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Abstract

Methodological design of distributed programs is of major concern to master paral-
lelism. Due to their role in distributed systemns, the class of observation or detection
programs, wlose aim is to observe or detect properties of an observed program, is very
important. The detection of a property generally rests upon consistent evaluations
of a predicate; such a predicate can be global, i.e. involve states of several processes
and chaunels of the observed program. Unfortunately, in a distributed system, the
consistency of an evaluation cannot be trivially obtained. This is a cc.atral problem in
distributed evaluations. This paper addresses the problem of distributed evaluation,
used as a basic tool for solution of general distributed detection problems. A new
evaluation paradigm is put forward, and a g-neral distributed detection program is
designed, introducing the iterative scheme of guarded waves sequence. The case of dis-
tributed termination detection is then taken to illustrate the proposed methodological
design.
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Résumé

La conception méthodique de programmes répartis est d’une grande importance dans
la maitrise du parallélisme. A cause de leur role dans les systémes répartis, la classe
des programmes d’observation ou de détection, dont le réle est d’observer ou de
détecter des propriétés d’autres programmes répartis, est fondamentale. La détec-
tion d’une propriété repose généralement sur I’évaluation cohérente d’un prédicat;
ce dernier peut étre global, c’est-a-dire dépendre de ’état de plusieurs des proces-
sus et canaux du programme observé. Malheureusement, dans un environnement
réparti, la cohérence d’une évaluation ne s’obtient pas de maniére triviale. Ce prob-
léme est au centre de ’évaluation répartie. Dans ce rapport, on examine le probléeme -
de Pévaluation répartie, utilisée comme outil de base pour résoudre le probleme de la
détection répartie. Un nouvean paradigme d’évaluation est mis en évidence, puis un
programme général de détection est congu, sur la base d’un nouveau schéma itératif,
la séquence de vagues guardées. Le cas de la terminaison sert ensuite i illustrer la
méthode générale de conception.

1 Introduction

Studying a program can be made by analyzing the set of its possible runs. These runs
can be characterized by properties, defined over their states. In an asynchronous dis-
tributed context, programs are composed of processes and channels, and it may be very
difficult to detect such properties since it is impossible to observe at the same time all
the components of a program. It is well-known that this impossibility is the core of the
difficulties encountered in the control of distributed programs. Specific solutions have
been formulated for particuliar properties, specially in the case of stable ones, e.g. ter-
mination or deadlock detection [4, 5, 6, 8, 12, 13, 17)], or for properties whose detection
lie over the record of a global snapshot [2, 7).

In this paper, we are primarly interested in the problem of evaluating a predicate,
defined over the states of a distributed program, whether this predicate is stable or not.
Informally, we have a distributed predicate (or even a distributed function of a more
general type) whose values depend on variables belonging to different processes sharing
no common memory. Each component of the predicate, depending on a single process,
can be evaluated by that process in a single state; however, each process having its own
control flow, all these partial evaluations cannot be performed in the same state: that’s
why a global evaluation is necessarily non-simultaneous. Moreover, values obtained on
each process have to be collected, in order to get complete evaluation. Since this collect
is not instantaneous, the final result of the evaluation is delayed. These informal notions
are formalized with the important paradigm of Non Simultaneous Delayed Evaluation
(NSDE). This concept catches the notion of distributed snapshot of local evaluations. Such
a NSDE is worked out by a control program: the notion of superimposition, previously
made clear by several authors [1, 3}, is a useful tool to modelize this task.

The second goal of this paper is to contribute to the development of methods for
distributed detection of properties, expressed by a predicates over the states of a dis-
tributed program. An iterative scheme, based upon a sequence of NSDEs, is well suited
to this development. We generalize to the distributed context the usual iteration deriva-
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tion techniques known in a sequential context, namely the expression of a result as the
conjunction of an invariant and a stop condition. Invariant condition is expressed as a
conjunction of local predicates (guards), and can be insured by subjecting the progression
of each NSDE to the satisfaction of these guards. On the other hand, the stop condition
is evaluated by each NSDE: the value returned determines whether another round has to
be performed, or whether the expected result has been obtained. This leads to the second
original concept put forward in this paper, namely the guarded waves sequence. Together
with this construction, safety and liveness properties are addressed very carefully.

The rest of the paper is organized as follows: in §2, we present the computational
model, based upon interleaving semantics, and making use of what we call behaviour
rules for events. Evaluation problems are addressed in §3, details of construction for the
detection method are in §4. In the conclusion, we outline some possible applications to
similar detection problems, involving monofonic functions.

2 The computationnal model

A distributed program is made of a network of n processes Py, P,,..., P,, sharing no
common memory. They communicate only by exchanging messages through communi-
cation channels. Let X = {1,...,n} be the set of process identifiers, and I' C X x X the
set of channels. Each channel is an ordered pair ¢;; = (7, j) carrying messages from P; to
P;. The directed graph G = (X,T'), modelizing the network, is supposed to be strongly
connected: there is a directed path from any i to any j (i € X,j € X). Each process is
a sequential program, with its own context. Messages carry values, since they are used
to exchange information between processes. Thus a message is made of two parts: a
header, containing such informations as message identification, sender and/or receiver
identities, etc. and a value (of a certain type). The two parts of a message m will be
denoted respectively by m.id and m.v. For the ease of exposition, we will suppose that
each message is uniquely identified.

To a distributed program is associated a set of events, which correspond to the execu-
tions of atomic operations performed by the processes. There are three types of events:
sends, receipts and inlernal events. Each send or receive event is parameterized by a
single message. We will denote by

E;;j(m) the event “P; sends message m on channel ¢;;”,

R;j(m) the event “P; receives message m on channel ¢;;”,

INT; an internal event of P;.

