for the square and polygon ADTs, an inheritance ordering square <
polygon is possible. The gencric operation area can be supported on square and polygon using two
different methods (implementation specialization). Furthermore, the generic operation
size_compare that compares the area of two polygons, can be supported by a polymorphic method,
i.e., the same code will apply to both a polygon and a square (implementation similarity). The
reason in this case, is that squares are behaviorally similar to polygons with respect to the
operation area used by such method. Finally, an operation interface union (p: polygon, q: point)
can be specified to be available on polygon and not on square.

The directionality of < leads naturally to behavioral specialization. We say that s, is a
behavioral specialization of s, if 5, < 5,, and for every operation interface applicable to an s,,
there is a corresponding interface for an 5,. Behavioral specialization is a strong condition, not
particularly important in our model since it is not necessary for method polymorphism.

3. Design Choices and Motivations

We use abstract data types as the basic framework because we feel that ADTs represent a sound,
well-accepted approach to data and operations applicable to both relational and object-oriented
approaches [Gog87, Dan88, McKen91, Osb86, Ston88, Gard90, Lind90, Stone90, Kier90].

One can view the traditional class-based specification style used in most object-oriented
languages and database systems [Mey88, Zdon90], as a useful approach to simultaneously
specifying ADTs, inheritance, representational specialization (via inheritance), and bchavioral
specialization (via a combination of inherited methods, and class overriding default inheritance of
method code). The assumption of inherited representation allows default inheritance of methods.
Although classes in this sense are a concise syntactic technique for expressing ADTs and for using
inheritance relations between ADTs to define ADTs incrementally, the approach is limited in
generality because representational specialization and behavioral specialization become required as



a basis for polymorphism.

Consider the case of an engineer designing geometrical data, like squares and triangles. Their
common properties (area, size_compare, overlap, ...) can be grouped into a more general data type,
say polygon that both squares and triangles would inherit. This inheritance link is captured by the
orderings: square < polygon, and triangle < polygon. Therefore, the area property becomes a-
generic operation applicable to polygons, squares and triangles. Now, pursuing his design, the
engineer has to decide how these data should be represented. This is a crucial performance issue:
the complexity of operations like area will sirongly depend on these representation choices. For
polygons, a reasonable data structure is a list or a set of points. But computing the area of a square
like the area of an arbitrary polygon is surely not efficient. This suggests the need for a different
representation for squares. For instance, if squares are represented as tuples containing a length
attribute as above, then a method that implements the area operation will require a single
multiplication. As a result, a polymorphic method, like size_compare (p:polygon, s:polygon), that
uses the area operation will be efficient when used on squares, rather than being handicapped by a
representation designed for general polygons. With class-based ADT and inheritance specification,
such a design will be inconsistent with the ordering square < polygons, which requires that a
square is a structural refinment of a polygon.

A possible solution in C++ -like languages, is to create a virtual class, say 2D-Object, whose
subclasses are square and polygon. A virtual method (i.e., a method with an empty code) area is
then defined for 2D-Object, and redefined for its subclasses. Finally, a method size_compare can
be defined on 2D-Object and inherited by its subclasses. This solution requires to define and
maintain virtual classes: for instance, if circle is added as a 2D-Object, a new virtual class, say
Straight Line_2D_Object must be created as a subclass of 2D-Object.

Behavioral similarity represents an opportunity to tailor ADT representations in ways that are
not based on structural refinement, but rather, the desire for operational efficiency. Thercfore, we
could say, anticipating our syntax for defining methods, that -- (the code for methods is omitted) --

square < polygon;

define operation area (larget s: square): float = ...
define operation area (target p: polygon): float = ...

define operation size_compare (p: polygon, q: polygon): polygon = ...

The argument of operation area is targeted (using the keyword target) because the method used
for a given invocation of area depends on the type of that argument. In the last operation interface
size_compare, there is no targeted argument because there is a single polymorphic method for any
invocation of size_compare.

Because generic operations can be supported by compile-time as well as run-time resolution
of operation overloading, according to possible target argument sorts, the only advantage offered
by representational specialization is that it may allow additional opportunities for method
polymorphism and compile-time operation resolution. For example, if squares are represented in



the same way as polygons (as a set of points), then a polymorphic method can be used to compute
area, and, as a result, it will be possible to resolve invocations of the area operation within other
polymorphic methods at compile-time, rather than dynamically, at run-time. This would be an
important factor to take into account when choosing ADT representations, but the tradeoff between
the cost of run-ime method resolution and the advantage of tailoring representations for
operational efficiency is not an issue to be decided a-priori by a data and operation model. Rather,
we see this as an important issue for consideration by a system administrator. Based on behavioral
similarity, our model is capable of supporting the advantages of representational specialization
when this is desired, but does not require it as the basis for supporting polymorphic methods.
Common Objects {Snyd86a, Snyd86b] provides a precedent for this approach.

Another example of the flexibility provided by behavioral similarity is the well known
exception handling problem. Suppose to have a Bird data type with an associated operation
fiy_speed, and we wish 10 add a penguin data type. Assuming behavioral specialization, a possible
solution is to create two data types Bird fly < Bird and Bird_not_fly < Bird, where Penguin <
Bird_not_fly and operation fly_speed is defined on Bird_fly. This involves a reorganization of the
data type hierarchy. On the contrary, behavioral similarity allows to define Penguin < Bird and a
single operation interface fly_speed (target b: Bird): integer, only available on Bird. There is no
method for computing the fly speed of a penguin, knowledge that will be used for typechecking
methods using the fly speed operation.

