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Résumé

Le concept de matrice combinatoire d’un code sans restriction et la notion de
configuration de r-partition (on pourra dire aussi configuration cohérente) admise
par un code sont introduits et discutés en détail. La théorie comprend une car-
actérisation des codes complétement réguliers et une interprétation combinatoire
du fait que les lignes distinctes de la matrice de distribution des distances d’un
code soient linéairement indépendantes. En général, il est possible de calculer la
matrice de distribution des distances de tout code admettant une configuration de
partition donnée en résolvant un systéme bien défini d’équations linéaires; c’est une
technique efficace pourvu que le nombre de classes de la partition soit relativement
petit.

Abstract

The concept of the combinatorial matrix of an unrestricted code and the notion of
an r-partition design admitted by a code are introduced and discussed in detail.
The theory includes a characterization of completely regular codes, and a combina-
torial interpretation of the fact that the distinct rows of the distance distribution
matrix of a code are linearly independent. In general, it is possible to compute
the distance distribvtion matrix of any code admitting a given partition design
by solving a well-defined system of linear equations; this is an efficient technique
provided the number of classes in the partition is relatively small.
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1 Introduction

The distance distribution matrix B of a code C contains a good deal of use-
ful information about C. Furthermore, for a large class of codes that enjoy
some interesting combinatorial properties, this matrix can be determined,
in a mechanical manner, from a relatively small set of data [6]. The con-
cept of an r-partition design was introduced recently, in the case of linear
codes, to enable one to determine the matrix B only with the knowledge of
that partition whenever C coincides with one class of the partition, while
the other classes are unions of cosets of C' [2]. Such a partition with three -
classes (r = 2) appears when studying two-weight projective codes, because
these codes yield partial difference sets with two parameters [1]. This notion
generalizes naturally to the r-partition design concept, for any value of the
parameter r.

The present contribution extends that approach to the case of unrestricted
(“nonlinear”) codes. (Further extensions to the theory of “codes in regular
graphs” were investigated by Montpetit {10].) We are dealing with r-parti-
tion designs { Eo, E\, ..., E.} of the ambient Hamming space F® (over a g-ary
alphabet F); they exactly are coherent configurations in Higman’s terminol-
ogy [8]. Assuming that we are given such a partition design (with a relatively
small value of r), we are able to construct the distance distribution matrix B
of any code C which is a union of some classes F,. In this situation, C is said
to admit the r-partition design in question. Conversely, it may happen that,
knowing the matrix B of a code C, we are able to determine the r-partition
design with the smallest r that is admitted by C.

The main results of the paper are concerned with combinatorial prop-
erties of classes of “remarkable codes”; these properties are closely related
to r-partition designs, and are derived from some theorems about paths in
Hamming spaces. Four characteristic integers, associated with any code C,
play a major role in the theory. They are the covering radius of C, the rank
of the distribution matrix B of C, the number of distinct rows in B, and
the smallest r for which C admits an r-partition design. This last integer is
denoted 7 and is called the regularity number of C.

Section 2 contains some preliminary results concerning paths in Hamming
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spaces, and it introduces the combinatorial matrix of a code. The integer
s;; which counts the length j paths joining two points in F* at distance i
apart is interpreted as the index i component of the jth power of the bino-
mial () = n(q— 1) — ¢, reduced modulo £(€ — 1)...(6 — n), in the basis
of Krawtchouk polynomials Pi(§). The combinatorial matrix A of a code
C C F™ has as its (z,7) entry the number of length j paths joining the point
z € F" to the code C. 1t is related to the distance distribution matrix B by
the identity A = BS, with § = (s;;). The columns of A are shown to satisfy a
well-defined minimum order linear recurrence. The characteristic polynomial
of this reccurrence has degree t+1, where t is the external distance of C. More
precisely, its zeros are the integers Py(w;), where wo = 0,w,...,w, are the
dual weights of C. This material is an extention to unrestricted codes of no-
tions and results given previously in [2], [3] and [4] for the case of linear codes.

Scction 3 is devoted to the general theory of r-partition designs. By defini-
tion, they are (r + 1)-class partitions { Ey, ..., E,} of F* such that the number
My, of points in E, at distance 1 from any point in E, is a constant. The
square matrix M = (m,,) is referred to as the associate matrix of the given
r-partition design. Perfect codes (12], uniformly packed codes [13] and, more
generally, completely regular codes [5] are then characterized in terms of par-
tition designs. For example; we obtain the following result. A code C with
covering radius p is completely regular if and only if it admits a p-partition
design (which necessarily is the distance partition). In this case, we have
p =t = 7, and the eigenvalues of the associate matrix M are the numbers
Py (w;), with wg, wy, ..., w, the dual weights of C. In general, if C admits an
r-partition design, then we have r > t. The case where the bound is sharp,
i.e., ¥ = t, is characterized as follows. A code C with external distance ¢
admits a ¢-partition design if and only if its distance distribution matrix B
contains exactly ¢ + 1 distinct rows. The result is an analogue of Theorem
6.11 in [5] for unrestriced codes.

Section 4 is concerned with the case of linear codes (over a field alphabet
F). We give a description of an r-partition design admitted by a linear code
C, under the restrictive assumption that each class F, is a union of cosets
of C. In this interpretation, the column set of a parity check matrix for
C appears as some kind of generalized difference set [1]. Furthermore, by
making use of Theorems 6.10 and 6.11 in [5] we obtain the following results.

