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résume :

En décodage acoustico-phonétique de la parole, les corrélations entre les vecteurs de
parametres d'analyse sont supposés spécifiques des unités phonétiques. Nous proposons
dans cet article des techniques d'interpolation non linéaires pour représenter ces
corrélations et identifier les phonémes. Le principe consiste 2 décomposer une séquence
de trames de parole en deux parties et & construire une fonction permettant d'interpoler
une partie de l'information 2 partir de l'autre. Trois types d'interpolateurs ont été
développés en fonction des informations 2 interpoler. Pour la reconnaissance, chaque
symbole phonétique est associé a un interpolateur linéaire qui lui a été adapté au cours
d'une phase d'apprentissage. Les interpolateurs sont implantés a l'aide de réseaux multi-
couches de type perceptron. Les tests effectués en utilisant des vecteurs de 16 coefficients
cepstraux LPCC ont montré que les trois types d'interpolateurs donnaient des résultats
comparables, le meilleur étant I'interpolateur par paires de vecteurs. Ce dernier modéle
donne d'aussi bons résultats globaux que la technique de quantification vectorielle tout en
étant bien meilleur pour la reconnaissance des consonnes plosives.
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Non-Linear Vector Interpolation by Neural
Network for Phoneme Identification in
Continuous Speech

Yifan GONG and Jean-Paul HATON
CRIN/INRIA-Nancy, BP 239, 54506 Vandceeuvre, France

abstract :

The correlation between vectors in a sequence of analysis frames are supposed to be
specific to phonetic units in acoustic-phonetic decoding of speech. We propose non-linear
vector interpolation techniques to represent this correlation and to recognize phonemes.
The interpolation is based on the decomposition of a frame sequence into two parts and
on the construction of a function that interpolates one part using information from the
second part. According to quantities to be interpolated, three families of interpolator
models are developed. In a recognition system, each phonetic symbol is associated with a
non-linear vector interpolator which is trained to give minimum interpolation error for that
specific phoneme. Multi-layer feedforward neural networks are used to implement the
non-linear vector interpolators. For a continuous speech phoneme spotting test using 16
LPCC-derived cepstrum coefficients as parametric vectors, the three categories of models
gave compatible results. Vector-pair interpolator models yielded best recognition rate.
Compared to a VQ-coded reference technique, this model gives close global recognition
rate and significantly outperforms for plosive sounds.
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1 Introduction

We address in this paper the problem of phoneme recognition in continuous speech.
Specifically, we are interested in giving the plausibility of each phoneme symbol at
each analysis frame instant. This process is called also frame classification or phoneme
spotting.

Because of the contexual variability, identifying phonemes in continuous speech
is a very difficult task. For continuous speech, present phoneme recognition models
are not totally satisfactory. Neural networks have shown powerful capabilities in cap-
turing arbitrary relations and have given encouraging results in phoneme recognition.
However, problems as time sequence modeling, context representation and connection
to the speech input remain to be investigated.

The acoustic tmage of a phoneme can be represented by a parametric vector se-
quence. The vectors within the sequence as well as the components of a specific vector
are correlated in a way specific to that phoneme. Information carried by part of the
data can be used to predict other parts of the same phoneme. This idea has been
exploited in speech analysis by means of linear scalar prediction [1].

In this paper we introduce the techniques of non-linear vectorial interpolation to
represent this correlation in phoneme recognition. We propose to build phoneme mod-
els by minimizing training set mapping error using non-linear vector interpolation. The
difficult problem of interpolation is solved by the use of artificial neural networks. We
describe three types of non-linear interpolation models adapted to vector sequences
of continuous speech. The three neural-network-based non-linear interpolation tech-
niques have been compared using a continuous speech database. They gave good
recognition results, compared to a previously developed VQ-based reference compari-
son phoneme recognition technique.