The second important design decision of our model is to allow multi-targeted operations.
General motivations for supporting multi-targeted operations in an object-oriented language, are
reported in [Snyd86b, Dan90, McKenS1]. We claim that such operations are also desirable for
views and integrity constraints. Bclow is a motivating example that relies on a usual class-based
approach.

Following [ADbit91], a view mechanism allows a programmer to restructure the class hierarchy
of the database and modify the behavior and structure of objects. In particular, new classes can be
introduced into the class hierarchy. These classes, called virtual, are defined by specifying their
population 1, This can be done by sclecting existing objects from other classes or by creating new
objects called imaginary objects. To populate a virtual class with imaginary objects, one specifies a
query that returns a set of values. A new object identifier is then given 1o each value. A key point
is that a virtual class should be usable as any other class.

Suppose the database has a class Person with subclasses Minor and Adult, and class
Beverage with subclasses Alcohol and Juices. Consider the class Drinks and the virtual class
Control_drinker populated with imaginary objects, defined as follows:

1A virtual class here has a different meaning than in C++.



class Drinks has attributes
drinker of type Person,
drink_name of type string,
date of type integer

virtual class Control_drinker has attributes
drinker of type Person,
drink of type Beverage

Now, a method Offense is defined on the virtual class. It checks that only adults got alcohol and
computes the value of a ticket in case of offense. This method is attached to the virtual class but
the method code depends on both the types of the drinker and drink attributes. A multi-targeted
method like Ticket (p:person, b:beverage) could naturally be used within Offense method code.
Using our notation, the operation interfaces associated with Ticker would be defined as follows.
define operation Ticket (target m: Minor, target b: Alcohol):float =
{if < (m.age, 18) 300.00
else if < (m.age, 21) 100.00}

define operation Ticket (target m: Minor, target b: Juice):float =
{0.00}

define operation Ticket (target a: Adult, target b < Beverage):float =
{0.00}

If the language does not allow such methods, the methods have to be simulated with single-
targeted methods, thereby making the code less readable and efficient, as shown below.

class Minor class Adult
method Ticket (b: Beverage): float = method Ticket (b: Beverage): float =
{Tick_m (b, self)} {Tick_a (b, self)}
class Juice class Alcohol
method Tick_m (m: Minor): float = .. method Tick_m (m: Minor): float = ..
method Tick_a (a: Adult): float = .. method Tick_a (a: Adult): float = ..

This situation arises as soon as compound objects are built by assembling existing objects, which is
typically the case with virtual classes.

4. Abstract Data Types and Inheritance

We now provide a detailed description of our data and operation model. For organization, we
successively present the three aspects that characterize a database in our framework: the ADTs
supported by the system, an inheritance ordering for these ADTs, and a persistent database. ADTs
are described by giving their names (in the case of primitive ADTSs), names and representations (in
the case of declared ADTs), and by giving the associated operation interfaces. The inheritance
ordering is described by giving a partial ordering between pairs of declared ADTs. The persistent
database is described by naming roots of persistence. Each such name identifies an operation of no



arguments that retumns the corresponding persistent data.

In the following, we represent a database schema using four components: a set S of ADT-
ids, a partial ordering < representing the inheritance relationships between ADTs, a set T of
operation interfaces, and a set R of operation names, identifying the operations in £ that support
. roots of persistence. We shall denote a database schema by ¥ = (S, <, I, R).

4.1. S -- Abstract Data Types

The ADTs include the primitive ADTs. For example, integer € S, string € S, etc. Other ADTs
reflected by S are user-defined -- i.e., the result of an explicit ADT declaration expressed using a
specification language that includes type expressions. The arguments to type constructors in such
expressions are always ADT names because the corresponding data structures hold data that will
be seen by operations, and, as explained, all data seen by operations is an ADT instance.

4.1.1. Open and Protected ADT Declarations

Two different kinds of ADTs can be declared: open and protected ADTs. An open ADT allows
unrestricted access to its representation operations. For example, the following is an open tuple
ADT declaration:

define type n_tuple = [name: string];

As a result of this declaration, the ADT-id n_tuple is included in S, and the operations name_select
(n_tuple):string, and name_assign (n_tuple,string):n_tuple are included in Z. Because n_tuple is an
open ADT, any operation will be able to create n_tuples, and any operation which accepts an
n_tuple argument will be able to use the name_select and name_assign opcrations on this
argument.

Protected ADTs comrespond more closely to the usual concept of an ADT than do open
ADTs. A protected ADT declaration indicates a limited set of "privileged" semantic operations,
and the representation type is then hidden from all but these operations. Because no other operation
is given direct access to the representation components, the privileged operations can then
collectively maintain whatever semantics is desired for the ADT. For example, the following is a
protected ADT declaration.

define type first_quadrant_point using [x:float, y:float] visible to mk_point, move;

As a result of this declaration, the ADT-id first_quadrant_point is included in S, and the
appropriate representation operations are added to £. When typechecking operations involving a
first_quadrant_point, only the mk_point and move operations will be allowed to use its
representation operations. If, for instance, it is desired that a first_quadrant_point should always
have non-negative x and y values, the mk_point and move operations can insure this, and no other
operation will be able to violate this property.