3



A linear code C with external distance t admits a ¢-partition design if and
only if the orthogonal code C* carries an association scheme with respect
to the Hamming distance relations. ‘The' ¢haracter matrix of the dual of the
C*+ scheme, which is the coset scheme of C, was determined by Montpetit
in terms of the t-partition design admitted by C; the rows of this matrix
are the left eigenvectors of the' a.ssoc1ate matrix M [11]. Finally, we give two
illustrative examples, one w1th P=1<F, and the other with p <t < 7.

B AN ’l LR A

2 The combinatorial‘ matrix of code

Let F be a finite alphabet with,g elements (¢ > 2), and let H(n, ¢) denote the
Hamming space of dimension n gver F, that is, the nth Cartesian power F*
of F equipped with the Hamming distance d (for any positive integer n). By
definition, the distance d(z,y) between two points z and y in F* equals the
number of coordinate positions in which z and y differ. The space H(n,q¢)
has tlic combinatorial structure of a metric association scheme, called the
[lamming scheme. The reader is referred to {5] for the relevant notions and
results about that subject. The generating graph of the Hamming scheme has
the elements of F" as its pomts and the palrs of points {x,y} with d(z,y) =1
as its edges. : L

Definition 2.1 A path of length j joining two points ¢ and y in F™ is a
sequence xo,zl, W Tio1, L5, wzth Zo = :r: and z; = y, such that d(zi_1,z;) = 1
fori=1,. e

It is clear that the Hammingidistance: d(z,y) equals the length of the
shortest path joining z and y. Let Dy, Dy, ..., D,, denote the g™ x ¢" distance
relation matrices of the space H(n,q)i- By definition, D; has F* as its row
and column labelling set,-amd the (,y)ientry of D; is given by D;(z,y) =1
if d(z,y) = 1 and Di(x;y)=!Ovotherwise. In the Bose-Mesner algebra of
H(n, q) gcnezated by’ the dlszance*relatzon rna.tnces, consider the identity

DY u o s
'. Ijﬁ Zsu oo (1)
‘ 1=0
for any nonnegative iﬁtegeﬁ j. This defines the real numbers sqj, sy, ..., Snj-
If d(a,y) = 1, then Dj(z,y) = sij. Therefore, si; counts the paths of length
J between any two points at distance's apart.
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Definition 2.2 The path matriz of H(n,q) is the (n + 1) X oo matriz
S = (si;) where s;; is the number of length j paths joining two points x
and y in F" such that d(z,y) =1, for0<i<n and 0 < j < oo.

Definition 2.3 The Krawtchouk polynomial Pi(§), of degree i in the variable
€, with parameters n and ¢, is given by

Pi€) = S(~1)(a - 1)""*( ¢ ) ( ot ) , @)

k=0

fori=0,1,...,n. The Krawtchouk matrizx P = (p¢;) is the square matriz of
order n + 1 defined by py; = Pi(€) for € ,1=0,...,n.

Proposition 2.1 The path matriz S is upper triangular. Its diagonal entry
sii equals i, and divides all entries s;; (with 0 < j < 0), for each i. It can
be wrilten as

- S=q"PV, (3)

where P is the Krawtchouk matriz and V denotes the (n + 1) x oo matriz
having Pi(€) = (n(q ~ 1) — ¢€) as its ({,3) entry, for 0 < ¢ < n and
0< ) <.

Proof :  The first property (s;; = 0 for j < ¢) is obvious from the definition.
To prove the second statement, let us consider two points = and y in F",
with d(z,y) = 1. Without loss of generality we can assume z = (0, ...,0) and
y =(1,...,1,0,...,0), where 0 and 1 denote two distinguished symbols in F.
The number of 1 components of y is equal to i. Let G denote the symmetric
group of degree ¢ acting on the first ¢ coordinate positions. It is clear that
G acts as a permutation group on the set of paths of a given length j (with
J 2 i) joining = and y. Moreover, no such path is fixed by an element of G,
except by the identity. This implies that the number s;;, counting the length
J paths, is divisible by i! (the order of G). In particular, it is easily seen that
G acts transitively on the length ¢ paths, which means that s;; equals ¢!.

The last property follows from the fact that the integers P,({), with
¢ = 0,1,...,n, are the eigenvalues of D;. (Recall that all matrices in the



Bose-Mesner algebra are diagonalized by the same orthogonal transforma-
tion). By use of (1) we then deduce the relation

Py = z s Pi0), | (4)

for 0 << nand0<j < oo. In matrix form, this gives V = PS, whence
the result (3) since P2 =¢*I. O

Let C be a code of length n over the g-ary alphabet F. This simply
means that C is a nonempty subset of F*. We shall describe some significant
properties of C' by use of the “combinatorial matrix” concept introduced
below for unrestricted codes.

Definition 2.4 For any point z € F", let A;(z) be the number of length
J paths that join z to a given code C, for 0 < j < oo, and let Bi(z) be
the number of elements of C at distance i@ form z, for 0 < i < n. The
combinatorial matriz of C is the ¢" X 0o matriz A having A;(z) as its (z, j)
entry. The distance distribution matriz of C is the ¢* x (n + 1) matriz B
having B;(z) as its (z,1) entry [5], [6].