Neural networks have been widely used in speech recognition for vector (parameter)
to symbol (phoneme or word) mappings. Recently, their application to vector-to-
vector mappings instead of vector-to-symbol mappings has been receiving increasing
attention. Particularly a family of predictors, Linked Predictive Neural Networks (2],
Neural Prediction Models (3] and Hidden Control Neural Architecture [4] have been
reported. While having very interesting properties, these models use only past speech
frames at time ..n — 2,n — 1 to predict frame n. However, it is known that during
speech production. the realization of the current symbol may be influenced not only
by the past symbols but also by future symbols.

The non-linear interpolators described in this paper can use information in frames
n+1,n+2, .. as wellasin..n—-2,n -1 tointerpolate the frame n, making better use
of contexual information in speech. Besides, they can be used to interpolate not only
a vector frame, but also a set of vectors derived from an input frame vector sequence.
Conceptually, these non-linear interpolators are thus more general than predictors.

The paper contains the mathiematical description of the three vector interpolation
models, the description of rhe implementation of non-linear interpolators by means of
neural networks, and the experimental comparison of these models.



2 Basic principles

2.1 Introduction

The basic idea of the present work consists in using non-linear vector interpolation
techniques to represent the correlation between feature vectors representing phonetic
units. We build a set of phoneme models such that each model has its own non-
linear vector interpolator trained to give minimum interpolation error for that specific
phoneme. The trained interpolators coutain therefore information about phoneme
symbols and can be used for recognition. We assume that, when complex enough, these
non-linear interpolators can deal with contextual deformation, event sequentiality and
time warping problems.

2.2 Formulation of the problem

A spoken utterance is make up of a sequence of symbols. A symbol s is observed as an
acoustic image I, represented by a sequence of profiles v, v{,v3,.... I, = v§,v;, 03, ....

For simplicity, in the following we will drop the supscript s. Symbols can belong to
the phoneme set of a given language.- Profiles are successive analysis frames represented
in some parameter space such as spectrum, cepstrum or others.

We decompose I into two sets of vectors, I, and I,, which are not necessarily
equal in size. We suppose that the two sets of vectors are redundant, so that an
approximation of I, J,, can be computed by using information in I,, I, = f,(1,).
The process of computing I, from I, is called interpolation and fs the interpolation
function. If the correlation between I, and I, is specific to the symbol s, then f, is
specific to s and can be used to recognize s.

We denote the interpolation error as

o = {|11s = Ll = | fs(L) = L] (1)

Once an observation of symbol s is given, fs can be adjusted so that e, is minimized.
If N, realizations of symbol s are available, the average error of interpolation E can

be defined as: N
1 s
=W 2SN, LS UL = Tl (2)
4's ‘___ s k 1

where (-), means that expression - is evaluated for the k' realization. 7\‘— is a nor-

malization factor; for simplicity, it will be dropped in the following. The interpolation
model of symbol s can be estimnated by minimizing E, over all realizations, i.e.:

M, = argmin; E,

2.3 Three families of models

The major problem in designing an interpolation system is to decide which quantities
to be interpolated. The decomposition of /, into two vector scts can result in different
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types of models. We have given particular interest to three families of models: vector-
pair, component-pair and vector-center, depending on how I is divided into I, and
L.

Vector-pair is based on the assumption that consecutive vectors in the vector se-
quence of a symbol are closly correlated. Component-pair assumes that consecutive
components of a vector in a suitable parametric space are dependent. Vector-center
exploits the fact that the realization of a speech vector is conditioned by both its past
and future. If only past is considered, then the system is reduced to a traditional
predictor.

The following notations will now be used: vi denotes the i** component of vector
Um. P is the parameter vector space of dimension N, i.e. P = RN. L, represents the
number of frames for the acoustic image of symbol s. (-), will be used to indicate that
the expression - is evaluated for the k" realization of a symbol. Besides, on the basis
of the elementary model described in section 2.2, we introduce a weighting factor w in
the interpolation error for all three models.