4.1.2. Object and Value ADTs

We do not want to require identity for all data in our model, and we therefore distinguish object
ADTs from value ADTs. Given this decision, however, our objective is that objects and values



should be treated in exactly the same way by methods (i.e., methods should not "navigate” through
data using pointers associated with objects). For example, a method for computing the area of a
square should work on all squares -- whether they are objects (and thus potentially shared), or
values. As shown below, this result is reflected in the behavioral inheritance hierarchy relating
ADTs.

The set S of ADT-ids can be divided into four partitions: S =P U D U O U V, where P
names primitive ADTs (e.g., integer, string, float, etc.), D names declared ADTs (e.g., polygon,
square, person, employee, etc.), where O = {obj s | s € P U D} names object ADTs (e.g., obj
integer, obj polygon, eic.), and V = {val s | s € P U D} names value ADTs (e.g., val integer, val
polygon, etc.).

Thus, to any primitive or declared ADT corresponds an implicitly defined object ADT and an
implicitly defined value ADT. The obj and val prefixes used in object and value ADT-ids are not
type constructors, but simply the initial portions of implicitly defined ADT names. All runtime data
is either an object or a value, and explicily identified as such by its ADT name. Objects are
created by applying the operation new to data. For example, evaluating the expression new (new
(<point>[x:1.0, y:3.14])) creates two, distinct new objects -- each is an instance of the obj point
ADT, and each has a data attribute storing a tuple with the indicated x and y values. There can be
no sharing between these objects because their data attributes contain only values (in particular, val
floar instances). Thus, updating one of these objects (perhaps by "moving" it to a new x,y
location) cannot affect the other object.

As mentioned above, object and value ADTs are related by the inheritance ordering. If s is a
primitive or declared ADT, then obj s and val s are also ADTs. In addition, obj s < s, val s < 5,
and, if s < ¢, then obj s < obj t and val s < val t. These behavioral relationships are guaranteed by
the system. )

4.1.3. Type Constructors

In addition to the usual tuple and set type constructors, relation and class type constructors are
included in the model because sets do not completely support the semantics we desire for relations
and classes. A notion of class data type which is just a bulk data type, like sets and lists, has also
been independently proposed in [Ghe90], in order to avoid any confusion between a class and a
type. Our support for classes and relations as data structures is motivated by the following
considerations. Classes with subclasses provide a useful indexing technique for objects, and
relations are useful to represent application-level associations between data. Because classes and
relations are first class data structures in our model, they can be included within ADT
representations, and can be persistent. The O2 data model [Lecl89] takes a somewhat similar
approach with respect to classes; in that system, classes do not define representations or operations,
but are named, persistent data structures used to hold objects.

We assume the types denoted by tuple and set type constructors are familiar, and do not
review their use here. Section 4.1.4 formalizes tuples and sets with respect to their interpretations
in the model.
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Classes Classes are provided as types in order to support subclasses, and to provide
representation operations for modification of classes by adding or removing subclasses, and for
computing class extents. Also, the insert operation semantics for classes differs from that of sets:
inserting a value into a class creates an object.

Classes hold only objects. If s names a primitive or declared ADT, the expression classof s
denotes a class type, capable of holding the representations of ADT sorts s* < obj s. For example,
given the ADTs polygon, and square, the following class ADTs may be declared:

define type polygon-class = classof polygon;

define type square-class = classof square

As a result of this declaration, the open ADT names polygon-class and square-class are included
in S, and the appropriate representation operations on these ADTs are included in Z. If square <
polygon, then squares as well as polygons can be added 10 a polygon-class instance p, and a
square-class instance s can be added to the (originally empty) set of subclasses for p. The extent
operation returns a set (not a class) including all objects in a class, plus, recursively, all objects in
the extents of its subclasses. Thus, if s is a subclass of p, the extent of p will include all objects in
s as well as thosc of p.

Relations  Relations are provided as types in order to support a traditional model of relations as
a homogeneous set of tuples, each holding attributes of specified ADT domains. In contrast, a set
of type { ¢ } can hold elements of any sort t’ £ t in the behavioral inheritance hierarchy.

Just as classes hold only objects, relations are restricted to holding value ADTs -- in
particular, open valuc ADTs represented using tuples. Given an open declarcd ADT of sor ¢,
where ¢ is represented using a tuple, the expression relationof t denotes a relation type, capable of
holding representations of the ADT sort val ¢. For example, assuming that employee and project
ADTs are declared, the following ADT declarations are possible:

define type emp-tuple = [e: obj employee, p: obj project];

define type emp-relation = relationof emp-tuple;

As a result of this declaration, the ADTs emp-tuple and emp-relation are included in S, and the
appropriate operations on emp-tuple and emp-relation are included in Z.