The next result is elementary; it shows the “equivalence” between the
matrices A and B. We shall see in Section 3 that the combinatorial matrix
A is especially suited to the study of partition designs. This is mainly due
to the existence of a well-defined linear recurrence for the columns of A (see
Theorem 2.1).

Proposition 2.2 The combinatorial matriz A and the distance distribution
matriz B of any code C have the same rank. More precisely, they are related
by the identity A = BS, where S is the path matriz of H(n,q).

Proof: By the very definition of the numbers A;(x) and B;(z) we have the
relation

Aj(z) = i;s,jB,-(a:). (5)

In matrix form, (5) yields A = BS. This implies rank A = rank B since, by
Proposition 2.1, the first n + 1 columns of S constitute a nonsingular matrix.
a



Definition 2.5 (sce [5], [6]) The inner distance distribution of a code C is
the rational (n + 1)-tuple (row vector) a = (ag,ay,...,a,), where a; is the
average number of code points at distance i from a given code point, i.e.,

a; = |C|7'{(z,y) € C* : d(z,y) = 1}|. (6)

The MacWilliams transform of a is the rational (n+1)-tuple @’ = aP, where
P is the Krawtchouk matriz. Set o' = (ag,ay,...,a},) with af = 1, and let
wo = 0,wy, ..., w; denote the indices ¢, with 0 < £ < n, such that aj, # 0. The
integer t is called the external distance of C, and the t+1 numbers w; are the
dual weights of C. The monic polynomial of degree t+1 having as its zaros the
numbers Py(w;) = n(q — 1) — qu; is referred to as the annihilator polynomial

for C.

If C is a linear code over a field alphabet, then the dual weights w; are
nothing but the Hamming weights of the orthogonal code Ct. The choice
of the name “external distance” for the parameter ¢t (denoted r in [5] and s’
in [6]) is motivated by the relation between ¢ and the covering radius (see
Proposition 2.3 below). The following result plays a major role in this paper.
(It is closely related to Theorem 3.2 in [6]).

Theorem 2.1 The ezternal distance of any code C equals the smallest non-
negative integer t for which the columns of the combinatorial matriz A of C
satisfy a recurrence of order t + 1, that is

t+1

2 ciAjni(z) =0, (7)

3=0
for z € F* and 0 < k < o0, where ¢, Cy,...,Ct41 are rational numbers with
ci41 = 1. Moreover, the minimum order recurrence is unique and its coeffi-
cients ¢; are integers; they are determined via the identity

t+1 ) t
Z%cjé’ = _11)(6 - n(g—1) + qu;), (8)
i= =

where wg = 0, w;, .., w; are the dual weights of C. In other words, the mini-
mum degree recurrence polynomial is the annihilator polynomial for the code

C.



Proof: Let us endow the alphabet F with the structure of an Abelian group
(of order ¢). We shall use an additive notation for the group operation.
Then the Hamming distance d(z,y) between two points z and y in F* can
be written as d(z,y) = ||z — y||, where ||A|| denotes the Hamming weight
of h, i.e., the number of nonzero components of h. We shall make some
calculations in the group algebra QF" of the Abelian group F™ over the field
Q of rational numbers. It will be convenient to write any element KX € QF™
as a “polynomial” in an indeterminate Z, that is

K=Y K(z)2°, with K(z) € Q. 9)

Z€FN

In the sequel, we identify a given subset R of F* with the element R € QF"
defined by R(z) =1 if z € R and R(z) = 0 otherwise.

Let Y denote the set of points h in F" of weight ||| = 1. For any
nonnegative integer j we compute the product CY7 in the group algebra.

We obtain
CY? = (3 Z°)(3 2" = 3 Ai(=)Z7, (10)
gecC heY zEF™
since A;(z) counts the (j + 1)-tuples (g,h1,...,h;), with ¢ € C and
hy € Y,..,h; € Y, such that z = g + hy + ... + h;. Now consider any
linear combination of the identities (10), that is

C(f: Y )= 3 (f: c;A;j(z))Z7, (11)

j=0 z€F® j=0

with ¢; € Q and ¢; = 0 except for a finite number of indices 5. Let x, denote
the complex valued irreducible group character associated with a given ele-
ment u of F*. By a g-ary extension of Theorem 7 in chapter 5 of [9] (see also
[5] and [6]) it can be shown that x,(C) is nonzero for at least one element u
of a given weight ||u|| = £ if and only if £ is one of the dual weights w; of C.

Hence, by applying the character x, to both sides of the relation (11), and
making use of x(Y) = Pi(||u||), we see that Ec;A;(z) vanishes for all z € F*
if and only if Eijl(w.')j equals zero for 1 = 0,1,...,¢. The latter condition
exactly means that £c;¢’ is divisible by the annihilator polynomial for C.
This leads to the desired conclusions. O



Corollary 2.1 The rank of the combinatorial matriz A of a code C with
external distance t is equal to t + 1.

Remark : In view of Proposition 2.1 and 2.2, Corollary 2.1 also follows from
the known fact that the rank of B is equal to t + 1 ([5}, [6]).