2.3.1 Vector-pair models

In such models, the even-numbered profiles are used to interpolate the odd-numbered
profiles. A model is obtained by mininization of a weighted average interpolation
error. I is decomposed into:

I = [vh,) and I = [vh,,]

where 7 = [0, N — 1],m = [0, [%]]. Eq-2 becomes

—1 N

N, 15)-

= Z Z Z |( sv - 1")771.4.1)&' u' (3)
k=1 m=0 =0

where:

o : P15 — PIF

w™ weights the error as a function of frame index m so that the center of the acoustic
image plavs a more important role than the sides of the image.

2.3.2 Component-pair models

In these models. the even-numbered components of profiles are used to interpolate
the odd-numbered ones. The interpolation error is minimized over all profiles. [ is

decomposed as
o= [vZ] and I, = [pZH!

where i = [0, [%] —1].m = [0. L, — 1]. From Eqg-2 we have

Ny Ly-1 [‘}]'1
— vl

2i+1 .|2ll';" (4)

k=1 m=0 =0

P |



Let P, = RI2}, f,,, is the mapping:
fsp:Pr* — Py

The reason and choice for w;" are the same as that for E7.

2.3.3 Vector-center models

In these models. a selected profile is interpolated by the remaining profiles in the
acoustic image. If the selected profile is at the center of the acoustic image, i.e.
qg= [%-*] the model interpolates the central parameter vector v, using its left and right
neighboring vectors. I is divided into

I, = [v:n] and I, = [v;]

where i = [0,N —1],m # gand m = [0,L, — 1], and ¢ an arbitrary integer and
g € [0, L, — 1]. Rewriting Eq-2 yields:

Ny N-1
" e i iy 12, i
Es = Z Z I( s,c(IU) - vq)kl W, (5)
k=1 t1=0
where:

foe: PFI P

w! weights the error according to the vector component index i.

3 Interpolation function

In section 2, we introduced f,.,r € {v.p,c} as interpolation function of the model
type r for the phoneme symbol s. When the structure of this function is specified.
several multi-variable optimization techniques are available to obtain it. We foculize
neural network based techniques.

Multi-layer artificial neural networks are known as being powerful in capturing non-
lincar relations. When complex enough, they are capable of being trained to achieve
arbitrary mappings [5]. The neural networks are especially applicable for approximat-
ing non-linear multi-variate functions. In this section, we discuss a neural network
implementation of the non-linear vector interpolators. Three-layer feedforward neural
networks are used for all these models. Minimization of interpolation error over a
training database is based on error-back propagation algorithm. This training proce-
dure minimize the least-mean-square error by iteratively adjusting the weightings in
the networks [6, 7].

The input layer of a neural network receives the vector set I,. This layer has
therefore N\, = Imazin X Minazin cells. where Iino; in is the number of components of
the input vector in I,. and Mo, in is the number of vectors in I,. The output layer
of a network produces the interpolated vector set I,. The desired output values are

8



a4 -

N

I,. The number of cells in this layer is Ny = Imarout X Mmazout: Where Ingz oue is
the number of components of the output vector in I, and My,q7 0u¢ i the number
of vectors in I,. Table 1 gives the summary of N;, and N,,; for the three types of
interpolators.

Values in both input and desired output vector sets are normalized to [0,1] before
connecting to the neural networks.

IlParamet-er ” vector-pair | component-pair | vector-center "

Nin N x [&] 2 x L, Nx(L.,-1)
Nout N x [L2] 2 x L, N

Table 1: parameters of three proposed interpolation models

The training phase consists in doing error-back propagation on models of each
phoneme symbol. The models for different phoneme symbols are trained separately
and thus have no mutual influence.

4 Experimentation

4.1 Speech data and phoneme models

In order to carry out an experimental comparison, we have choosen a speech database
consisting of 17 French sentences. uttered 5 times by one male speaker and manually
labeled (8]. This database corresponds to about six minutes of speech. Speech signals
ware sampled at 16kHz and 16'* LPCC-derived cepstrum coefficients [9] were computed
each 10ms using a window length of 25.0ms. These coefficients constitute the vector
parameter space.