To each message m sent over a channel ¢;; are associated the two predicates sent(i, j, m)
and rec(i, j, m) expressing respectively the facts that m has been sent by P; on ¢;; (resp.
received by P; on ¢;;). When a process P; performs a send event Ejj(m), it assigns a
value to m.v. On the other hand, when a process P; performs a receive event Ry;(m),
the value m.v is assigned to a local variable of P;.

To represent a run of a distributed program, we use the well-known event-state in-
terleaving model. The run proceeds in a sequence of steps. Each step is a triple (s,e,s’)
where s ans s’ belong to a set of states and e is an event: when the program is in state
s and the event e occurs, the next state is s’. Recall that the state of the program is
the set of values of all variables (including those representing channels). A step (s,e,s’)



is called a transition from state s to state s'. Moreover, to each event e is associated an
enabling condition en(e), which is a state assertion. The notation {p} e {¢q}, where p and
q are state assertions, means, on the one hand, that en(e) = p and, on the other hand,
that for the step (s, ¢€,s’), if p holds in state s, then ¢ holds in state s’. Such a notation
will be called a behaviour rule.

For instance, Ym, V(i,j) € I':

{—sent(i, j,m)} Eij(m) {sent(i, j, m)}
{-rec(i, j, m)} Rij(m) {rec(s, m)}

When assertion en(e) is true in a state s and remains true as long as e doesn’t oceur, we
say that e is forever enabled from the state s.

A run of a distributed program is thus a sequence of steps sg € 81 ...5k €x Sk41 ...
such that, for all k£ > 0, s; is a state, e is enabled in state s; and s;4) is the state
resulting when e; occurs in state s¢. It will be assumed that distinct events are never
simultaneous, so that each run corresponds to a totally ordered list of states. We will
use the following notations: in a given run,

e s < &' iff state s is before state s’ in the run (s is earlier than s')

e given a finite set of states S = {s(}), ..., s(P)} belonging to a run, max(s(!), ..., s())
(resp. min) is the latest (resp. earliest) state from this set:

max(s(l), .. .,s(”)) €Sand1<j<p=>s¥< max(s(’),. ..,s(”))

To each event e can be associated an occurrence predicale p(e) defined in the following
way: if e occurs in a step (s,e,s’), then p(e) holds in a state o if, and only if, s’ < 0.
Finally, following Lamport, we will say that event e leads 1o event ¢’ if any occurrence
of e is necessarily followed by an occurrence of ¢’ after a finite number of steps (denoted
by e = ¢').

This model allows us to give a precise meaning to the notions of progress, non-
determinism and fairness, and to the hypotheses of asynchronous and reliable communi-
cations. For a given run, the following properties can be defined:

progress : when at least one event is enabled in state s, one of these events occurs in
state s,

non-determinism : when several events are enabled in state s, any one of them may
occur 1n state s,

fairness : when an event is forever enabled from a state s, it will eventually occur (after
a finite number of steps).

Also, we will say that communication is asynchronous if, for any channel ¢;; and any
message m on ¢i;, the number of steps between the two events Ejj(m) and Ryj(m) is
unpredictable. Thus, in any run of an asynchronous program, we have:

Vm, V(i,j) € T : en(R;j(m)) = sent(i, j, m) A ~rec(i, j, m)

We say that a channel is reliable iff, for any message m on channel ¢;:
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1. sent(i, j, m) is the occurrence predicate of E;j(m) and rec(m, i, j) is the occurrence
predicate of R;j(m). This implies:

(a) channel ¢;; cannot spontaneously create messages (sent(i, j, m) cannot hold
unless event E;j(m) occurred),

(b) channel ¢;; cannot duplicate messages (rec(t, j, m) remains true forever after
R;;(m) occurred),

(c) channel ¢;; cannot loose messages (sent(i,j, m) remains true forever after
E,j(m) occurred and rec(i, j, m) cannot hold unless event R;;(m) occurred)).

2. Rij(m) is forever enabled after a finite number of state transitions after the occur-
rence of E;j(m).

From this it follows that, if channels are reliable and run is fair, every send event E;;(m)
leads to the corresponding receipt R;;(m), and no receipt R;;(m) can occur unless a cor-
responding E;j(m) occurred before (recall that we assume messages are uniquely identi-
fied).

From now on, we will restrict ourselves to this model of computation, with asyn-
chronous and reliable communications. We will consider only distributed programs whose
runs verify progress, non-determinism and fairness assumptions. All subsequent notions
will be relative to an arbitrary run of a distributed program, unless otherwise stated by
the use of quantifiers over the set of possible runs, such as for any run ... or there ezists
a run such that...

3 Evaluating predicates

3.1 Some concepts about distributed evaluation

Consider a function F defined over the set of states of a distributed program. The value
of F in state s will be denoted by F([s].The evaluation of F by a process P in a state s
is an operation which allows this process to compute F[s].

The evaluation of F by a process P is atomic (or instantaneous) if no state transition
occurs during this evaluation. In an asynchronous distributed model, atomic evaluation
of F by P is possible if, and only if, F depends only of P’s local context since, in such a
computation model, no process can have an immediate access to other processes context:
this is inherent to the model.

For example, any predicate sent(i, j,m) can be atomically evaluated by P; but not
by P;. Similarly, rec(i, j, m) can be atomically evaluated by P; but not by P;.

‘Several functions Fy, ..., Fi can be simultaneously evaluated by a process P if there
exists a state s such that P can atomically evaluate Fy[s], ..., Fi[s]. Like in the case of
atomic evaluation, simultaneous evaluation is possible in asynchronous distributed model
if, and only if, functions to be evaluated depend only of variables all belonging to the
$ame process.

Let # = f(Fy, Fa, ..., F,) be a function such that F; is a function atomically evaluable
by P,'.



Definition 3.1. A non-simultapeous evaluation of F is an evaluation
F(F1[sM), ..., Fa[s)]), where s() denotes the state in which P; evaluates F;.