Definition 2.8 For a point z € F* and a code C C F*, let d(z,C) denote
the distance between x and C, that is

d(z,C) = min{d(z,y) : y € C}. (12)

The covering radius of C, denoted p, is defined as follows:

p = max{d(z,C): z € F*}. (13)

A code C is said to be completely regular [5] if the z-row (Bi(z))%, of its
distance distribution matriz depends only on d(z,C), for all z € F*. Let
v 4+ 1 denote the number of distinct rows in the combinatorial matriz A of
C (or, equivalently, in the distribution matriz B). The integer -y is called the

combinatorial number of C.

Proposition 2.3 The external distance of a code C is bounded from below
by its covering radius and from above by its combinatorial number:

p<t< Yy, (14)

The code C is completely regular if and only if both bounds are sharp, i.e.,
p=t=17.

Proof: The right hand inequality in (14) follows immediately from Defini-
tion 2.6, in view of Corollary 2.1. To prove the left hand inequality, suppose
we have p 2 t+1. Then there exists a point z € F" satisfying d(z,C) = t+1.
This means A;(z) = 0 for j = 0,1,...,t and Ai4i(z) # 0, in contradiction
with Theorem 2.1. Finally, we observe that the matrix A contains p + 1
distinct rows (A4;(z))?2, enjoying the properties d(z,C) = 0,1,..., p, respec-
tively. Therefore, the equality p = 4 is a necessary and sufficient condition
for the code C to be completely regular. O



3 Partition designs

Definition 3.1 Let r be an integer, with 0 < r < ¢" — 1. An r-partition de-
sign for the Hamming space H(n,q) is defined as a partition {Eo, E,, ..., E,}
of the set F™ into r + 1 classes, with the following regularity property. For
any point z € E,, the number of points y € E, satisfying d(z,y) = 1
is a constant my,, independent of the choice of z. This holds for each u
and v in {0,1,...,7}. (Thus a partition design is the same concept as a
coherent partition [8]). The (r + 1) X (r + 1) matriz

M = (muv)u',‘v=0 (15)

is called the associate matriz of the given r-partition design. Let C be a code
that can be written tn the form

c=JE, (16)

vER

where R is a nonerapty subset of {0,1,...,r}. Then C is said to admit the
r-partition design {Eq, Ey,...,E,}. The special case C = E, (for a certain
u) is referred to as the homogeneous case. For a given code C, the smallest
nonnegative integer r for which C' admits an r-partition design is denoted by
7 and is called the regularity number of C.

In particular, interesting examples of partition designs can be obtained
by means of the following method (which could be referred to as the “group
case”). Let G be any group of isometries of the Hamming space H(n,q). It
is easily seen that the set of orbits of G on F" is a partition design. We will
see an cxample of that type at the end of the paper.

It is clear that any code C' admits the trivial partition design, where
the classes E, are the one-element subset of F*. (In this situation, we have
r=q"—1and M = D,). Therefore, the regularity number 7 is well defined.
Note that a given r-partition design is admitted by 2"*! — 1 distinct codes

C.

Let us make some preliminary observations about the associate matrix
M and its eigenvalues. Counting in two different ways the pairs (z,y) in
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E, x E, with d(z,y) = 1 we obtain the symmetry property
|Eu|muy = | Ey|my,. (17)

As a result, M is equivalent to a symmetric real matrix under a diagonal
similarity transformation (defined by the square roots of the cardinalities
|Ey|). This implies that M is a diagonalizable matrix.

From the definition it follows that the eigenvalue spectrum of any asso-
ciate matrix M is a subset of that of the distance relation matrix D,, which
consists of the numbers P(¢) with £ =0,1,...,n. In particular, P,(0) always
is an eigenvalue of M (with the all one eigenvector), since we have

> Mu =n(g—1), (18)
v=0
for each u € {0,1,...,7}. The present result about the spectrum of associate
matrices will be tightly strenghtened by Theorem 3.3 in the sequel.

We now give one of the basic results of this paper. It shows the inti-
mate connection that exists between the partition design concept and the
combinatorial matrix concept.

Theorem 3.1 Suppose that the code C admits the r-partition design
{Eo, Ey, ..., E,}. Then the entries of the combinatorial matriz A of C satisfy
the identity A;(z) = A;(y) for all points  and y belonging to the same class
E,, and for all integers j > 0. Furthermore the numbers A;(u), defined by
Aj(u) = Aj(z) for z € E,, satisfy the recurrence relation

A,-(u) = zr:muvAJ‘_l(v). (19)

v=0

Proof: We argue by induction on j. Let R denote the subset of {0,1,...,7}
characterized by (16). For a point z € E, we have Ay(z) =1 or 0 depending
on whether u € R or not. So the first statement is true when j = 0.