4.1.4. ADT Interpretations

In addition to the structure indicated by the type expression, the representation type for an ADT in
our model includes structure for holding information used by the system: an ADT-id, and an
object-id. If the type expression indicated in an ADT declaration is T, then the representation type
for the ADT is a tuple of type [sort:ADT-id, id:object-id, data:t]. All ADT instances in our model
are represented using such a tuple, and all operation arguments are typed as ADT instances. There
are no user-level operations for accessing the sort and id information held by ADT instances --
this information is visible to and used only by the system and by system-defined methods.
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An ADT interpretation is a set containing all possible instances of an ADT. Figure 1 gives
interpretations for all possible ADTs. We express ADT interpretations using tuples, sets, and
clements of atomic semantic value domains -- those corresponding to the primitive types (i.e., the
sets of atomic elements commonly named integer, boolean, string, etc.), plus the two following sets
of atomic elements: object-ids O = {ol, 02, ...}; and ADT-ids S = {sl, s2, ...}. Weuse ¢ to.
represent either a primitive or declared ADT name, assuming ADT declarations of the form ¢ = 1
where 1 is a type expression built from ADT names and any of the type constructors: tuple, set,
relationof, and classof. We assume O includes a distinguished element named aull. We denote the
interpretation of an ADT of sort s using [s], and the interpretation of a type expression T using
Itl. The interpretation of a primitive type T (e.g., integer) is the set of atomic elements named by
T.

161 = { [sort:¢, id:o, data:d] |0 € O, d e b1l }.

Jval §] = { [sort:val ¢, id:null, data:d] | d e t }.

lobj ¢] = { [sort:obj ¢, id:0, data:d] loe O-{nuli},d e =] }.

DA 04 n Ao Il = { LAV s ALV | vie 105 ¢,<6,1<i<n}, n>0.
Hol={S | ve S = there exists ¢’ <osuchthatve [¢'] }.

Irelationof ¢ = { R lve R=>ve [val 6]}, ¢ an open tuple

[classof ¢ = { {objects:O’, subclasses:S] l

0 € O’ = there exists ¢’ < obj ¢ such that 0 € f¢’l, and
s € S = there exists ¢’ < ¢ such that s € fclassof ¢’] }.

Figure 1 -- ADT Interpretations

42. < -- The Inheritance Ordering As mentioned during the discussion of value and object
ADTs, some inheritance orderings are implicit. Other explicitly declared orderings among the
declared ADTs are possible, such as the following:

employee < person regular_polygon < polygon
student < person rectangle < polygon
student_employee < student square < regular _polygon
student_employee < employee square < rectangle

Although inheritance declarations for ADTs are arbitrary, they have important typechecking
implications for the methods used to support operations on these ADTs. For example, if it is
desired to define a polymorphic method valid on any person, and this method uses the operation
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free-time, then, given the above inheritance declarations, a free-time operation must be available for
the ADTSs person, student, employee, and student-employee.

5. Operations, and Persistence

5.1. X -- The Operation Interfaces

To each operation interface in £ will correspond a single method for supporting the desired
semantics of the operation and returning the appropriate result. When appropriate, a single
polymorphic method can be used to support multiple interfaces of an operation. As mentioned
earlier, many operations and their methods are built-in -- i.e., provided automatically by the system
in support of the primitive ADTs and access to the representation structure of declared ADTs.
Other interfaces in Z result from explicit method definitions, as discussed in Section 5.1.4, below.

5.1.1. Representation and Semantics of Operation Interfaces

We represent X as an indexed collection of sets of operation interfaces. The index into Z is the
operation name, and each interface specifies argument sorts, targets, and a result sort. The
following example illustrates this. We assume that small point set < point_set,
large_display screen < display screen, and square < polygon. For purpose of illustration, we
include in this example three different interfaces for a mk_polygon operation.

mk_polygon:  (point_list, display_screen): polygon
(target point_set, large_display_screen):. polygon
(target small_point_set, display_screen): polygon

Figure 2 -- Example Operation Interfaces

The semantics of the operation interfaces is based on whether or not operation arguments are
targets (denoted by the target keyword). If an operation interface is not targeted on a particular
argument, then it (and the method implementing the operation) must be polymorphic in this
argument. If an operation interface is targeted on a particular argument, then any polymorphism of
the operation with respect to this argument must be explicitly indicated using distinct interfaces.
The reasoning behind this approach is that because non-target arguments are not used to resolve
operator overloading, operators must be polymorphic with respect to such arguments for any given
set of target ADTs. On the other hand, since (by definition) target arguments are used to resolve
overloading, operation polymorphism is not required with respect to target arguments, and should
not be assumed. Section 5.1.3, below, describes the process of method sclection that is based on
this semantics.

The first mk_polygon operation interface in Figure 2 is not targeted, which means that the
method supporting this interface must be polymorphic with respect to both the kinds of point_list
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and the kinds of display screen used as its arguments (i.e., any first argument sort p < point_list
must be acceptable as the first argument, and similarly with respect to display screen for the
second argument).

5.1.2. Coherent Database Schema

We require that it be possible to statically guarantee that programs execute without runtime type
errors (i.e., it must be possible to statically guarantee that all overioaded operation applications in a
program will be successfully resolved). The formal model presented in [McKen91] provides
constraints (called properness, regularity and consistency) that must be placed on operation
signatures in order to guarantee meaningful behavior and support static typing. Following
[McKen91], we require that a database schema satisfies these constraints and call it a coherent
database schema.