Definition 3.2. A non-simultaneous delayed evaluation (NSDE) of F by process P is
a non simultaneous evaluation whose result is recorded in P’s local context in a state
s > max(s(), ..., s(™). Such an evaluation will be denoted by

FlsM ... s | s)

This concept captures the essence of “global” function evaluation in asynchronous
distributed systems. The following definitions give a more precise meaning to the quality
of such evaluations in the case of boolean functions (predicates).

Definition 3.3 A NSDE of F is said to be safe with regard to a predicate 7 whenever
FlsM, ..., s | s] = T[s)

Definition 3.4 A predicate F is said to be live with regard to predicate 7 whenever,
in any run,

T[s) = 3V, ..., s, ') with

(s < min(s®W, ..., s™) < max(sM, ... s™) < s') AF[sM L 8™ s

Note Definition 3.3 is weaker than the assertion F = 7 since the latter means that
implication holds in all states of the program, while our definition is related to a particu-
liar NSDE. Similarly, if we consider, as in [3], the relation (over predicates) T ensures F,
which means that, if T[s] holds, then F will eventually hold in a state o > s, liveness
definition 3.4 is weaker, since it doesn’t assert the existence of a state o in which an
atomic evaluation F[o] would give the result true, but only the existence of a NSDE
whose result is true. The safety and liveness notions stated here are thus closely related
to the concept of NSDE. In that sense, they are different, for instance, from the detects
relation in UNITY (3].

3.2 Control program for evaluation: the superimposition model

Consider a distributed program, called underlying program, and a predicate F defined
over the states of this program. Performing a NSDE of F is a task which may involve
some messages, variables, and thus events, not belonging to the underlying program.
This task is thus worked out by a program different from the underlying program, which
is called a control program (relative to the underlying program). This notion is well-
known; a formal framework well-suited to its expression is the superimposition model
(1, 3], which can be described as follows:

o To each proces P; of the underlying program is associated a process C; (controller)
of the control program,



e A non-empty subset of the local context of each P; can be atomically “observed”
by the corresponding controller C;: this means that all functions defined over this
subset can be atomically evaluated by C;,

e To each event of the underlying program corresponds an event of the control pro-
gram. In particular, the control program simulates emission and receipt of the
underlying program messages: to each send and receive event of the underlying
program corresponds a send and receive event of the control program, with the
same message parameter.

e In addition to underlying events, the control program has specific events (control
events). For instance, sends or receipts of messages not belonging to the underlying
program, called conirol messages, are such control events.

Thus, any run of the superimposed control program is partially dependant of a run of
the underlying program. The local context of each controller C; comprises:

1. Py;’s variables atomically observable by C;: their value depend only of the run of
the underlying program ( P; can read and write it, but C; can only read them)

2. perhaps some other variables (control variables), specific to the control program
(they can be read and written by C;, and are hidden to F;).

Processes C; can communicate through a set of channels including T' (the underlying
program set of channels) and possibly extra channels (which can be used only by control
messages). Finally, to each state of the underlying program corresponds a state of the
control program: a run of the underlying program is a subsequence of the correspond-
ing run of the control program. Designing a superimposed control program consists in
specifying control events and their associated behaviour rules.

In what follows, UM will denote the set of underlying messages.

3.3 Designing a control program for NSDE

Recall that a NSDE of predicate F = f(F},..., Fy) by a process C is obtained when a
set of values Fi[s(V)],..., F,[s(™)] has been recorded (in a state s) in the context of C.
Two events, start and return correspond to the beginning and the end of the NSDE
program. To which process belongs start is not specified at this level of abstraction,
whereas return belongs to the process recording the result of NSDE. For each i € X let
collected(?) be a predicate, expressing the fact that process C; has participated in the
NSDE of F, in other words, has evaluated F;. The NSDE is specified by the following
behaviour rules:

{en(start)} start  {A;cx (—collected(?))}
{Aicx (collected(i))} return {a= F[s(V), . s |s]})

where a denotes the value returned by NSDE.

In order to progress from the post-condition of start to the precondition of return,
each process C; must perform an atomic evaluation of F; in a state s(). This evaluation
corresponds to an event, namely visit;. This event must occur once and only once during
the step, so we obtain the following behaviour rules:



{en(start)} start  {A;ex (—collected(i))}
Vie X {-collected(?)} visit;  {collected(i)}

{Aiex (collected(i))} return {a=F[s®),...,s() | 3]}

Finally, we will say that NSDE program is live whenever, in any run, start = return.

This set of behaviour rules is an abstract specification of the now classical tool known
as a wave [9, 15, 16]. In the next section, we use and generalize this tool in order to
obtain a detection control program.

4 Detection problems

Let 7 be a predicate defined over the states of a distributed program. We want to solve

the following problem: detect a state s of the distributed program such that T[s] = true.
We don’t assume that 7 is stable (recall that a predicate P is said to be stable if, and

only if: (P[s]A s’ > 5) = P[s']).

4.1 Derivation of a detection control program

Let F be a predicate such that it is possible to perform a sequence (k¥ = 0,1...) of
NSDEs

Fls, .. 5| 5] with :
VE >0 : max(s),...,s™) < sp < min(s{y,, ..., s0) (SC)

The predicate F will solve the detection problem stated above if it meets the two re-
quirements:

1. detection must be safe, that is to say:

Vk > 0, the k' NSDE is safe with respect to 7. This insures that, whenever exists
k such that }'[s(l) ...,sﬁ") | si) is true, we can conclude 7 [si] is also true.

2. The detection must be live, that is to say:
Tls)]=>3k : s > s/\f[s(l) ...,si") | s&)

This insures that, whenever exists s such that 7[s] is true, then it exists k such
that the k** NSDE will return true.