Assume now that the numbers A;_;(y) = A;-1(v) depend only on the
class E, that contains y. Given a point ¢ € F,, consider the length j

11



paths joining z to a point in C (see Definition 2.1). Since any such path
To = Z,2y,..,2; (with ; € C) can be viewed as the concatenation of the
length 1 path zq,; with the length j — 1 path z,,...,z;, we can write the
- identity

Aj(z) = Y. Di(z,z1)Aj-1(z1). (20)

z1EF"

By our induction assumption, A;_i(z,) equals A;_,(v) for each z, € E,.
Furthermore, it is seen from Definition 3.1 that the numbers D (z,z,) with
2, € E, add up to m,,. Therefore, the right hand side of (20) coincides
with that of (19). This proves the regularity property A;(z) = A;(u) for all
z € E,, together with the recurrence (19). O

Consider the following equivalence relation over the set F*. Two points
z and y in F" are said to be combinatorially equivalent with respect to a
given code C C F" if the corresponding rows of the combinatorial matrix A
of C are equal, i.e., if we have Aj(z) = A;(y) for all j (Note that, in view of
Proposition 2.6, we obtain exactly the same equivalence relation if we use the
distance distribution matrix instead of the combinatorial matrix.) According
to Definition 2.6, this relation has v 4+ 1 equivalence classes, with v denoting
the combinatorial number of C.

Definition 3.2 The combinatorial partition relative to a code C is the
(v+1)-class partition of F* induced by the combinatorial equivalence relation
(with respect to C). The distance partition relative to C is the (p + 1)-class
partition Cy = C,C4, ...,C, of F* defined by

Ci={z€F":d(z,C) =1}. (21)

As shown by the proof of Proposition 2.3, the combinatorial partition is
a refinement of the distance partition, and coincides with it if and only if
the code is completely regular. In general, neither the distance partition nor
even the combinatorial partition have the regularity properties of a partition
design. However, Theorem 3.1 states that any r-partition design admitted
by a code C is a refinement of the combinatorial partition relative to C.
Thus, we can extend the inequalities of Proposition 2.3 as follows.

Proposition 3.1 For any code C, the covering radius p, the external dis-
tance t, the combinatorial number v, and the regularity number ¥ form a

12



nondecreasing sequence:

p<t<y<L T (22)
In case ¥ = «, the F-partition admitted by C is unique, it is the combinatorial
partition relative to C.

As explained below, the case of equality ¢ = 7 is of special interest in the
theory. The following result plays a significant role in our study. It states
that the central equality in (22), i.e.,, t = <, implies the property we are
interested in.

Theorem 3.2 A code C with external distance t admits a t-partition design
(i.e., satisfies ¥ = t) if and only if the distinct rows of the combinatorial
matriz A of C are linearly independent, i.ce., if and only if the equality v = t
is satisfied.

Proof: The “only if" part is immediate in view of Proposition 3.1. To prove
the converse statement we shall make use of relation (20). Let us denote by
Eo, Ey, ..., E, the classes of the combinatorial partition of F" relative to C.
For a point z € E,, define m,,(z) as the number of points z, € E, satisfying
d(z,z;) = 1. Then, the identity (20) can be written as

o

Aj(u) = Z%muu(x)Aj—l(v)’ (23)
with A;(u) = A;(z) and A;_,(v) = A;_1(z,). Our assumption is 4y = t. Since
the matrix A has rank ¢t + 1 (Corollary 2.1), the system of linear equations
(23), with 1 < j < o0, determines the “unknowns” m,,(z) in a unique man-
ner. Hence, m,,(z) is independent of z, which proves that the combinatorial
partition (with 4 = t) is a t-partition design. O

As a straightforward consequence of Theorem 3.2, combined with Propo-
sition 2.3, we obtain the following remarkable characterization of the com-
plete regularity property. (Note that the p-partition design mentioned below
belongs to the homogeneous case.)

Corollary 3.1 A code C is completely regular if and only if the distance par-
tition {Co = C,C,,...,C,} relative to C is a partition design or, equivalently,
if and only if the regularity number 7 is equal to the covering radius p.
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Let us now examine the question of determining the eigenvalues of the
associate matrix M, especially in the case = t. (See preliminary comments
in the beginning of this section.) In general, we can state the following result.

Theorem 3.3 Assume that the r-partition design { Eo, E, ..., E,} is admit-
ted by a code C with dual weights wo = 0,w,,...,w;. Then the t +1 numbers
Aoy Aty .oy Ar given by

)\,' = Pl(w,-) = n(q - 1) - quw; (24)

are cigenvalues of the associate matriz M of this partition design.

Proof: Set the vector A; = (A;(0), A;(1),..., A;(r))*, with A;(u) = A;(z)
for z € E, as in Theorem 3.1. Relation (19) can be written in matrix form
as A; = MA;_,. Hence, we have

A; = M’ Ay, for0<j < oo. (25)

Consider the minimal polynomial p(§) = ¥ p;&? of the matrix M. Since
M is diagonalizable, p(§) has as its zeros (each with multiplicity 1) the eigen-
values of M. Combining the assumption p(M) = 0 with the formula (25) we
readily deduce the relation

iij.H'k(u) =0, (26)

3=0

for 0 < u<rand 0 £ k < oo. In view of Theorem 2.1, this implies that
p(€) is divisible by the annihilator polynomial for C. Hence, the zeros P, (w;)
of the latter are among the zeros of the former, which proves the theorem. O

In the case of equality ¥ = t and, more particularly, in the case of a
completely regular code (see Corollary 3.1), the result above gives the whole
spectrum of the associate matrix. Indeed, Theorem 3.3 has the following
immediate consequence.

Corollary 3.2 If a code C with external distance t admits a t-partition de-

sign, then the eigenvalues )\; of the associate matriz M are the numbers
A = Py(w), fori =0,1,...,t, where wo,wy,...,w; are the dual weights of C.