A database schema is proper if intersecting interfaces of generic operations have the same
target arguments. Let m (O and m mz:s’ be two operation interfaces 1 if there exists an W such
that ®g < o, and ©g < ®, (by comparing the individual ADT names of the ®’s pairwise), then
the interfaces m ;s and m (ozzs’ are said to intersect. This requirement is weaker than requiring
all interfaces of a given operation to have the same targets, but is still sufficient to support static
typing. Assuming there is no inheritance relationship between point_list and point_set, there is no
conflict between the untargeted mk_polygon operation and the targeted versions of the operation
(i.c., the schema is proper).

Regularity means that given a particular operation and set of argument ADTs, there will
either be no entry in Z describing the operation for these ADTs (i.e., there is no available method
for performing the desired operation), or there will be a single most applicable method for
performing the operation on these ADTs. Regularity prevents ambiguities with respect to operation
overloading. Because the mk_polygon operation with interface mk_polygon (target point_set,
large_display_screen) is targeted on its first argument, an explicit entry for the mk_polygon
operation with interface mk_polygon (target small_point_set, display_screen) is required to indicate
the existence of a method for supporting this interface. Absence of an explicit entry would indicate
that there is no method for building a polygon from a small_point_set -- knowledge that would be
important for typechecking methods using the mk_polygon operation.

Consistency means that if an interface x of an operation is applicable to more specialized
target arguments than another interface y of the operation, then the result type of x is more
specialized than that of y, and the non-target arguments of y are more specialized than those of x.
Consistency represents a generalization of the traditional ordering on function types to a multi-
targeted context [Dan88], and provides an essential basis for correct typechecking of polymorphic
methods [McKen91, Dan90]. In the third mk_polygon interface, as required by consistency, the
- non-target display_screen argument was not specialized (in fact, it was generalized).

lm ;s is of the form m (sl, ..., sn):s.
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5.1.3. Resolving Operation Overloading

Given an application of an operation on a set of arguments, an interface for the operation is found
in T such that the sorts of the target arguments specified in the operation interface exactly match
those of the corresponding invocation arguments. An operation invocation that has been
typechecked with respect to a coherent database schema is guaranteed to have exactly one such
interface in £ (due to regularity). For example, an application of the mk-polygon operation
typechecked with respect to the operation interfaces of Figure 2 would be handled as follows:
The method supporting the untargeted mk_polygon operation is chosen if:
(1) the first argument ADT p < point_list, and
(2) the second argument ADT s < display_screen.

The method supporting the first of the targeted mk_polygon operations is chosen if:
(1) the first argument ADT p < point_set, and
(2) not (p < small_point_set), and
(3) the second argument ADT s < large_display_screen.

Otherwise, the method supporting the final mk_polygon interface is chosen.

Given that the operation application has been typechecked, there are no other possibilities. One of
the above three methods will be chosen to implement the operation.

5.1.4. Method Definitions

The non-system operations described by X appear as a result of ADT operation method definitions.
These provide the method code whose purpose is to implement the operation interfaces. In this
section, we make no assumptions concerning the language used to express methods, other than the
necessity for indicating the types of parameters for which a method is intended.

<op-def> ::= define operation <op-id> [(<arg-list>)]:<resul> = <method-code>
<arg-list> ::= [target] <arg-spec> [{, [target] <arg-spec>}...]
<arg-spec> == <param-id> : <ADT-id>

| <param-id> < <ADT-id>

| <ADT-id> < <param-id> < <ADT-id>
<result> = <ADT-name>

I like <param-id>

e.g., define operation mk_polygon (p < point_list, s < display screen):polygon = ...
define operation mk_polygon (p : target point_set, s < large_display_screen):polygon = ...
define operation mk_polygon (p : target small_point_set, s < display_screen):polygon = ...

Figure 3 -- Method Definition Syntax
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To show how this information might be provided, Figure 3 presents and illustrates an informal
grammar for operation definitions. Within this grammar, nonterminal symbols are enclosed in angle
brackets <; alternative productions are introduced with |; [a] means that a is optional; and {a}...
means that @ is repeated one or more times.

Following the grammar in Figure 3 are example method definitions for supporting the three
mk_polygon interfaces introduced in Figure 2 (the method code is omitted). As can be seen from
the argument specifications in these examples, each method is polymorphic with respect to various
arguments. Method code, expressed using a programming language, must be typechecked to assure
that it supports the interfaces corresponding to its definition, and that all operations used by the
method will be successfully resolved.

5.2. R -- The Persistent Roots

A persistent root is an object with identity, and the data retumed by the operation corresponding to
such a root is an instance of this object. The method supporting this operation is system-defined
code provided for establishing addressability of persistent data within programs. Specific
commands must be available for creating persistent data. In the following, we only consider
persistent classes and relations.

define type square_class = classof square;

create class Districts of type classof polygon;

create class Windows of type square_class;

create class Gardens of type square_class subclass of Districts;

definc typc rel_part of type relationof [part: string, sub: string];

create relation Parts of type rel_part,
create derived relation Subpart of type rel_part;

Figure 4 -- Persistent Class and Relation Definition

A persistent class is created by applying the command create class to a class ADT. Similarly, the
command create relation can be applied to a relation ADT for creating a persistent relation.
Examples are given on Figure 4.