Now, suppose we can separate F into two parts I, A verifying
VE>0 : I= A L))
i€EX

where I; is a predicate atomically evaluable by C; (i € X), and A = f(A,,..., A,) (each
A; atomically evaluable by C;), such that

TAAY, . s | si) = Fs, . s | s4)



I is a loop invariant and A is the associated stop condition. The sequence of NSDEs
must be designed in order that, for all k > 0, states sg,'),i € X and s; verify:

(1) A[sgl), .. .,si") | s¢] is evaluated (let a; denote this value),

(2) Aiex Is[sg)] is true,

These two conditions are relative to each iteration step. We omit subscript k, since we
refer to a single iteration step. Condition (1) is realized with a wave as seen in §3.3. But
we must also insure the loop invariant (2). To this end, each state s{') must be such that
L;[s)] be true. In fact, it may happen that, according to the underlying program and
to the implementation of the wave, some i exist for which I; is false in the state where
visit; occurs. To overcome this, each event visit; is no longer considered as atomic: it
is split into two distinct events, namely beg_visit;,end_visit;. The former corresponds
to the occurrence of Cj’s visit, according to the wave, the latter is enabled as soon as
I; becomes true: I; is the guard of the event end_visit;. For each {1 € X, the predicate
wh(?) expresses the fact that event beg_visit; occurred, but event end_visit; didn’t yet
occur (for the current step). Denoting by ss, sb(®), se(*), sr the states in which events
start, beg_visit;, end_visil;, return respectively occur (indexed by the number k of the
current wave if necessary), we obtain the behaviour rules: (predicates wh(i),i € X are
assumed to be initially false)

{en(start)} start {Aiex (—collected(i) A ~wh(i))}
{~wh(i) A =collected(1)} beg_visit; {wh(i) A ~collected(i)}

{wh(i) A ~collected(i) A I;} end_visit; {~wh(i) A collected(i)}

{Aiex (Ti[se®] A collected(i)) } return  {a = A[se()), ... se(™) | sr]})

Hence, the loop invariant (or wave guard) I = A;¢ x Ji[se(")] holds.

Now, the sequentiality condition (SC) has to be satisfied. For that purpose, we define
en(start) and strenghten the postcondition of return; a predicate new_step expresses the
fact that a new step can start (en(start) = new_step and new_step is assumed initially
true):

{new_step} start {-newstep A A\ x (—collected(i) A ~wh(i))}
{~wh(i) A =collected(i)} beg_visit; {wh(i) A —collected()}
{wh(i) A ~collected(i) A I;} end_visit; {~wh(i) A collected(i)}
{Aiex (Ii[se®] A collected(i)) } return  {a = A[se(V), ..., se(™) | sr] A new_step = =a}

This set of behaviour rules corresponds to what can be called a sequence of guarded
waves. It generalizes the well-known “sequence of waves” scheme, in the sense that, for
each wave, each event end_visit; is preconditionned (guarded) by an assertion I;.

4.2 Safety and liveness

Let’s address the question of how to meet safety and liveness requirements.



Safety. To meet this requirement, it is sufficient to find guards I; and stop condition
A such that, in any run,

A (1,~[se<">]) AAfse®), ... se™ | sr] = T[sr)
€X

Liveness. This point is not so obvious. First, it is necessary that waves themselves are
live, that is to say, in any run:

(n) Vie X : start = beg_visit;
(12) (Vi€ X : end.visit;) = return

These requirements depend only on the implementation of waves, which is a part of the
control program design, and not of the underlying program.

If waves are live, we can assert that, in any state of the control program, either there
is a “current wave” or the stop condition has been met in a preceeding state. More
precisely, in any state s of the control program, there is an integer £ > 1 such that, one
and only one of the three situations holds:

either ss; < s < srg (wave k is currently run in state s),

or srg_1 < s < ssp A new_step[sri—,] (wave k — 1 has returned and wave k is enabled
but not yet started. Event start, will eventually occur),

or srg_1 <8 /\A[seﬁljl, cees seﬁ':_)l | sre-1] (Wave k — 1 has returned and stop condition
holds. This wave was the last one).

In the first two cases, wave k is the current one, and s < sr; holds.

However, waves liveness properties (/1) and (I2) are not sufficient to insure that a wave
will eventually return. The following property (13) : “in any run of the control program,
Vi € X : beg.visit; = end.visit;” must also be verified. But (/3) depends on the
guards I; which, in turn, depend on events belonging to the underlying program. Thus,
the event end_visit; might be not forever enabled: even in a fair run, it might happen
that beg_visit; doesn’t lead to end-visit;, and consequently that the current wave never
returns. So, in the context of detection, ensuring liveness requires that, if 7[s] is true,
then 3k such that:

1. wave k eventually returns, and
2. Alsel™, ..., 5™ | smi] A i x ilsel], with s < min (seil), . .,se&"),srk).

The following lemma gives a sufficient condition, depending on the underlying pro-
gram behaviour, to obtain a live detection.

Lemma 4.1 If waves are live, and if guards I; and stop condition A verify, in any run
of the control program:

i) Tls)= (Vie X 30) : (0 > o) = Lo]))

10



ii) 7[s] = (s < min(s(1),...,s(™) < max(sM),...,s() <5 A[sM), ..., 5" |3])

then the detection is live.

Unformally, assumption i) means that, if 7 holds in a state s, all the guards I;
eventually hold and are stable. This assumption is used to prove that the current wave
eventually returns. Assumption ii) means that every NSDE of the stop predicate A,
performed after s, will return the value true. This assumption is used to prove that there
will be a “last” wave.