14



To conclude this section we give a characterization of perfect codes and
of uniformly packed codes in the framework of partition design theory.

Recall that a code C with packing radius e and covering radius p is perfect
if and only if p = e, and is uniformly packed if and onlyif p=t=e+1. In
the latter case it is ‘known that the number u; counting the points in C at
distance p from a given point z € F* with d(z,C) = e + ¢, is a constant for
i = 0,1 (see [13]); the numbers o and p, are called the parameters of C.

Theorem 3.4 A code C with packing radius e and regularity number 7 is
perfect if and only if 7 = e, and is uniformly packed if and only if F = e+ 1.
In both cases (7 = e or e+1), the 7-partition design admitted by C is unique; it
is the distance partition relative to C. The associate matriz M is tridiagonal,
i.e., My, =0 for | u— v |> 2, and satisfies

Myu-1 =u forl Su<e my, =u(g—2) for0<u<e—1, (27)

together with (18). In the second case, t.e., for a uniformly packed code with
parameters po and p,y, the missing entries of M are given by

Mee = (e + 1)po + e(q - 2), Mep1e=(e+1)p. (28)

Proof: The first part of the theorem can be deduced from Corollary 3.1,
since perfect codes and uniformly packed codes are completely regular. Let
us however give a more explicit argument, and explain how to compute the
associate matrix M. Consider the distance partition {C; : 0 < 7 < p} rel-
ative to C. For ¢ € C, define the integer my,(z) as the number of points
y € C, satisfying d(z,y) = 1. If C is perfect or uniformly packed, then it can
easily be verified that the relations given above are satisfied when m,,(z) is
substituted for m,,. Therefore, all numbers m,,(z) are independent of z (for
each u), which proves that the distance partition is a p-partition design (with
p=ecore+1). Conversely, if # = e or e+ 1, then we have y =t = p = 7,
by Proposition 3.1, which implies that C is perfect or uniformly packed. O

By Corollary 3.2, the dual weights w; of a perfect or uniformly packed

code can be expressed very simply in terms of the eigenvalues ); of the tridi-
agonal associate matrix M described in Theorem 3.4. This result gives strong
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necessary conditions for the existence of such codes; they are equivalent to
those obtained from the Lloyd theorem for perfect codes [12] and its analogue
for uniformly packed codes (13].

Remark : Asit stands, the theory of uniformly packed codes {13] is restricted
to the case where the order ¢ of the alphabet is a prime power. However, the
basic concepts and results of this theory can be extended without difficulty
to arbitrary alphabet orders.

4 The linear case, with some examples

Let us now concentrate on the interesting special case where C is a
linear code over a field alphabet F, i.e., a linear subspace of the linear space
F". In the first part of this section we shall see how to interpret the combi-
natorial matrix of C, and the concept of a partition design admitted by
C (in a well-defined restrictive sense) in terms of a parity check matrix
for C. The packing radius of the code C will be assumed to be strictly
positive; this means that any two columns of the parity check matrix are
linearly independent. '

In the sequel, F* denotes a k-dimensional linear space over the field F,
and the elements of F* are represented as column vectors of length k (with
components in F). Let F* be the set of nonzero elements of F. Given a subset
0 of F*, we denote by F*Q the subset of F* that contains the vector ah with
a € F* and h € ). Recall that a parity check matrix H for a linear code C
of length n and codimension k is a k X n matrix of rank k over F such that
we have

C={z€F":Hz =0}. (29)

Proposition 4.1 Let H be a parity check matriz for a linear code C with
packing radius e 2 1, and let Q denote the set of columns of H. If h = Hz
is the syndrome associated with a given point x € F", then the entry Aj(z)
of the combinatorial matriz A of C counts the 2j-tuples (ay, ..., a5, hyy.y bj),
with a; € F* and h; € Q for 1 < i < j, satisfying h = ayhy + ... + ajh;.
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Proof: Consider alength j path zq = z,24,...,2j-1, 2}, with z; € C, joining
z to the code C. Since d(x;_y,2;) = 1 we have H(z;_; — 2;) = a;h; for a
unique pair (o, k;) in F* x Q. By use of the identity = — x; = ¥/_ (z;-; —
z;), together with Hz; = 0, we obtain the relation h = "7_, ajhi. As the
argument can also be applied backwards, this proves the proposition. O

Proposition 4.2 Let C be the linear code defined from a given k x n parity
check matriz H (of rank k) that has pairwise linearly independent columns.
Suppose that C admits an r-partition design {Eo, E,...,E,}, with Ey = C
(homogeneous case), such that each class E, is a union of some cosets of C
inF*. Foru=0,1,...,7, define the subset A, of the space F* as follows:

A,={Hz:z€ E,}. (30)

Then the set {Ag, Ay, ..., A,} is a partition of F¥, with Ay = {0}. The entries
My, of the associate matriz M can be expressed in terms of this partition in
the following manner. For any choice of an element a € A,,, the number m,,
counts the pairs (b,h) € A, x F*Q satisfying a = b+ h, where Q is the set of
columns of H.