Classes and relations are always created empty. A set of parents may be specified when a
class instance is created; the resulting class/subclass relationship is required to obey the inheritance
ordering on the class element ADTs (as reflected in the ADT interpretations of Figure 1). The first
create class command of Figure 4, creates an object named Districts whose value is an empty class
of type classof polygon. Corresponding to this object, there is an operation Districts () with no
arguments that retuns the current value of the persistent root (the actual class extent). Because,
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Gardens is declared to be a subclass of class Districts, the Districts () operation will return all the
objects in Districts and Gardens.

Two additional keywords, base and derived, can be used in class and relation creation
statements. When a base persistent root is created, it is extensionally defined (i.e., its elements arc
the result of explicit insert operations). By default, the keyword base is always assumed. On the
other hand, a derived persistent root is intensionally defined (i.e., its elements are dynamically
computed by invoking the corresponding extent operation). In the example of Figure 4, relation
Subpart is intensional, and represents the transitive closure of the Part relation. This requires to
define an operation, say mk_Subpart (), which will be automatically invoked by the Subpart ()
operation when the value of Subpart is required. Assuming a language with an imperative style
for defining operations, Figure 5 gives a possible implementation of the mk_Subpart () operation.
We assume the existence of an operation Subpart_Part_compose (), which returns the composition
(join followed by project) between relations Part and Subpart.

define operation mk_Subpart () =
local lastr = new (<rel_part> {});
begin
% copies Parts into Subpart %
foreach tuple in Parts ()
Subpart + <rel_part> [part:tuple.part, sub:tuple.sub];
endfor
% computes the closure of Subpart %
while <> (lastr, Subpart) % tests if new tuples have been generated %
begin
lastr ;= Subpart;
foreach tuple in Subpart_Part_compose ()
Subpart + <rel_part> [part:tuple.part, sub:tuple.sub];
endfor
end
endwhile
end;

Figure 5 -- Definition of an Intensional Relation

Formally, a database instance is modeled using two functions: ®, and v, where x is a root
assignment, and v is a object store. A root assignment ® corresponds to the operations in I that
return persistent roots. For any r € R, n(r) is the data associated with the persistent root named r.
An object store v maps each element of an ADT interpretation domain into an element of the same
domain. Like in IQL [ADit89], the purpose of v is to reflect object-sharing by mapping all objects
with the same identity to the same semantic value. If x is any data item, we call v(x) the current
representation of x. This is the only one that is seen by operations. For values, v is the identity
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function. For objects, the indirection with respect to object-ids provided by v is essential to
supporting general graph structures within data.

An auxiliary function p (defined in terms of v) is also introduced in order to map classes to
class extents. Figure 6 summarizes this definition.

A root assignment © maps each name in R to data as follows:
If re R, and ris reflected in X as being of sort ¢, then n(r) € ¢l
An object store v maps data to data as follows:
If x € Jval ¢} then v(x) = x
If x € Jobj ¢}, then v(x) € Jobj ¢}, and x.id = v(x).id
If x € Jobj ¢}, y € fobj ¢], and x.id = y.id, then v(x) = v(y).
The extent function p is defined on an arbitrary ADT instance d as follows:
If d € [classof ¢} for some ¢,
then p(d) = v(d).data.objects U {0 | o€ p(C), C e v(d).data.subclasses }
otherwise, p(d) = d.

Figure 6 -- Database Instance

6. Features of the Data and Operation Model

To provide examples suggestive of the expressive power and flexibility of the model, we now
discuss support for object migration, and inheritance orderings on parametric types.

6.1. Object Migration

Suppose to have a database with types and classes for persons, students and employees (we assume
here a standard class-based approach):

class Persons has attributes class Students isa Persons has attributes
name: string; id: integer,
has: {course}

class Employees isa Persons has attributes
id: string;
sal: integer,

Suppose that an object of Persons, as a result of applying to a University, becomes a student,
while retaining person behavior. In a traditional class-based ADT specification approach, because
classes and types are not distinguished, this requires 10 change the type (i.e., the class) of the
object of Persons. A trivial solution would be to delete the object from class Persons and add a
new object into Students.- The new object will get a different identity than the original object,
because an object of Persons cannot be seen as an object of Students (i.e., a student cannot be
assigned with a person). This change of identity is a problem because it requires to change every
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reference to the original object in the database into a reference to the new one. What we need is
that the same oid-value which represented a person, after the operation, with the same identity,
represents a student. This updating operation is usually called object migration.

Different solutions to this problem have been proposed in the usual class-based framework.
In [Cac90, Kim90], an object with the original oid-value is inserted in the destination class and the
original object is unchanged. Thus, the information about an object (identified by its oid-value)
may be disseminated in several classes. For instance, if a person o, becomes a student, then a new
object with same identity than o is inserted into Students. The typing constraint enforced by the
system is to verify that migration is performed downward the inheritance hierarchy (i.e., from
classes to subclasses). Howewer, there are two main problems with this approach.