For spoken French 37 phoneme symbols are defined. For each of the three inter-
polator types, 37 phoneme models were therefore constructed. Since the models are
trained separately. each phoneme model may have a specific length L,. The length
used for a phoneme model is

L‘s = ks * ds (6)
where d, is the statistical average duration over all occurrences of the phoneme s in a
database containing ten male speakers, and k, € [0,1]. Typically, L, ranges from 4 to
10 profiles.

Weighting functions w depend upon phoneme durations and have the form of a
Hamming window.

4.2 Evaluation method

Recognition consists in sliding all phoneme models over the test speech frame sequence
and computing the interpolation error Eq-1 frame by frame. We thus obtain interpo-
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lation error sequences e,(n) € [0, 00], for each phoneme s at each time instant n, which
has smaller value when the test speech is close to the model of phoneme s at time n.

We define plausibility value g, € [0,1] from e (n):

1

B = Tremert)

where ¢ is a scaling factor. The higher the value of y,,, the more plausible that the
current test profile with index n is the acoustic image of symbol s.

We have compared the interpolator models to a method based on VQ-coded ref-
erence comparison developed in our previous work [10, 11, 12], using two evaluation
methods. The first method is at the sentence recognition level. It consists in com-
paring global recognition rates. This method is pertinent with respect to the global
recognition algorithm but does not provide much information about the recognition
of individual phoneme at the frame level. The second method consists in comparing
correct frame labelling rate at phoneme symbol level. The difficulty for this method
is to define an appropriate criterion of the correctness.

In our experiments, the following procedure was used to implement the second
method. For a given phoneme symbol s, all frame sequences manually labeled s are
first concatenated into one datafile. The recognition program is then run on that
file, giving plausibility of all symbols at all time index. For each time index, the
symbols are sorted according to their plausibility value. A frame is considered as
correctly recognized if symbol s is in the first two symbols with highest plausibility.
The recognition rate is defined as the ratio of the nuniber of correctly recognized frames
to the total number of frames in the datafile.

For symbols whose acoustic realization is non-stationary, as plosives, only the cen-
ter part of the frame sequence will be recognized even when using a perfect recog-
nizer. This measure therefore would under-estimate recognition rate for non-stationary
sounds.

4.3 Results and comments
4.3.1 Sentence level test

VINICS continuous speech recognition system [13] is used for sentence level test. The
system is recognizes a vocabulary of 1000 words described by a semantic grammar of
1200 rules. Tested on 51 test sentences, vector-pair models outperforms component-pair
and vector-center models, giving 90 sentence recognition rate. However, VQ-based
reference comparison method yields 3% better global recognition rate than vector-pair
models.

4.3.2 Phoneme level test

Table 2 (closed test) and Table 3 (open test) summarize the results. In these tables,
recognition rates are averaged over six categories of phonemes, i.e.: vowel, plosive,
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semivowel, fricative, nasal and liquid, and pause. In the tables the recognition rates
are accompanied by the number of frames correctly recognized.

The three categories of models give comparable results. The proposed models give
similar recognition rate as the VQ-based reference comparison method while signifi-
cantly outperformed for plosives.

We computed the difference in recognition rate between closed test and open test.
The result is given in Table 4. vector-pair interpolator models loss 3% of recognition
rate for open test, compared to 6% of loss for VQ-based reference comparison. This
indicates that this type of models has better learning ability.

Experiments show that all three types of model yield fast convergence during train-
ing, requiring about 5 minutes CPU time for eacli on a sun sparc work station.

4.3.3 Comments

Since the V(Q)-based reference comparison method uses training-token-specific duration
whereas the non-linear interpolators use the average duration for all training tokens
of same phoneme symbol, the former has meore degree of freedom. If non-linear inter-
polators could use training-token-specific duration, then the result will be better.

Throughout the tests, we used only one utterance of the 17 sentences for train-
ing the interpolator models. These sentences are composed of about 450 phoneme
svmbols. This number is far from the one that allows presenting all phonemes in all
possible contexts. We believe that for some phonemes, especially semivowels and some
fricatives, training is insufficient.