Proof Consider an arbitrary run of the control program, for which 7 [s] holds.
Suppose the stop predicate holds in state s. In that case, the result is obvious: if &
is the number of last wave, then

st <8 /\A[seil), . ..,sei") | sre] A /\ I;[seg)]
ieX
Otherwise, let k£ be the number of the current wave in state s. From assumption i),
Vi € X, guard I; continuously holds from state ¢;, whence event end_visit; is forever

enabled from state ¢;. Thus, wave k will eventually return. Two situations are to
consider:

a)s < min(seﬁl), . sei")). In that case, from assumption ii), assertion .A[seg), . se(k") |
sri] holds, and stop condition is met by wave k, which will be the last one.
b) s > min(seg), .. .,seﬁ")). In that case, it may be possible that —-A[ses‘l), . ..,seﬁ") |

sT¢]. But this means that new_step[sri] holds, and thus wave k 4 1 will eventually start.
From assumption i), guards I; still hold, and thus wave k£ + 1 will eventually return.

From assumption ii), since s < sry < ssg4y < min(seﬁ?l, .. .,se(k'l)l) < $rg41, assertion
A[seglﬁl, cen sei';)l | sre4+1] holds. Stop condition is met by wave k + 1, which is the last

one. O

4.3 Example of implementation on a virtual ring

Processes C; are connected according to a virtual ring topology. A wave is materialized by
a control message, called a token, which makes a complete turn around the ring (a token
turn implements an iteration step). One of the processes, say C,, controls the beginning
and the end of each turn. Each process C; can perform two kinds of events: send the
token (to the successor on the ring): E;(token), receive the token (from the predecessor on
the ring): R;(token). Predicate new._step is a variable new_step, belonging to C,, and
for every i € X, predicate wh(i) is implemented by a boolean variable wh;. The token
carries a boolean value, whose value is the conjunction of values A4;[se*)] evaluated by
processes C; previously visited in the current token turn. Thus, collected(i) corresponds
to the fact that value A;[se(‘)] has been taken into account in token.v. The variable a;
is used by C; to record the value of the token when it is received. Finally,

event start corresponds to  E,(token)
Vi event beg_visit; -id. R;(token)
Vi# a event end visit; -id. E;(token)
event refurn -id. end_visit, (internal event)

11



Thus, behaviour of C, and of other C;’s slightly differs in the following way: all the
controllers, after receiving the token (event beg_visit;), keep it until their local guard I;
holds, whereafter the Ci’s (i # a) send it to their successor (event end_visit;, i # a)
whereas C, evaluates new_step, according to the value of stop predicate NSDE a, =
AlseM) ..., 5e(®) | sr] (event end_visit, = return then either starts a new step (event
start) or terminates.

Behaviour rules of these events are given below:

{new_stepy } start = E,(token) {-new_step, A ~wh, Atoken.v = Ay}
Vi {~wh;} " beg_visit; = R;(token) {wh; A a; = token.v}
Vi# a {wh; AL} end_visit; = E;(token) {~wh; A (token.v = a; A A;)}

{Ia A why} return = end.visit, {J Aay, = a Anew_step, = —as}

It is easy to see that, if channels are reliable and run is fair, this implementation gives
raise to live waves.

4.4 Summary

Up to now, we have derived a control program allowing to compute a sequence of NSDEs,
based upon the sequence of guarded waves iterative scheme. This means that progression
in the execution of each wave is submitted to a conjunction of conditions (guards): a wave
has to “wait” on each C; until a guard I; becomes true; moreover, the stop condition
results from a NSDE of local predicates conjunction, each predicate being atomically
evaluated by each C; in a state where I; is true. This is the general part. There is
a particular part when concerned with a detection problem as stated at the beginning
of this section: it remains to obtain a NSD-evaluable predicate F associated to the
particuliar predicate 7 we want to detect, insuring safety and liveness requirements.
In the next section, we solve this problem for the particular example of distributed
termination detection. Then we outline how this could be generalized to other kinds of
stable predicates.

5 Example: termination detection

5.1 The distributed termination detection problem

Consider a distributed program, called the underlying program. The aim of distributed
termination detection is to design a (distributed) superimposed control program, detect-
ing the termination of the underlying program. This problem has been put forward by
Francez [6] and addressed by many authors [4, 5, 13, 14, 8, 12], resulting in a number
of termination detection algorithms. Nevertheless, to our knowledge, none of them used
a derivation approach similar to the one presented here. In particular, concepts such
as NSDE - with safety and liveness -, guarded waves as support for an iterative scheme
were not explicitely stated and used to meet the required specifications. Moreover, due
to the generality of the guarded wave sequence scheme, our result is a family of detec-
tion programs, each particular implementation of the abstract scheme giving a particular
program member of this family (some of the previously known algorithms appear to be
members of this family).

12
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5.2 Superimposition for termination detection

The role of the control program is to detect the termination of the underlying program.
To this end, the former is designed as a superimposed observation program, as explained
in preceeding sections. Each process P; of the underlying program can be active or
passive. This status of P; is observed by C;, which can atomically and in any state
evaluate a predicate passive(i), whose value is true if, and only if, P; is passive. The
behaviour of control program, with respect to observation of the underlying program,
obeys the following rules, for any channel ¢;; and any message m € UM:

(E) {—-passive(i) A =sent(i, j,m)} E;j(m) {—passive(i) A sent(i, j, m) A -rec(i, j, m)}
(R) {sent(j,i,m) A -rec(j,i,m)} Rji(m) {—passive(i) A rec(j,i,m)}
(1) {—passive(d)} INT; {-passive(i) V passive(i)}

(INT; is an internal event of C; corresponding to an internal event of F;)

rule (E) expresses the fact that only active processes can send underlying messages,

rule (R) expresses the fact that the transition from passive to active occurs upon the
receipt of an underlying message, and only then,

rule (I) expresses the fact that transition from active to passive is possible in any ac-
tive state (and corresponds to an underlying internal event) and that underlying internal
events are enabled only in active states.

5.3 Specification of termination

Definition We will say that a program has terminated in a state s if, and only if, no
event belonging to this program is enabled in this state.
This definition is consistent with the computational model adopted in this paper (§2).