Conversely, let {Ag, Ay, ..., A} be a partition of F¥, with Aq = {0}, and
let 1 be an n-subset of F¥ whose elements are pairwise linearly independent
end span the whole space F*. Assume that the number of pairs (b,a — b) in
Ay X F*Q) depends only on the class A, that contains a. Let H be a k x n
matriz having the elements of ) as its columns. Foru =0,1,...,r, define the
subset E, of the space F* as follows:

E,={zeF :Hze A,}. (31)

Then the set {Eq, Ey,...,E,} is an r-partition design admitted by the linear
code C = Eq with parity check matriz H. Moreover, each class E, is a union
of cosets of C.

Proof: The first statement, saying that the sets A, in (30) form a parti-
tion of F¥, is proved by straightforward verification. To prove the second
statement we argue as follows. By definition, m,, counts the points y € E,
satisfying d(z,y) = 1, for a given = € E,. Setting the syndrome vectors
a = Hz and b= Hy, we see that the condition d(z,y) = 1 can be expressed
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exactly by a — b € F*Q2.. This leads to the desired conclusion. The converse
result can be proved in a slmlla.r manner. O

It is interesting to notice that the set F*() is a union of some classes A,
with 1 € u < r. This expresses the fact that the set Cy in (21) is a union
of some classes E,, since any partition design admitted by C is a refinement
of the distance partition relative to C' (see Theorem 3.1 and Proposition 2.3).

The characterization of linear type partition designs stated in Proposi-
tion 4.2 is somewhat more general than the definition given in [2]. Note also
that a 2-partition design of that type gives rise to a partial difference set
with 2 parameters [1]. So we may consider the sets { underlying r-partition
designs (as explained in Proposition:4.2) as some kind of “generalized differ-
ence sets”. '

In the second part of this section we give a characterization of linear
subschemes of a Hamming scheme in terms of partition designs. Let C be
any linear code of length n over the finite field F. For a given point z € F",
consider the z-row B(z) = (Bi(z))l, of the distance matrix B of C. It
is clear that B(z) depends only on the coset of C' that contains z. More
precisely, B(z) is the weight distribution of the coset z + C. We shall denote
by 5@, (), ..., b0 the distinct rows B(z). It particular, ¥© js the weight
distribution of C itself. (By definition, the parameter v is the combinatorial
number of C.) Let us define the symmetric relations Ry, Ry,..., R, over the
coset space F*/C as follows: '

R,={(z+C,y+C): B(z~y) =™}, (32)

Note that Rg is the identity relation, and that the relations R, form a par-
tition of the Cartesian square of the coset space. We first recall a result of
[5], in a form that is appropriate to our purpose.

Theorem 4.1 [5]. The distinct rows of the distance distribution matriz ofC
are linearly independent (or; equivalently, the combinatorial number v of C is
equal to its external distance t) if and only if the restriction of the Hamming
scheme to the orthogonal code C* is an association scheme. In this case, the
t + 1 relations Ro, Ry, ..., Ry endow the coset space F*/C with the structure
of an association scheme, which is the dual of the scheme carried by C*.
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Recall that the external distance t of a linear code C is the number of
nonzero weights of the orthogonal code C+. From Theorems 3.2 and 4.1 we
immediately deduce the caracterization alluded to above; the result is the
following.

Theorem 4.2 A linear code C with external distance t admits a t-partition
design if and only if the restriction of the Hamming scheme to Ct is an
association scheme.

The association scheme {R, : 0 < u < t} carried by the space F*/C
(under the assumption 7 = t) is called the coset scheme of C. As shown
by Montpetit [11], the character matrix of this scheme (having as its (z, ;)
entry the ith eigenvalue of the jth relation matrix, for 0 < ¢,5 < t) can
be determined from the associate matrix M of the unique t-partition design
admitted by C. For ¢ = 0,1,..,,t, let 2, = (1,2;,...,2z;) be the normalized
left eigenvector of M corresponding to the eigenvalues A; = P,(w;). Thus,
we have '

zM = Py(w;)z. (33)

Theorem 4.3 [11]. Let C be a linear code satisfying ¥ =t. The rows of the
character matriz of the coset scheme of C' are the normalized left eigenvectors

20, 21,..., 2t of the associate matriz M of the t-partition design admitted by
C.

Remark : The last results, Theorems 4.1-4.3, can be extended to the case
where C is an additive code, i.e., a subgroup of the direct product of n
Abelian groups of order ¢ (for any value of g).

Let us conclude with two examples. Recall the basic inequalities
p £t < v £ 7 (see Proposition 3.1), together with the striking fact that
t = 4 implies 4 = 7 (by Theorem 3.2). Our first example, with p =t = 6
and v = 7 = 7, shows that the converse statement is not true in general,
even when p = t. This examples stands in contrast with the Goethals-van
Tilborg theorem (7], as stated in [1], which tells us that p = t = 2 implies
r=2
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To prove the existence of a unique r-partition design with r = 4 ad-
mitted by the considered code we call upon the argument used for proving
Theorem 3.2, There will here be a unique solution to (23) although v+ 1 is
larger than the rank t + 1 of the linear system because the variables m,,(x)
are constrained to be nonnegative integers and because some of them must
vanish.