Besides, the following points were observed:

a. The order in which training samples are presented to the network does not signifi-
cantly influence the recognition results.

b. A number between 3 and 7 of cells in the hidden layer does not change notably the
recognition result.

c. Fourier transform. cepstrum, or liftered cepstrum coeflicients give similar result,
the latter being the best.

d. Experiences on the value of ¢ in Eq-5 shows that ¢ = [L,/2] gives best result for
vector-center models.

e. A reduction of training phoneme duration L, in Eq-6 to 60% of labeled duration
degrades vector-pair method significantly while giving the same performance for the
other two methods.

5 Conclusion

We have shown in this paper that the intra-vector and inter-vector correlations of a
sequence of parameter vectors of speech signal can be captured by non-linear inter-
polation techniques and exploited for specch recognition. Because of their simplicity
and learning capability. neural networks are particularly appropriate for implementing
such interpolators.



We have implemented and tested three types of non-linear interpolation models
having the same characteristics: input-output mapping is performed from numeric
vector space to numeric vector space, not to symbolic space. These models show
good capability for capturing the temporal correlation of speech and for being trained
separately on each phoneme symbol. Under our experimental test conditions, the
vector-pair model gave best performances, both in recognition rate and in learning
ability. The result is compatible with the best results obtained using a VQ-based
reference comparison method. Plosive sound recognition using vector-pair interpolator
models achieves significant better result of all compared models. In our laboratory,
the non-linear vector interpolation models are being integrated into an operational
continuous speech understanding system.

In non-linear vector interpolation, the choice of the quantity to be interpolated
is still to be investigated. Experiments on different parameter spaces and on various
weighting functions could also contribute to improving the recognition rate. Adding
more speech-specific constraints to the interpolators provides more information for
recognition. Better results can therefore be expected. We are currently studying new
non-linear interpolation models which are more specific to speech signal proccssing.

While successful in speech recogniton, the neural network non-linear interpolation
technique presented in this paper is not specific to speech processing. As a general
approach for dynamic signal modeling. it will have impact on process identification,
pattern recognition or other related fields.
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[ Method [ Vowel Plosive | SemiVowel | Fricative | Nasliq | Pause Global
vector-pair || 79 (1606) 32 (565) | 61 (77) 76 (176) | 63 (433) | 100 (216) 61 (3073)
component-pair || 52 (1058) (222) 55 (70) 7 (156) | 62 (427) | 90 (195) | 42 (2128)
vector-center || 68 (1393) | 24 (426) | 52 (66) 7. (179) | 61 (322) | 94 (209) 03 (2690)
reference 84 (1698) | 24 (429) | 63 (80) | 77 (179) | 81 (560) | 98 (213) | 63 (3159)

Total Frames 2019 1728 | 126 230 685 | 216 5004

Table 2: Comparison of three proposed methods (test phrases were used in training)

n



[ Method T Vowel | Plosive | SemiVowel [ Fricative | Naslig | Pause | Global |
vector-pair || 63 (583) | 43 (228) | 37 (28) | 2 (140) | 52 (182) | 100 (220) | 58 (1331)
component-pair || 29 (270) | 9 (48) 16 (12) 24 (65) | 45 (158) | 100 (220) 3" (773)

vector-center || 56 (516) | 20 (107) | 71 (33) 54 (147) | 50 (173) | 62 (137) | 48 (1133) |

[ reference 65 (507) | 22 (117) | 51 (38) | 64 (173) | 66 (231) | 88 (195) | 57 (1351) |

[ Total Frames [ 914 [ 522 268 | 350 | 220 | 2348 |

Table 3: Comparison of three proposed methods (test phrases were not used for train-

ing)

Method - Plosive | SemiVowel | Fncatne [ I\ashq ] Pause | Global

[ vector-pair | 1 [ 244 T 24 0 3
component-pair 23 3 39 43 17 -10 10
vector-center 12 4 -19 23 11 32 )
reference 19 2 12 13 15 10 6

Table 4: Difference in recognition rate between closed test and open test
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