First, accessing the whole information about an object requires to access all classes
containing this object. This "composition” operation represents a significative overhead, even if it is
optimized using indices based on oid-values. Second, the migration operation could yield run-time
errors. Suppose that the person which is intended to become a student has already been specialized
into an employee, with a structure incompatible with student (e.g., the id attribute is of a different
type). In this case, the value produced for the person who becomes a student and is also an
employee, is not correctly typed for all data structures which still refer to it as an employee (e.g.,
the id field is expected to be of type string). In order to avoid this problem, we could assume the
existence of a class Student_employees, subclass of both Students and Employees, and then migrate
the employee to this class so that he also acquires the behavior of Students. But, suppose that a
Jfree_time operation is defined on Employee and Student_employees with two different methods. If
free_time is invoked with an object of the class Employee, then one must know if the object is also
in Student_employees in order to select the appropriate method code. This seriously complicates the
overloading resolution procedure.

A solution to the above problems is proposed in [Ghe90]. First, like in our data model,
classes are separated from types by introducing a specific class type constructor. Therefore, the
migration of a person to a student essentially requires to change the type of the object in the class
Persons into a student type and then to move the object from one class to the other. To fix the
ideas, we introduce the following types:

person = [name:string];
student = [name:string, id: integer, has:{course}];
employee = [name:string, id:string, salary:float];

student < person, employee < person,

Classes Persons, Students and Employees are of respective type person, student, and employee. A
special operation, called specialize, is defined to transform an -object of type s with an oid-value o
into an object of type ¢ with the same oid-value o, provided that ¢ < 5. In order to decide if a type
specialization operation can be accepted, a knowledge of all the other specialization operations
which have been applied to the object is needed. Let us define the proper types of an object as
consisting of all the types resulting from each specialization operation applied to it, plus the type
with which it has been created. In our previous example, the proper types of a person becoming an
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employee are person and employee. A type rule then checks that the new proper type of an object
must be a subtype of all the old proper types. This means that every object has a minimum proper
type and that the new minimum proper type must be a subtype of the old minimum proper type.
This rule is required in order to avoid structural incompatibilities between types just as described
above. For instance, if a person is now intended to be a student, then the new proper type is
clearly not a subtype of both person and employee. Howewer, as discussed in [Ghe90], there is no
way of determining statically the minimum proper type of an object. This means that run-time
typechecking is involved thereby entailing a cost overhead.

Our data model allows object migration through the ADT hierarchy via down and up
operations, whose behavior is described below. These operations provide a facility much like a cast
operation in conventional languages (e.g., C++); they may (or may not) actually change the current
representation of an object, but in any case, under the control of safe static typing, the object they
retum can be treated differently than the object they are given as an argument.

The down and up operations are given two arguments: an object (say, objdata of "current”
sort obj 0), and data (say, newrep of "destination” sort either val d or obj d). They are targeted on
the first argument; Down (resp. wup) then performs as follows. If the destination sort d is strictly
below (resp. above) o in <, then a new current representation for objdata is created in which the
sort attribute is obj 4 and the data attribute is that of newrep; otherwise the current representation
of objdata is unchanged. Objdata is then returned as the result of the operation. During
typechecking, the result sort for the operation is the object sort corresponding to newrep.

It is impossible to use down in a way that violates the type system because any data structure
in our model that can contain an object of sort s can also contain an object of sort " < s, and
typechecking is already concemed with all such s’.

Coming back to our previous example, suppose that an obj person instance o is intended to
become an obj employee instance. This is performed by invoking: down (o, obj employee).
Assuming that the representation type of o was:

[sort: obj person, id: o1, data: [name: Marie]]

then it would be transformed into:
[sort: obj employee, id: o1, data: [name: Marie, id: engl01, sal: 50,000]]

Suppose that o is intended to become a student. Then, because of the semantics of down, we
require the existence of a type, say student_employee = [name:string, id:string, course:string],
defined to be a subtype of both employee and student. The down operation can be invoked with
down (0, obj student_employee). The new representation type of o will be:

[sort: obj student_employee, id: o1, data: [name:Marie, id:worker100S, course:CS]

Thus, if object o above is intended to move to the Employees class, its representation type is first
changed using the down operation and then the object (actually, its representation type) will be
deleted from Persons and inserted in Employees. During this migration operation, the only type
rule that needs to be enforced for the down operation is that the destination sort is below the sort
of the object given as argument. Unlike [Ghe90], this rule can always be enforced statically and
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efficiently. The simplicity of our type rule is only due to the fiexibility given by the use of an
inheritance hierarchy based on behavioral similarity.

The up operation is useful when learning more about an object suggests the need 1o remove
behavior inherited from some higher sort (e.g., a smdent_employee may quit his job while
remaining a student). A first step in dealing with this situation is to remove the object from any
data structures capable of containing only objects with the undesired inherited behavior (e.g., if the
student_employee quits his job, he should be removed from classes whose objects must be of sort
< obj employee). This can be done independently of changing the object’s sort.

Having done this, however, there are two reasons for using up to replace the current
representation of an object with one appropriate to a higher destination sort. First, in the casc
where an operation is available in both the destination sort and the current sort, the methods
supporting the operation for these sorts may be different (e.g., a free_time method for student may
be different than that for student_employee). If the current representation of the object is not
changed using up, even though the method appropriate for the destination sort (i.e., student) is
desired, the method appropriate on the current son (student_employee) is the one that will be used.
Secondly, it may be desired t0 use down to specialize the object in some new way, but even if
there is a path from the object’s destination sort to this new sort, there may be no such path from
the object’s current sort. (For example, assuming tutors cannot be employees, the student may
have quit his job to become a tutor.) For these two reasons, up is provided.