Claim 1 The underlying program has terminated in a state s if, and only if, the
following assertions hold in the corresponding state of the control algorithm:

i) Vi € X : passive(t) (all underlying processes are passive)

i) V(i,j) € T ,Vm: (m € UM A sent(i,j,m)) = rec(m,1,j) (all underlying channels
are “empty”)

Proof Suppose the program terminated. Neither underlying internal nor underlying
message send event is enabled, and thus, from rules (E) and (I), Vi € X : passive(i).
No underlying message receive event is enabled and thus, from rule (R), V(i,j) €
I',Vm: (m € UM Asent(i, j,m) = rec(m, i, j)).

Conversely, from i) follows that no underlying internal and no underlying message
send event is enabled in state s and ii) expresses the fact that no underlying message
receive event is enabled in state s (“channels are empty”) O

In the rest of this paper, we will use the notation

empty(i,j) =Vm (m € UM A sent(i, j, m)) = rec(m,1, )

13



From claim 1 we can deduce that the control program has to detect a state in which
the following predicate holds:

terminated = /\ passive(i) A /\ empty(i, j)
T€EX (,j)er

Claim 2 1In any run of the control program, terminated is a stable predicate.

Proof We have to show: terminated{s] A s’ > s = terminated[s’]. In fact, when
terminated(s] holds, it results from claim 1 that no underlying message send or receive
event is enabled in state s. Now, only an underlying message receive event could set
to false a predicate passive(i), and only an underlying message send event could set
to false a predicate empty(i, j). Thus, terminated remains true in all control program
states subsequent to s 0.

5.4 Derivation of a predicate F

Predicate terminated cannot be atomically evaluated by any of the control processes.
More precisely:

1. Neither C; nor C; can evaluate atomically the predicate empty(i, j)

2. Even if we assume that empty(i, j) could be atomically evaluated by a control
process, or if transmissions were instantaneous, it remains that no control process
can evaluate simultaneously all the predicates passive(i) and empty(i, 5); this is
why we need the notion of NSDE of a predicate.

The first point is easy to overcome. Predicate empty(i, j} can be evaluated with delay
by Ci, if we associate to each underlying message m sent on channel ¢;; an event of Cj,
say ack;(m), such that E;j(m) = acki(m) (liveness), and en(ack;(m)) = rec(i, j, m)
(safety). Such an event corresponds to the fact that C; becomes aware of the occurrence
of event R;j(m); it can be, for example, the receipt of an acknowledgment message
(control message) sent back by C; to Cj, or else the reach of a maximum delivery time
by a clock local to C; (control internal event), etc. If we denote by acknowledged(t, j, m)
the occurrence predicate of this event, the assertion acknowledged(i, j,m) = rec(i, j,m)
holds in any state. Hence, if we set

a_empty(i) = /\ Ym (m € UM A sent(i, j, m) = acknowledged(i, j, m))
JET(8)

(where T(3) = {7 | 7 € X A(i,j) € T}) we have, in any state s: a_empty(i) =
Ajerqyempty(i, j) and thus

/\ (passive(i) A a_empty(i)) = terminated
ieX

14
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The second point is more intricate: it constitutes the core of the difficulty for termina-
tion detection in an asynchronous distributed context. In fact, it is required to determine
a predicate F, NSD-evaluable, strong enough to insure safety but weak enough to insure
liveness. For that purpose, let us analyse more accurately the predicate terminated to
be detected by F.

Claim 3 Given a state s, the assertion terminated(s] holds if, and only if, a n-uple of
states (qs(l), cens qs(”)) exists, for which the following assertions are satisfied:

i) max(gs(),...,¢s(™) < s and

ii) Vie X : ¢s) < o < 5= passive(i)[o] and
i) Vie X : (/\jer(‘)empty(i,j)) [gs)

Proof Suppose terminated[s]. Hence, Vi € X : passive(i)[s]. The set of states
{s | s < 0 < s = passive(i)[o]} is non-empty and thus has a minimum element, say

ps(). Similarly, Vi € X (/\jel‘(i) empty(i, j) ) [s], hence the set of states {s | s <
c<s=> (/\jer(,-)empty(i,j)> [0]} is non-empty and has a minimum element, say ¢s(*).
Clearly, the states ¢s¢*) = max(ps(*), cs(")) (i € X) satisfy assertions i), ii), iii).
Conversely, suppose i),ii),iii) hold. From behaviour rule (E) and assertion ii), no
event E;;(m), where (i,5) € T, m € UM, occurs in states ¢ such that sV <o <s

whence, from assertion i): V(7,j5) € T' : empty(i,j)[s]. Moreover, from assertion ii)
again, Vi € X : passive(i)[s]. Thus terminated(s]. O

This characterization means that terminated[s] holds if, and only if, each controller
Ci has observed that P; remained continuously passive since a state ¢s(*) prior to s.
Obviously, terminated being stable (claim 2), assertions passive(i) will hold continuously
after state s too.

Recall that our detection is based upon a sequence of NSDEs max(seﬁl), ciey seﬁ"»)) <
st < min(seﬂl,...,seﬁ?l), (k = 0,1,...) such that C;’s contribution to the k'»
NSDE is made in state sei'), and global result is recorded in state sry. From claim
3, terminated(srs] cannot be asserted, even if it does hold, unless ¥i € X : gs() < sel").
Moreover, the smallest integer k such that Vi € X : ¢s() < sei') is characterized by
Vie X : se(k') < o < st => passive(i)[o]. But, as we just pointed out, consecutive C;’s
contributions are made in states ..., sei'), se(k'll, ... (C; is not aware of state srx). Thus
the smallest integer k such that, Vi € X : ¢s¢) < seg), is locally detected on each C;
by sel’) <o < sei’ll = passive(i)[o].