Let C be the first order Reed-Muller code of length n = 16 (with ¢ = 2).
As shown in p. 418 of [9], the distance distribution matrix B of C has eight
distinct rows (so, ¥ = 7), and its covering radius p equals 6. Furthermore,
as the orthogonal code C* (the extended Hamming code) has six nonzero
weights (4, 6, 8, 10, 12, 16), the external distance of C is also equal to 6. It
can be proved that the combinatorial partition of F!® relative to the code C is
a partition design. In view of Theorem 3.1, this means that the combinatorial
number 7 of C is given by ¥ = 4 = 7. Thus, C admits a unique 7-partition
design { Eg, E, ..., E7}, where a class E, contains all points z € F'® for which
the coset z 4+ C has a given weight distribution (), for u = 0,1,...,7. (This
example is a linear type partition design, as described in Proposition 4.2).
The associate matrix M is

(016 0 0 0 0 0 O]
1 0150 00 0 0
0 2 0 14 0 0 0 0
00 3 0121 0 0
M=190 08 00 8 0 (34)
00 0 16 0 0 0 0
00 0 0 150 0 1
[0 0 0-0 0 0 16 O |

The result # = 7, together with the explicit matrix (34), can be obtained
by the following argument. First, we compute the combinatorial matrix A
from the distance distribution matrix B given in [9], by use of Proposition
2.2. For a point « € E,, define the integer m,,(x) as the number of points
y € E, satisfying d(z,y) = L (for u,v = 0,1,...,7). We have to show that
my,(z) is independent of x, and is equal to the (u,v) entry in (34). From the
basic properties of C it can be seen that m,,(z) vanishes (for all z € E,)) for
each coordinate position (u,v), with u < v, in which the corresponding entry
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of (34) is zero. By symmetry, the same conclusion holds for the positions
(u,v) such that u > v.

Now consider the system of linear equations (19), for all ; > 1, in the
unknowns m,, (with 0 < u,v < r = 7). It can be verified that this
system admits a unique solution, given in (34), under the following two
constraints: m,, is a nonnegative integer, and m,, = 0 implies
my = 0. By definition, the numbers m,,(z) satisfy the system (19), and
they obey the constraints for the reason explained above. Therefore, we have
Muy(Z) = my, for all ¢ € E,. (Alternatively, the fact that the combinatorial
partition relative to C is a partition design can be proved by standard group
theoretic arguments, taking into account the result in chapter 14, section 3

of [9].)

In our second example we use a construction method introduced in [2]
and based on Proposition 4.2. For a positive integer k, consider a subgroup
G of the general linear group GL,(F), together with a subset Q of F* that
is preserved by G. Assume that any two distinct vectors in  are linearly
independent, and that 2 is a spanning set for F¥. Let A, = {0}, 4, ..., A,
denote the orbits of G on the space F¥, and let H be a k x n matrix, with
n = |Q], having the elements of Q as its columns (in any order). Define C as
the linear code, of length n and codimension k, having H as a parity check
matrix. It readily follows from Proposition 4.2 that C' admits the linear type
r-partition design {Ey, Ey, ..., E,}, where E, contains the points € F* sat-
isfying Hz € A,

Let us now assume that F is the field with two elements (¢ = 2). Define
G as the subgroup of GL,(F) containing all permutation matrices (of order
k), and define  as the set of vectors h € F* satisfying ||h| = p, where p
is a given integer, with 1 < p < k~1and p =1 (mod 2). It is obvious
that the orbits of G are the weight classes Ag, Ay, ..., Ak, where A, contains
the vectors h in F* satisfying ||k|] = u. Let us give the values of the entries
of the associate matrix M (see Proposition 4.2). For u,v = 0,1, ..., k, set
¢ =(u—v+p)/2. Then we have

ma=(3)(,E000), (39)
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if £ is an integer (andvp' > |u-— v|), and My = 0 otherwise.

As a specific example we consider the case k = 11 and p = 3, which
yields n = 165. It can be verified that the covering radius and the external
distance of the code C under discussion are p = 5 and t = 9. Furthermore, it
turns out that the cosets of C have exactly 12 distinct weight distributions.
(In other words, two cosets that are not equivalent under the group G have
unequal weight distributions.) Thus, the regularity number 7 coincides with
the combinatorial number 4; we have f = v =k = 11.

Note

The present paper is a revised version of INRIA report § 626, february
1987, with the same title, which was submitted to Discrete Mathematics in
1986. Ce ' ' '

The fact that the publication of this paper has been delayed is due to the
extremely long refeering procedure of Discrete Mathematics.

A first application of the results in INRIA report § 626 was published
by B. COURTEAU and A. MONTPETIT in Discrete Mathematics : “Dual
distance of completely regular codes”, received november 1986, appeared DM

88 (1991).

Some of the results were further generalized by André MONTPETIT
to distance regular graphs in “Codes dans les graphes réguliers” Rapport
N° 43, Université de Sherbrooke, Canada 1988 and “Codes et partitions
cohérentes dans les graphes réguliers” Annales des sciences mathématiques
du Québec, Vol. -14, N° 2,.1990 (received september 1988). See also “Co-
herent Partitions and Codes” Eurocode 1990, to appear in Springer Ver-
lag Lecture Notes in Computer Science. The particular case of Distance-
Regular Graphs is dealt with in A.E. BROUWER, A.M. COHEN and A.
NEUMAIER, “Distance-regular graphs”, Ergebnisse der Mathematik 3.18,
Springer, Heidelberg (1989). - : :
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