If the first step identified above has been undertaken, then using up to migrate the object
upwards cannot violatc the type system and up will succeed. In order to assure type safety,
however, up must verify that this first step has indeed been taken -- this involves examining all
data structure components in the system capable of holding sorts below the destination sort, and
verifying that none of these structures contain the object. Only if this test is satisfied can up
replace the current representation of the object with one appropriate to the destination sort. If, on
the other hand, the test is not satisfied, then up must signal a runtime error, because there is no
way to proceed without the possibility of violating of the type system.

We emphasize that a failure for up is not a type error -- it prevents type errors -- and is
entirely reasonable given the circumstances under which it can happen. The comect response to
such an error is to remove the object from the data structures within which it does not belong, after
which up can be used successfully.

6.2. Inheritance for Parametric Types

Consider two ADTs represented using tuples containing a shape attribute, where it is desired that
both the ADTs and their shape attributes be related by <. Figure 7 illustrates two such ADTs and
- the corresponding shape_assign operation: interfaces that are provided by the system. = Cenainly,
these interfaces must be targeted on their first arguments; in general, houses and buildings may be
represented quite differently (in this example they have a single attribute in common), and it would
be overly restrictive to assume that a single method for performing this operation is suitable in
both cases.
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As for targeting on the second argument, there are important reasons for this as well. First, it
is required by consistency since house < building, and rectangle < polygon. Also, for example,
depending on the implementaton of tuples, the actual method code used to implement
shape_assign interfaces for (building polygon) and (building,square) could be different. Different
structures might be copied (because squares might be represented differently that polygons), so the
code for performing this copying might differ. On the other hand, perhaps only a pointer would be
copied, in which case the code for implementing both interfaces might be the same. But these
possibilities are not reflected at the level of operation interfaces, which assume nothing about
implementation.

S building = [..., shape:polygon, ...]
house = [..., shape:rectangle, ...]

IA

house < building
square < rectangle < polygon

z shape_assign: (target building, target polygon):building
(target building, target rectangle):building
(target building, target square):building
(target house, target rectangle):house
(target house, target square):house

Figure 4 -- Representation Operations

Aside from the targeting of the shape_assign interfaces that are provided by the system, it is
important to note that there is no shape_assign interface provided for (house,polygon). This is not
only reasonable, given the representation of a house, but imperative for safe typechecking, which is
ultimately based on representation types. If such an operation interface were provided, it would
allow a violation of the type system. This example demonstrates a solution to an open problem of
inheritance orderings for parametrized types (which is what type constructors are) in the presence
of updates.

The usual expression of this problem goes as follows. If square < polygon, then is
Array(square) < Amay(polygon)? In the absence of updates, it is safe to use this ordering, but if
updates are allowed, then this natural and useful ordering cannot be used {Bom82]. This paradox
arises in the presence of updates because a procedure that types a parameter as Array(polygon)
might, if allowed to receive an Array(square) as an argument, update this array argument by
storing a polygon in it, thus violating the semantics of Amay(square). Graver’s response to this
problem [Grav89] is to use different orderings for parametric types, depending on whether updates
are part of the programming language used to express methods. Our feeling is that this approach
really misses the central point: that a particular (update) operation should simply be absent because
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it is not part of the semantics of the parametric types that are involved. It is not possible to view
things this way from the perspective of a class-based specification style, because inheritance is
equated with behavioral specialization.

The flexibility necessary to support inheritance orderings for parametric types is available in
our model as a result of supporting multi-targeted operations, and using < to reflect behavioral
similarity rather than behavioral specialization. As a result, the desired ordering can be available
for use in our model (we can define a polymorphic method that works for general buildings,
including houses), and, at the same time, a straightforward approach to typechecking will prevent a
misuse of this ordering in the case of updates (a method that might potentially require a
(house,polygon) shape_assign interface will be refused by the typechecker because there is no such
interface). This solves a serious open problem for object oriented systems by extending the utility
of safe static typechecking to a context including updates and useful, intuitive inheritance orderings
on parametrized types.

7. Conclusion

We have presented a data and operation model that unifies the concepts of object-oriented
databases and relational databases extended with abstract data types into a simple and statically-
typed framework. Our data model is based on the framework provided by Partitioned Algebras, a
formal algebraic model for object-oriented programming developped in [McKen91]. Compared to
existing work, our data and operation model has three major features. First, inheritance ordering is
based on behavioral similarity. This enables to tailor ADT representations in ways that are not
based on structural refinment, but rather, the desire for operational efficiency. It also provides
flexibility to deal with exception handling by not imposing behavioral specialization as a
consequience ‘of declared inheritance. Second, multi-targeted operations are allowed. This is very
useful to model methods on views represented by virtual classes as described in [Abit91]). Finally,
class and relation type constructors are introduced in addition to the usual set and tuple type
constructors. This enables a clear scparation between types and persistent collections.

The impact of our contribution is twofold: first, we extend object-oriented databases by
providing typesafe and satisfactory solutions to the problems of object migration and orderings on
parametric types, while avoiding explicit pointer-based navigation. Second, we extend relational
approaches by supporting sharing in the presence of updates to objects, and by supporting relations

within a context including general-purpose programming languages and ADT domains ordered by
inheritance.
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