Introducing the predicate

epi, )&’ = ((5' 2 ) A(s < o < & = passive(i)[o]))
(in other words: ¢p(i, s)[o] holds if, and only if, C; observed that P; remained continuously

passive between states s and o), the above analysis shows that the predicate whose
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NSDE has to be performed by the k' wave must take into account, on the one hand, the
continuous passivity of C;’s between state sei_, and state se}, and on the other hand,
emptyness of C;’s output channels in state se; 1- Thus, if we deﬁne, for any k > 0:

in any state s Fx_,[s] = /\ (ep(i, se )[s] Aa. empty(:)[se 1])
i€X

the kP wave can perform a NSDE of Fi_;.

Proposition1 Every NSDE fk_l[seil) ,se,c ") | sri] is safe with respect to terminated.
Proof Suppose Fi_ l[se(l) e sek ") | sr¢]; this implies

A\ (eplis sei2 )lsel”) A a_empty(i)se ), )

i€X

and thus, from the definition of a_empty:
/\ (ep(i, se )[se )] A /\ empty(i,j)[se(kill])
€X JEF(S)
SinceVie X : sesc )1 <srpoy < se( ), sufficient conditions (1), (ii), (ii1) of claim 3 hold,

with ¢s() = se£11 and s = srix_;, whence terminated[sri_;]. Since sry_; < srx we
have, by claim 2: terminated[sr;]. O

This proposition shows that a detection can be based upon a sequence of NSDEs of
predicates Fi. It remains to split these predicates into an invariant and a stop condition.
By definition,

Fr-1 = /\ CP(i»sel(k‘Zl) A /\(a-empty(z')[segzl])
iexX ieX
= /\ ep(t, 385:21) A /\ (passive(i) A a.empty(i))[sesg'z1
i€X EX
One of the two terms can be taken as an invariant, and the other as a stop condition.
Recall that the invariant is a conjunction of assertions I;, atomically evaluable by Cj,

such that Vk : I; [sek )] is true. Since it’s not possible to assert that an underlying
process remains continuously passive between two consecutive end._visit events, assertions

ep(i, st e 1)[561-.)] don’t meet the invariance requirements. Thus, we choose

e as the invariant I which governs the progress of the wave:

/\ I [se,:)] = /\ (passive(i) A a.empty(i) [se )]
1€X 1€EX

e as the stop condition A[seﬁl), .. .,sei") | sri] the value

N cpti, sl Ysel)

i€EX

which is obtained in state sr; as the result of the wave k .
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Proposition 2 The detection of predicate terminated is live.

Proof Let s be a state such that terminated holds. No event E;j(m), (i,j5) €T, m€
UM is enabled in states ¢ > s and thus, for each i € X, the state in which last event
E;j(m) occurred is well-defined (by convention, it is the initial state 8o if C; sent no
underlying message). Since E;;j(m) = ack;(m), the state in which last event ack;(m)
occurred is well-defined : let la(®) denote this state (by convention, la(!) = sg if C; sent
no underlying message). In any state o > la(®), assertion a_empty[o] holds and in any
state o > s, assertion passive(i){o] holds. Thus, the first assumption of lemma 4.1 (in
§4.2) is verified, with o) = max(la®), s).

On the other hand, from claim 3, we have ¢ > s = ¢p(i, s)[o] and thus the second
assumption of lemma 4.1 is verified too. Thus, by lemma 4.1, detection is live. O

5.5 Specification of a control program for termination detection

In this subsection, we summarize the results derived up to now. In order to make a new
step down to a more concrete specification, we implement with variables some of the
predicates used in behaviour rules. Predicates passive(i), wh(i), new_step are simply
implemented by boolean variables passive;, wh;, new_step. Predicates cp(i, s) are imple-

" mented by boolean variables ¢p;, such that ¢p; has the value true in the post-condition

of event end_visit;, and becomes false as soon as passive; becomes false. Predicates
a_empty(?) can be implemented by integer variables; in fact, recall that

a.empty(i) = [\ Vm (m € UM A sent(i, j, m) = acknowledged(i, j, m))
JEr(i)
If we set #sent; = Zjer(’.)card{m | m € UM A sent(i, j,m)}
#acki = 3 ;erqycard{m | m € UM A acknowledged(i, j, m)}
we have, in any state: #sent; > #ack; and a_empty(i) = (#sent; = #ack;). Thus, if we
let nack; = #sent; — #ack;, we have, in any state, nack; > 0 and a_empty(i) = (nack; =

0). For each i € X, j € T'({), m € UM, integer variable nack; is involved in behaviour
rules of E;;j(m) and ack;(m).

{—passive; Anack; = a Aa >0} Eij(m) {-passive; A nack; = a + 1}

{true} Rji{m)  {-passive; A ~cp;}

{-passive;} INT; {—passive; V passive; }

{nack; = a Aa > 0} acki(m) {nack; =a -1}

{new_step} start {-new_step A \;c x (—collected(i))}
{~wh; A —collected(1)} beg_visit; {wh; A —collected(i)}

{wh; A —collected(i) A passive; A (nack; = 0)}
end_visit; {~wh; A collected(i) A cp;}
{Aicx (passive; A (nack; = 0)[se] A collected(i)) }
return  {a = A;cx cpi[se™) A new_step = —a}

As can be seen, predicates sent(i, j, m) and rec(i, j, m) are not implemented by con-
trol variables (actually, they could be implemented by underlying variables). Predicates
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collected(i) express the fact that the value cp;[se(*)] has been taken into account in the
current NSDE. How they are implemented depends of the particular implementation
of waves (ring with token, rooted or unrooted spanning tree, etc. [9]). In the annex,
we give the complete control program, in a CSP-like syntax, with a ring implementa-
tion for the waves (see §4.3 ) and an acknowledgement message implementation for the
acknowledgement mechanism. Both insure liveness conditions.

6 Conclusion

Methodological design of distributed programs is of major concern to master parallelism.
Distributed detection problems are important, due to their role in distributed systems.
Since their solution essentially involve predicate evaluations, we have put forward the
difficulties inherent to distributed evaluation. After recalling that, in asynchronous dis-
tributed context, such evaluations can be only non-simultaneous and delayed, we have
formalized this concept as the NSDE paradigm, and we have given precise definitions of
its associated safety and liveness properties. The detection problem itself has been set
in its generality such that, whatever the predicate to detect, the solution is expressed by
an iterative NSDE scheme. The well-known technique used in centralized context, which
consists in decomposition of a goal specification into an invariant and a stop condition,
has been extended to the asynchronous distributed context: this leads to a “two-level”
iterative scheme, namely a spatial iteration (for all processes do ...), which is a NSDE
implemented by a wave, and a temporal iteration (while - stop do NSDE done), imple-
mented by a sequence of waves. The systematic design of the wave (a step of the temporal
iteration) is deduced from its specification: the concept of guarded wave is introduced, in
order to insure the desired invariant (the guards control the wave progression), and the
stop condition is evaluated by the non simultaneous delayed evaluation scheme realized
by the spatial iteration.

As an example illustrating this general technique, we have addressed the problem
of distributed termination detection. The point here is to obtain a NSDE-evaluable
predicate associated with the particuliar predicate which must be detected, while meeting
safety and liveness properties. To show the generality of this approach, we outline how
it could be applied to other kinds of stable predicates, e.g. those like T[s] = (G[s] > a),
where G is a monotonic non-decreasing function defined over the states of a distributed
program, valued in a semi-lower lattice £, and a is a particular value in E (threshold).
Suppose G is of the following form: each process P; of the program records a value
z; € E, and each message m carries a value m.v € E. In any state s of the program,
G[s] = inf(inf(z; | i € X),inf(m.v | m is in transil in s)), where inf denotes the infimum
operation on E and m in transit in s means that sent(.,.,m) A —received(.,., m) holds
in state s. If the program obeys the following behaviour rules, it can be shown that G is
monotonic non-decreasing ({17](9, chapter 2]):

1. (emission) when P; sends m, them m.v = z;
2. (reception) when P; receives m, then z; records a value v/, with v/ > inf(z;, m.v)

3. (internal event) P; can spontaneously decrease its recordrd value z;
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A derivation similar to the one done in §5 above leads to NSD-evaluable predicates defined
(informally) by: for every i € X, all the values recorded by P; since the last visit have
been > a and every message m sent by P; with a value m.v < a has been received.

Termination is a particular case: this is obvious with E = {active, passive}, active <
passtve, a = passive. Another interesting example is the calculus of Global Virtual Time
(GVT) of a distributed simulation [11]: the GV T is the smallest simulation time reached
by local simulators or carried by in-transit messages. When the GVT is greater than a
value «, this means that the overall simulation time has reached this value.

Acknowledgements: We would like to thank the anonymous referees for their useful
comments which helped us to obtain very significant improvements.
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Annex

We give a completely specified program for termination detection, where, in addition to
the previously implemented predicates (§5.5), waves are implemented on a virtual ring
(§4.3) and acknowledgement mechanism is implemented by acknowledgement messages
(each ack event corresponds to the receipt of an acknowledgement message, and the
receipt of an underlying message triggers the send of the corresponding acknowledgement
message).

The program is given in a CSP-like syntax ([10]), adapted to the asynchronous model
described in section 2 (sends and receipts are denoted respectively by !! and ??). Each
behaviour rule is translated into a guarded command, according to the following rules:

o {p} Ei;(m) {q} is translated into a guarded command for process i: p — C;!'m; S
where S is a sequential program such that {p} S {g} (in the usual meaning),

¢ {p} R;ji(m) {q} is translated into a guarded command for process i: p AC;??m —
S where S is a sequential program such that {p} S {¢},

o {p} INT; {q} is translated into a guarded command for process i: p — S where S
is a sequential program such that {p} S {q}.

A program is then a collection of sequential programs for each process, having the struc-
ture:

Ci:: init; %inil assigns initial values to variables; stop is initsalized to false%
*+ [-stop —

]

The purpose of the variable stop is to control the end of the process sequential program.
A message terminate is sent around the ring by C, when the latter detects underlying
programm termination. Its purpose is only to inform other controllers of this detection
and to stop their local program.

Comments are bracketed with %.
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Text of the program

Cq4::new_step:=true; nack:=0; cp:=true; stop:=false;

* [~stop —
[new_step —C,y..!!token(cp);wh:=false;cp:=true;new_step:=false
o
-wh A Cp,.q77token(v) — a:=v; wh:=true
|]

wh A passive A nack=0 —new_step:=-a,;
—new_step — %termination detected%
Ciuceliterminate
]
(]

%P, receives m from P;% C;?7m — passive:=false; cp:=false; C;!!ack
O

—passive AP, sends m 1o Pj% — C;!!m; nack:=nack+1

@]

C;?7ack — nack:=nack-1

O

—passive AP, becomes passive% — passive:=true

@]

Cprea??terminate — stop:=true

]
]

Ci(t # a)::nack:=0; cp:=true; wh:=false;stop:=false
* [-stop —
[-wh A Cpreq?7token(v) — a:=v; whi=true

wh A passive A nack=0 — C,,..!!token(a A cp);wh:=false;cp:=true
‘l;oPg receives m from P;% C;??m — passive:=false; cp:=false; C;!ack
O

—passive %AP; sends m to P;% — C;!m; nack:=nack+1

(C:]j 7?ack — nack:=nack-1

0

—passive DAP; becomes passive% — passive:=true
@)

Cprea??terminate — C,ycc!!terminate; stop:=true

]
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